1
|
Tonelli A, Cousin P, Jankowski A, Wang B, Dorier J, Barraud J, Zunjarrao S, Gambetta MC. Systematic screening of enhancer-blocking insulators in Drosophila identifies their DNA sequence determinants. Dev Cell 2025; 60:630-645.e9. [PMID: 39532105 DOI: 10.1016/j.devcel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long-range transcriptional activation of gene promoters by abundant enhancers in animal genomes calls for mechanisms to limit inappropriate regulation. DNA elements called insulators serve this purpose by shielding promoters from an enhancer when interposed. Unlike promoters and enhancers, insulators have not been systematically characterized due to lacking high-throughput screening assays, and questions regarding how insulators are distributed and encoded in the genome remain. Here, we establish "insulator-seq" as a plasmid-based massively parallel reporter assay in Drosophila cultured cells to perform a systematic insulator screen of selected genomic loci. Screening developmental gene loci showed that not all insulator protein binding sites effectively block enhancer-promoter communication. Deep insulator mutagenesis identified sequences flexibly positioned around the CTCF insulator protein binding motif that are critical for functionality. The ability to screen millions of DNA sequences without positional effect has enabled functional mapping of insulators and provided further insights into the determinants of insulators.
Collapse
Affiliation(s)
- Anastasiia Tonelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Jonas Barraud
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
2
|
Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of Drosophila. Genetics 2018; 209:757-772. [PMID: 29739818 DOI: 10.1534/genetics.118.301088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] protein is an example of a multivalent transcription factor. Although best known for its role in establishing the chromatin insulator of the gypsy retrotransposon, Su(Hw) functions as an activator and repressor at non-gypsy genomic sites. It remains unclear how the different regulatory activities of Su(Hw) are utilized during development. Motivated from observations of spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis to advance an understanding of its developmental contributions as an insulator, repressor, and activator protein. We discovered that Su(Hw) is required for sustained male fertility. Although dynamics of Su(Hw) expression coincide with changes in nuclear architecture and activation of coregulated testis-specific gene clusters, we show that loss of Su(Hw) does not disrupt meiotic chromosome pairing or transcription of testis-specific genes, suggesting that Su(Hw) has minor architectural or insulator functions in the testis. Instead, Su(Hw) has a prominent role as a repressor of neuronal genes, consistent with suggestions that Su(Hw) is a functional homolog of mammalian REST, a repressor of neuronal genes in non-neuronal tissues. We show that Su(Hw) regulates transcription in both germline and somatic cells. Surprisingly, the essential spermatogenesis function of Su(Hw) resides in somatic cyst cells, implying context-specific consequences due to loss of this transcription factor. Together, our studies highlight that Su(Hw) has a major developmental function as a transcriptional repressor, with the effect of its loss dependent upon the cell-specific factors.
Collapse
|
3
|
Kyrchanova O, Leman D, Parshikov A, Fedotova A, Studitsky V, Maksimenko O, Georgiev P. New properties of Drosophila scs and scs' insulators. PLoS One 2013; 8:e62690. [PMID: 23638134 PMCID: PMC3634774 DOI: 10.1371/journal.pone.0062690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. The first insulators to be identified were scs and scs', which flank the domain including two heat shock 70 genes. Zw5 and BEAF bind to scs and scs', respectively, and are responsible for the interaction between these insulators. Using the regulatory regions of yellow and white reporter genes, we have found that the interaction between scs and scs' improves the enhancer-blocking activity of the weak scs' insulator. The sequences of scs and scs' insulators include the promoters of genes that are strongly active in S2 cells but not in the eyes, in which the enhancer-blocking activity of these insulators has been extensively examined. Only the promoter of the Cad87A gene located at the end of the scs insulator drives white expression in the eyes, and the white enhancer can slightly stimulate this promoter. The scs insulator contains polyadenylation signals that may be important for preventing transcription through the insulator. As shown previously, scs and scs' can insulate transcription of the white transgene from the enhancing effects of the surrounding genome, a phenomenon known as the chromosomal position effect (CPE). After analyzing many independent transgenic lines, we have concluded that transgenes carrying the scs insulator are rarely inserted into genomic regions that stimulate the white reporter expression in the eyes.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Leman
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Parshikov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Fedotova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vasily Studitsky
- School of Biology, Moscow State University, Moscow, Russia
- Department of Pharmacology, UMDNJ–Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
4
|
Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites. PLoS One 2010; 5:e10119. [PMID: 20404925 PMCID: PMC2852416 DOI: 10.1371/journal.pone.0010119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/18/2010] [Indexed: 02/07/2023] Open
Abstract
The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.
Collapse
|
5
|
Krivega M, Savitskaya E, Krivega I, Karakozova M, Parshikov A, Golovnin A, Georgiev P. Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster. Chromosoma 2010; 119:425-34. [PMID: 20354861 DOI: 10.1007/s00412-010-0268-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 02/20/2010] [Accepted: 02/20/2010] [Indexed: 01/07/2023]
Abstract
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.
Collapse
Affiliation(s)
- Margarita Krivega
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Patra SK, Patra A, Rizzi F, Ghosh TC, Bettuzzi S. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev 2008; 27:315-34. [DOI: 10.1007/s10555-008-9118-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Roy S, Gilbert MK, Hart CM. Characterization of BEAF mutations isolated by homologous recombination in Drosophila. Genetics 2007; 176:801-13. [PMID: 17435231 PMCID: PMC1894609 DOI: 10.1534/genetics.106.068056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila BEAF-32A and BEAF-32B proteins bind to the scs' insulator and to hundreds of other sites on Drosophila chromosomes. These two proteins are encoded by the same gene. We used ends-in homologous recombination to generate the null BEAF(AB-KO) allele and also isolated the BEAF(A-KO) allele that eliminates production of only the BEAF-32A protein. We find that the BEAF proteins together are essential, but BEAF-32B alone is sufficient to obtain viable flies. Our results show that BEAF is important for both oogenesis and development. Maternal or zygotic BEAF is sufficient to obtain adults, although having only maternal BEAF impairs female fertility. In the absence of all BEAF, a few fertile but sickly males are obtained. Using both a chromosomal position-effect assay and an enhancer-blocking assay, we find that BEAF is necessary for scs' insulator function. Lack of BEAF causes a disruption of male X polytene chromosome morphology. However, we did not find evidence that dosage compensation was affected. Position-effect variegation of the w(m4h) allele and different variegating y transgenes was enhanced by the knockout mutation. Combined with the effects on male X polytene chromosomes, we conclude that BEAF function affects chromatin structure or dynamics.
Collapse
Affiliation(s)
| | | | - Craig M. Hart
- Corresponding author: Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803. E-mail:
| |
Collapse
|
8
|
Abstract
Active and silenced chromatin domains are often in close juxtaposition to one another, and enhancer and silencer elements operate over large distances to regulate the genes in these domains. The lack of promiscuity in the function of these elements suggests that active mechanisms exist to restrict their activity. Insulators are DNA elements that restrict the effects of long-range regulatory elements. Studies on different insulators from different organisms have identified common themes in their mode of action. Numerous insulators map to promoters of genes or have binding sites for transcription factors and like active chromatin hubs and silenced loci, insulators also cluster in the nucleus. These results bring into focus potential conserved mechanisms by which these elements might function in the nucleus.
Collapse
Affiliation(s)
- Lourdes Valenzuela
- Unit on Chromatin and Transcription, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
9
|
Zhao H, Kim A, Song SH, Dean A. Enhancer blocking by chicken beta-globin 5'-HS4: role of enhancer strength and insulator nucleosome depletion. J Biol Chem 2006; 281:30573-80. [PMID: 16877759 DOI: 10.1074/jbc.m606803200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-HS4 chicken beta-globin insulator functions as a positional enhancer blocker on chromatinized episomes in human cells, blocking the HS2 enhancer of the human beta-globin locus control region from activating a downstream epsilon-globin gene. 5'-HS4 interrupted formation of a domain of histone H3 and H4 acetylation encompassing the 6-kb minilocus and inhibited transfer of RNA polymerase from the enhancer to the gene promoter. We found that the enhancer blocking phenotype was amplified when the insulated locus contained a weakened HS2 enhancer in which clustered point mutations eliminated interaction of the transcription factor GATA-1. The GATA-1 mutation compromised recruitment of histone acetyltransferases and RNA polymerase II to HS2. Enhancer blocking correlated with a significant depletion of nucleosomes in the core region of the insulator as revealed by micrococcal nuclease and DNase I digestion studies. Nucleosome depletion at 5'-HS4 was dependent on interaction of the insulator protein CCCTC-binding factor (CTCF) and was required for enhancer blocking. These findings provide evidence that a domain of active chromatin is formed by spreading from an enhancer to a target gene and can be blocked by a nucleosome-free gap in an insulator.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
10
|
Savitskaya E, Melnikova L, Kostuchenko M, Kravchenko E, Pomerantseva E, Boikova T, Chetverina D, Parshikov A, Zobacheva P, Gracheva E, Galkin A, Georgiev P. Study of long-distance functional interactions between Su(Hw) insulators that can regulate enhancer-promoter communication in Drosophila melanogaster. Mol Cell Biol 2006; 26:754-61. [PMID: 16428433 PMCID: PMC1347022 DOI: 10.1128/mcb.26.3.754-761.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Su(Hw) insulator found in the gypsy retrotransposon is the most potent enhancer blocker in Drosophila melanogaster. However, two such insulators in tandem do not prevent enhancer-promoter communication, apparently because of their pairing interaction that results in mutual neutralization. Furthering our studies of the role of insulators in the control of gene expression, here we present a functional analysis of a large set of transgenic constructs with various arrangements of regulatory elements, including two or three insulators. We demonstrate that their interplay can have quite different outcomes depending on the order of and distance between elements. Thus, insulators can interact with each other over considerable distances, across interposed enhancers or promoters and coding sequences, whereby enhancer blocking may be attenuated, cancelled, or restored. Some inferences concerning the possible modes of insulator action are made from collating the new data and the relevant literature, with tentative schemes illustrating the regulatory situations in particular model constructs.
Collapse
Affiliation(s)
- Ekaterina Savitskaya
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Enhancers can activate their target genes over large linear distances. Insulators can delimit the influence of an enhancer to an appropriate target. There are a number of intertwined mechanisms by which the regulatory functions of enhancers and insulators might be carried out at the level of the chromatin fiber. Recent evidence suggests that both enhancers and insulators participate in higher-order organization of chromatin in the nucleus and in localization of their regulated sequences to both subnuclear structures and compartments. Novel experimental approaches are helping to reveal the mechanisms underlying nuclear organization of developmentally regulated genes.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
12
|
Zhao H, Dean A. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 2004; 32:4903-19. [PMID: 15371553 PMCID: PMC519119 DOI: 10.1093/nar/gkh832] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We studied the mechanism by which an insulator interrupts enhancer signaling to a gene using stably replicated chromatin templates containing the human beta-globin locus control region HS2 enhancer and a target globin gene. The chicken beta-globin 5' HS4 (cHS4) insulator acted as a positional enhancer blocker, inhibiting promoter remodeling and transcription activation only when placed between the enhancer and gene. Enhancer blocking by cHS4 reduced histone hyperacetylation across a zone extending from the enhancer to the gene and inhibited recruitment of CBP and p300 to HS2. Enhancer blocking also led to accumulation of RNA polymerase II at HS2 and within cHS4, accompanied by its diminution at the gene promoter. The enhancer blocking effects were completely attributable to the CTCF binding site in cHS4. These findings provide experimental evidence for the involvement of spreading in establishment of a broad zone of histone modification by an enhancer, as well as for blocking by an insulator of the transfer of RNA polymerase II from an enhancer to a promoter.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
13
|
Abstract
The early discovery of cis-regulatory elements able to promote transcription of genes over large distances led to the postulate that elements, termed insulators, should also exist that would limit the action of enhancers, LCRs and silencers to defined domains. Such insulators were indeed found during the past fifteen years in a wide range of organisms, from yeast to humans. Recent advances point to an important role of transcription factors in insulator activity and demonstrate that the operational observation of an insulator effect relies on a delicate balance between the "efficiency" of the insulator and that of the element to be counteracted. In addition, genuine insulator elements now appear less common than initially envisaged, and they are only found at loci displaying a high density of coding or regulatory information. Where this is not the case, chromatin domains of opposing properties are thought to confront each other at "fuzzy" boundaries. In this article, we propose models for both fixed and fuzzy boundaries that incorporate probabilistic and dynamic parameters.
Collapse
Affiliation(s)
- Geneviève Fourel
- CNRS/ENSL/INRA UMR 5161, 46 Allée d'Italie, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France.
| | | | | |
Collapse
|
14
|
Kuhn EJ, Hart CM, Geyer PK. Studies of the role of the Drosophila scs and scs' insulators in defining boundaries of a chromosome puff. Mol Cell Biol 2004; 24:1470-80. [PMID: 14749365 PMCID: PMC344178 DOI: 10.1128/mcb.24.4.1470-1480.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 09/11/2003] [Accepted: 11/20/2003] [Indexed: 11/20/2022] Open
Abstract
Insulators are DNA elements that establish independent transcriptional domains within eukaryotic genomes. The Drosophila scs and scs' insulators localize near the borders of a structural domain in the polytene chromosomes, known as a puff, produced by transcription of the 87A heat shock protein (hsp) genes. It has been suggested that scs and scs' are boundary elements that delimit this decondensed chromatin domain, reflecting the mechanism by which these sequences act to constrain regulatory interactions. This model was tested using transposons that carried a yellow gene to assess enhancer blocking and an hsp70-lacZ gene to examine the structure of a heat shock puff in the presence and absence of insulators. We found that although scs and scs' blocked enhancer function, these sequences did not prevent the spread of decondensation resulting from hsp70-lacZ transcription. Further analysis of the endogenous 87A locus demonstrated that scs and scs' reside within, not at, the borders of the puff. Taken together, our studies suggest that scs and scs' are not boundary elements that block the propagation of an altered chromatin state associated with puff formation. We propose that these insulators may have a direct role in limiting regulatory interactions in the gene-dense 87A region.
Collapse
Affiliation(s)
- Emily J Kuhn
- Molecular Biology Program, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
15
|
Abstract
Insulators are a class of elements that define independent domains of gene function. The Drosophila gypsy insulator is proposed to establish regulatory isolation by forming loop domains that constrain interactions between transcriptional control elements. This supposition is based upon the observation that insertion of a single gypsy insulator between an enhancer and promoter blocks enhancer function, while insertion of two gypsy insulators promotes enhancer bypass and activation of transcription. To investigate this model, we determined whether non-gypsy insulators interacted with each other and with the gypsy insulator. Pairs of scs or scs' insulators blocked enhancer function. Further, an intervening scs insulator did not block gypsy insulator interactions. Taken together, these data suggest that not all Drosophila insulators interact, with this property restricted to some insulators, such as gypsy. Three gypsy insulators inserted between an enhancer and promoter blocked enhancer function, indicating that gypsy insulator interactions may be restricted to pairs. Our studies imply that formation of loop domains may represent one of many mechanisms used by insulators to impart regulatory isolation.
Collapse
Affiliation(s)
- Emily J Kuhn
- Molecular Biology Program and Department of Biochemistry, University of Iowa, College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The eukaryotic genome is organized into different domains by cis-acting elements, such as boundaries/insulators and matrix attachment regions, and is packaged with different degrees of condensation. In the M phase, the chromatin becomes further highly condensed into chromosomes. The first step for transcriptional activation of a given gene, at a particular time during development, in any locus, is the opening of its chromatin domain. This locus needs to be kept in this state in each early G(1) phase during every cell cycle. Certain distal enhance elements, including locus control regions (LCRs) and enhancers, are believed to perform this target chromatin domain opening process and several models have been proposed to explain distal enhance action. But they did not explain precisely how a given chromatin domain is opened. Based on various studies, we propose a hypothesis for the mechanism of opening chromatin on a large scale. One important mechanism may involved breaking one or two DNA strands and reducing the linking numbers within chromatin domain. The topological changes can overpass some complexes formed on DNA strands and can be transmitted from specific localized points over a broad region, until boundary elements or insulators are reached. These may initiate downstream events such as propagation of histone acetylation and the binding of transcription factors to proximal promoters and may further augment the action mediated by distal enhancer elements.
Collapse
Affiliation(s)
- Li Xin
- National Laboratory of Medical Molecular Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | |
Collapse
|
17
|
Majumder P, Cai HN. The functional analysis of insulator interactions in the Drosophila embryo. Proc Natl Acad Sci U S A 2003; 100:5223-8. [PMID: 12700350 PMCID: PMC154326 DOI: 10.1073/pnas.0830190100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2003] [Indexed: 01/22/2023] Open
Abstract
Chromatin boundaries or insulators modulate enhancer-promoter interactions in complex genetic loci. However, the mechanism underlying insulator activity is not known. Previous studies showed that the activity of the Drosophila suHw insulator is abolished by the tandem arrangement (pairing) of the insulator elements, suggesting that interactions between insulators or like elements may be involved in their enhancer-blocking mechanism. To test whether such phenomenon reflects a general property of chromatin insulators, we tested the effect of pairing on enhancer-blocking activity of 11 homologous and heterologous insulator combinations using suHw, scs, or SF1 insulators. We found that, unlike the homologous pairing of suHw, the heterologous combinations of suHw with other insulators do not reduce their enhancer-blocking activity. Rather, paired insulators exhibit a higher level of enhancer-blocking activity than either single insulator alone, suggesting that they can function independently or additively. Furthermore, the analyses of two additional chromatin boundaries, scs and SF1, in homologous or heterologous pairing with other boundary elements, also showed no reduction but rather enhancement of insulator activity. We propose that diverse mechanisms may underlie insulator activity, and selective interactions among insulators could influence their function as well as the formations of independent chromatin domains.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
18
|
Engel N, Bartolomei MS. Mechanisms of Insulator Function in Gene Regulation and Genomic Imprinting. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:89-127. [PMID: 14711117 DOI: 10.1016/s0074-7696(03)32003-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Correct temporal and spatial patterns of gene expression are required to establish unique cell types. Several levels of genome organization are involved in achieving this intricate regulatory feat. Insulators are elements that modulate interactions between other cis-acting sequences and separate chromatin domains with distinct condensation states. Thus, they are proposed to play an important role in the partitioning of the genome into discrete realms of expression. This review focuses on the roles that insulators have in vivo and reviews models of insulator mechanisms in the light of current understanding of gene regulation.
Collapse
Affiliation(s)
- Nora Engel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
19
|
Drewell RA, Bae E, Burr J, Lewis EB. Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc Natl Acad Sci U S A 2002; 99:16853-8. [PMID: 12477928 PMCID: PMC139233 DOI: 10.1073/pnas.222671199] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2002] [Indexed: 11/18/2022] Open
Abstract
The extensive infraabdominal (iab) region contains a number of cis-regulatory elements, including enhancers, silencers, and insulators responsible for directing the developmental expression of the abdominal-A and Abdominal-B homeotic genes at the Drosophila bithorax complex. It is unclear how these regulatory elements are primed for activity early in embryogenesis, but the 100-kb intergenic region is subject to a complex transcriptional program. Here, we use molecular and genetic methods to examine the functional activity of the RNAs produced from this region and their role in cis regulation. We show that a subset of these transcripts demonstrates a distinct pattern of cellular localization. Furthermore, the transcripts from each iab region are discrete and the transcripts do not spread across the insulator elements that delineate the iab regions. In embryos carrying a Mcp deletion, the intergenic transcription pattern is disrupted in the iab4 region and the fourth abdominal segment is transformed into the fifth. We propose that intergenic transcription is required early in embryogenesis to initiate the activation of the Drosophila bithorax complex and define the domains of activity for the iab cis-regulatory elements. We also discuss a possible mechanism by which this may occur.
Collapse
Affiliation(s)
- Robert A Drewell
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
20
|
Arnosti DN. Design and function of transcriptional switches in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1257-1273. [PMID: 12225917 DOI: 10.1016/s0965-1748(02)00089-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extensive genetic and biochemical analysis of Drosophila melanogaster has made this system an important model for characterization of transcriptional regulatory elements and factors. Given the striking conservation of transcriptional controls in metazoans, general principles derived from studies of Drosophila are expected to continue to illuminate transcriptional regulation in other systems, including vertebrates. With improvement in technologies for genetic manipulation of insects, research in Drosophila will also aid the design of systems for controlled expression of genes in other hosts. This review focuses on recent advances from Drosophila in analysis of the functional components of transcriptional switches, including basal promoters, enhancers, boundary elements, and maintenance elements.
Collapse
Affiliation(s)
- D N Arnosti
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
21
|
Carlson CA, Shayakhmetov DM, Lieber A. An adenoviral expression system for AAV rep78 using homologous recombination. Mol Ther 2002; 6:91-8. [PMID: 12095308 DOI: 10.1006/mthe.2002.0634] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The construction and amplification of adenoviral (Ad) vectors expressing biologically active transgenes that are cytotoxic or inhibit Ad replication can be extremely difficult, if not impossible. In this study, we harnessed the ability of Ad genomes to undergo efficient homologous recombination to reconstitute the adeno-associated virus (AAV) rep78 gene, a cytotoxic gene that strongly inhibits Ad replication, which was divided between two parental, first-generation Ad vectors. A functional open reading frame was generated by recombination only upon co-infection of both parental vectors and after the onset of viral DNA replication. We were able to amplify both parental rep78 vectors to normal titers without any signs of inhibition or toxicity and could use them to generate progeny vectors containing a functional rep78 gene without any Ad genes. Using this vector recombination system in AAV rescue assays demonstrated that no Ad protein was essential for Rep78 mediated rescue of AAV ITR flanked DNA from plasmid or Ad backbones; the amount of rescue product generated was substantially greater in the presence of Ad infection; neither cellular nor viral DNA replication was necessary for rescue to occur; and progeny vector genomes were efficiently co-replicated along with conventional, first-generation Ad vectors.
Collapse
Affiliation(s)
- Cheryl A Carlson
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
22
|
Abstract
In the eukaryotic cell active and inactive genes reside adjacent to one another and are modulated by numerous regulatory elements. Insulator elements prevent the misregulation of adjacent genes by restricting the effects of the regulatory elements to specific domains. Enhancer blockers prevent enhancers from inadvertently activating neighboring genes, and recent results suggest that they might function by a conserved mechanism across species. These elements appear to disrupt enhancer-promoter "communications" by interacting with the regulatory elements and sequestering these elements into specific regions of the nucleus thus rendering them non-functional. Barrier elements insulate active genes from neighboring heterochromatin and recent results suggest that they function by specific localized recruitment of acetyltransferases that antagonize the spread of heterochromatin-associated deacetylases, thus preventing the propagation of heterochromatin.
Collapse
Affiliation(s)
- Masaya Oki
- Unit on Chromatin and Transcription, NICHD, Building 18T, Room 106, 18 Library Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Wei W, Brennan MD. The gypsy insulator can act as a promoter-specific transcriptional stimulator. Mol Cell Biol 2001; 21:7714-20. [PMID: 11604507 PMCID: PMC99942 DOI: 10.1128/mcb.21.22.7714-7720.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Accepted: 08/13/2001] [Indexed: 11/20/2022] Open
Abstract
Insulators define chromosomal domains such that an enhancer in one domain cannot activate a promoter in a different domain. We show that the Drosophila gypsy insulator behaves as a cis-stimulatory element in the larval fat body. Transcriptional stimulation by the insulator is distance dependent, as expected for a promoter element as opposed to an enhancer. Stimulation of a test alcohol dehydrogenase promoter requires a binding site for a GATA transcription factor, suggesting that the insulator may be facilitating access of this DNA binding protein to the promoter. Short-range stimulation requires both the Suppressor of Hairy-wing protein and the Mod(mdg4)-62.7 protein encoded by the trithorax group gene mod(mdg4). In the absence of interaction with Mod(mdg4)-62.7, the insulator is converted into a short-range transcriptional repressor but retains some cis-stimulatory activity over longer distances. These results indicate that insulator and promoter sequences share important characteristics and are not entirely distinct. We propose that the gypsy insulator can function as a promoter element and may be analogous to promoter-proximal regulatory modules that integrate input from multiple distal enhancer sequences.
Collapse
Affiliation(s)
- W Wei
- Department of Biochemistry and Molecular Biology, University of Louisville, Kentucky 40202, USA
| | | |
Collapse
|
24
|
Baer A, Bode J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol 2001; 12:473-80. [PMID: 11604323 DOI: 10.1016/s0958-1669(00)00248-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-specific recombinases have become powerful tools for the targeted integration of transgenes into defined chromosomal loci. They have been successfully used both to achieve predictable gene expression in cell culture and for the systematic creation of transgenic animals. A recent improvement of this method, the recombinase-mediated cassette exchange procedure (RMCE), permits expression in the absence of any co-expressed selection marker gene.
Collapse
Affiliation(s)
- A Baer
- Gesellschaft für Biotechnologische Forschung mbH (GBF), German Research Institute for Biotechnology, RDIF/Epigenetic Regulation, D-38124 Braunschweig, FRG, Mascheroder Weg 1, Braunschweig, Germany.
| | | |
Collapse
|