1
|
Gupta I, Patel AK. Deciphering HMGB1: Across a spectrum of DNA and nucleosome dynamics. Cell Biol Int 2025; 49:235-249. [PMID: 39551968 DOI: 10.1002/cbin.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
HMGB1 is the most abundant nonhistone nuclear protein, which has been widely studied for its roles in the cytoplasm as an autophagy mediator and in the extracellular matrix as an inflammatory molecule. Studies concerning HMGB1's actual role and its binding within the nucleus are inadequate. Through this in vitro study, we aimed to discern the binding parameters of HMGB1 with various types of DNA, nucleosomes, and chromatin. HMGB1 binds differentially to different DNA, with a high affinity for altered DNA structures such as triplex and bulge DNA. Remodelling of nucleosome by CHD7 remodeller was negatively impacted by the binding of HMGB1. We also found that HMGB1 binds to the linker DNA of chromatin. Findings from this study shed light on the diverse roles HMGB1 may play in transcription, gene expression, viral replication, CHARGE syndrome and so forth.
Collapse
Affiliation(s)
- Ishu Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Delhi, India
| | - Ashok K Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
2
|
Oh H, Koo J, An SY, Hong SH, Suh JY, Bae E. Structural and functional investigation of GajB protein in Gabija anti-phage defense. Nucleic Acids Res 2023; 51:11941-11951. [PMID: 37897358 PMCID: PMC10681800 DOI: 10.1093/nar/gkad951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Brugger C, Deaconescu AM. A Gel-Based Assay for Probing Protein Translocation on dsDNA. Bio Protoc 2021; 11:e4094. [PMID: 34395731 PMCID: PMC8329466 DOI: 10.21769/bioprotoc.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/02/2022] Open
Abstract
Protein translocation on DNA represents the key biochemical activity of ssDNA translocases (aka helicases) and dsDNA translocases such as chromatin remodelers. Translocation depends on DNA binding but is a distinct process as it typically involves multiple DNA binding states, which are usually dependent on nucleotide binding/hydrolysis and are characterized by different affinities for the DNA. Several translocation assays have been described to distinguish between these two modes of action, simple binding as opposed to directional movement on dsDNA. Perhaps the most widely used is the triplex-forming oligonucleotide displacement assay. Traditionally, this assay relies on the formation of a DNA triplex from a dsDNA segment and a short radioactively labeled oligonucleotide. Upon translocation of the protein of interest along the DNA substrate, the third DNA strand is destabilized and eventually released off the DNA duplex. This process can be visualized and quantitated by polyacrylamide electrophoresis. Here, we present an effective, sensitive, and convenient variation of this assay that utilizes a fluorescently labeled oligonucleotide, eliminating the need to radioactively label DNA. In short, our protocol provides a safe and user-friendly alternative. Graphical abstract: Figure 1.Schematic of the triplex-forming oligonucleotide displacement assay.
Collapse
Affiliation(s)
- Christiane Brugger
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02903, USA
| |
Collapse
|
4
|
Tumuluri VS, Rajgor V, Xu SY, Chouhan OP, Saikrishnan K. Mechanism of DNA cleavage by the endonuclease SauUSI: a major barrier to horizontal gene transfer and antibiotic resistance in Staphylococcus aureus. Nucleic Acids Res 2021; 49:2161-2178. [PMID: 33533920 PMCID: PMC7913695 DOI: 10.1093/nar/gkab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Acquisition of foreign DNA by Staphylococcus aureus, including vancomycin resistance genes, is thwarted by the ATP-dependent endonuclease SauUSI. Deciphering the mechanism of action of SauUSI could unravel the reason how it singularly plays a major role in preventing horizontal gene transfer (HGT) in S. aureus. Here, we report a detailed biochemical and structural characterization of SauUSI, which reveals that in the presence of ATP, the enzyme can cleave DNA having a single or multiple target site/s. Remarkably, in the case of multiple target sites, the entire region of DNA flanked by two target sites is shred into smaller fragments by SauUSI. Crystal structure of SauUSI reveals a stable dimer held together by the nuclease domains, which are spatially arranged to hydrolyze the phosphodiester bonds of both strands of the duplex. Thus, the architecture of the dimeric SauUSI facilitates cleavage of either single-site or multi-site DNA. The structure also provides insights into the molecular basis of target recognition by SauUSI. We show that target recognition activates ATP hydrolysis by the helicase-like ATPase domain, which powers active directional movement (translocation) of SauUSI along the DNA. We propose that a pile-up of multiple translocating SauUSI molecules against a stationary SauUSI bound to a target site catalyzes random double-stranded breaks causing shredding of the DNA between two target sites. The extensive and irreparable damage of the foreign DNA by shredding makes SauUSI a potent barrier against HGT.
Collapse
Affiliation(s)
| | - Vrunda Rajgor
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shuang-Yong Xu
- New England Biolabs Inc., Research Department, Ipswich, MA 01938, USA
| | - Om Prakash Chouhan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
5
|
Chand MK, Carle V, Anuvind KG, Saikrishnan K. DNA-mediated coupling of ATPase, translocase and nuclease activities of a Type ISP restriction-modification enzyme. Nucleic Acids Res 2020; 48:2594-2603. [PMID: 31974580 PMCID: PMC7049714 DOI: 10.1093/nar/gkaa023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Enzymes involved in nucleic acid transactions often have a helicase-like ATPase coordinating and driving their functional activities, but our understanding of the mechanistic details of their coordination is limited. For example, DNA cleavage by the antiphage defense system Type ISP restriction-modification enzyme requires convergence of two such enzymes that are actively translocating on DNA powered by Superfamily 2 ATPases. The ATPase is activated when the enzyme recognizes a DNA target sequence. Here, we show that the activation is a two-stage process of partial ATPase stimulation upon recognition of the target sequence by the methyltransferase and the target recognition domains, and complete stimulation that additionally requires the DNA to interact with the ATPase domain. Mutagenesis revealed that a β-hairpin loop and motif V of the ATPase couples DNA translocation to ATP hydrolysis. Deletion of the loop inhibited translocation, while mutation of motif V slowed the rate of translocation. Both the mutations inhibited the double-strand (ds) DNA cleavage activity of the enzyme. However, a translocating motif V mutant cleaved dsDNA on encountering a translocating wild-type enzyme. Based on these results, we conclude that the ATPase-driven translocation not only brings two nucleases spatially close to catalyze dsDNA break, but that the rate of translocation influences dsDNA cleavage.
Collapse
Affiliation(s)
- Mahesh Kumar Chand
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Vanessa Carle
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - K G Anuvind
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Division of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
LeGresley SE, Briggs K, Fischer CJ. Molecular motor translocation kinetics: Application of Monte Carlo computer simulations to determine microscopic kinetic parameters. Biosystems 2018; 168:8-25. [PMID: 29733888 DOI: 10.1016/j.biosystems.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Methods for studying the translocation of motor proteins along a filament (e.g., nucleic acid and polypeptide) typically monitor the total production of ADP, the arrival/departure of the motor protein at/from a particular location (often one end of the filament), or the dissociation of the motor protein from the filament. The associated kinetic time courses are often analyzed using a simple sequential uniform n-step mechanism to estimate the macroscopic kinetic parameters (e.g., translocation rate and processivity) and the microscopic kinetic parameters (e.g., kinetic step-size and the rate constant for the rate-limiting step). These sequential uniform n-step mechanisms assume repetition of uniform and irreversible rate-limiting steps of forward motion along the filament. In order to determine how the presence of non-uniform motion (e.g., backward motion, random pauses, or jumping) affects the estimates of parameters obtained from such analyses, we evaluated computer simulated translocation time courses containing non-uniform motion using a simple sequential uniform n-step model. By comparing the kinetic parameters estimated from the analysis of the data generated by these simulations with the input parameters of the simulations, we were able to determine which of the kinetic parameters were likely to be over/under estimated due to non-uniform motion of the motor protein.
Collapse
Affiliation(s)
- Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA.
| |
Collapse
|
7
|
Goyal N, Rossi MJ, Mazina OM, Chi Y, Moritz RL, Clurman BE, Mazin AV. RAD54 N-terminal domain is a DNA sensor that couples ATP hydrolysis with branch migration of Holliday junctions. Nat Commun 2018; 9:34. [PMID: 29295984 PMCID: PMC5750232 DOI: 10.1038/s41467-017-02497-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.
Collapse
Affiliation(s)
- Nadish Goyal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Matthew J Rossi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Yong Chi
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Bruce E Clurman
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
8
|
Sedman T, Garber N, Gaidutšik I, Sillamaa S, Paats J, Piljukov VJ, Sedman J. Mitochondrial helicase Irc3 translocates along double-stranded DNA. FEBS Lett 2017; 591:3831-3841. [PMID: 29113022 DOI: 10.1002/1873-3468.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Irc3 is a superfamily II helicase required for mitochondrial DNA stability in Saccharomyces cerevisiae. Irc3 remodels branched DNA structures, including substrates without extensive single-stranded regions. Therefore, it is unlikely that Irc3 uses the conventional single-stranded DNA translocase mechanism utilized by most helicases. Here, we demonstrate that Irc3 disrupts partially triple-stranded DNA structures in an ATP-dependent manner. Our kinetic experiments indicate that the rate of ATP hydrolysis by Irc3 is dependent on the length of the double-stranded DNA cosubstrate. Furthermore, the previously uncharacterized C-terminal region of Irc3 is essential for these two characteristic features and forms a high affinity complex with branched DNA. Together, our experiments demonstrate that Irc3 has double-stranded DNA translocase activity.
Collapse
Affiliation(s)
- Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Natalja Garber
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Joosep Paats
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Vlad J Piljukov
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| |
Collapse
|
9
|
Toliusis P, Zaremba M, Silanskas A, Szczelkun MD, Siksnys V. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases. Nucleic Acids Res 2017; 45:8435-8447. [PMID: 28854738 PMCID: PMC5737866 DOI: 10.1093/nar/gkx580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5′-GCCGC-3′ site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes.
Collapse
Affiliation(s)
- Paulius Toliusis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Arunas Silanskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
10
|
Bialevich V, Sinha D, Shamayeva K, Guzanova A, Řeha D, Csefalvay E, Carey J, Weiserova M, Ettrich RH. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation. PeerJ 2017; 5:e2887. [PMID: 28133570 PMCID: PMC5248579 DOI: 10.7717/peerj.2887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/08/2016] [Indexed: 01/20/2023] Open
Abstract
Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.
Collapse
Affiliation(s)
- Vitali Bialevich
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Dhiraj Sinha
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Alena Guzanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Řeha
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Eva Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Chemistry Department, Princeton University, Princeton, NJ, United States
| | - Marie Weiserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Rüdiger H. Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
11
|
Low processivity for DNA translocation by the ISWI molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1487-93. [PMID: 26116984 DOI: 10.1016/j.bbapap.2015.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 11/21/2022]
Abstract
The motor protein ISWI (Imitation SWItch) is the conserved catalytic ATPase domain of the ISWI family of chromatin remodelers. Members of the ISWI family are involved in regulating the structure of cellular chromatin during times of transcription, translation, and repair. Current models for the nucleosome repositioning activity of ISWI and other chromatin remodelers require the translocation of the remodeling protein along double-stranded DNA through an ATP-dependent mechanism. Here we report results from spectrofluorometric stopped-flow experiments which demonstrate that ISWI displays very low processivity for free DNA translocation. By combining these results with those from experiments monitoring the DNA stimulated ATPase activity of ISWI we further demonstrate that the DNA translocation by ISWI is tightly coupled to ATP hydrolysis. The calculated coupling efficiency of 0.067±0.018 ATP/ISWI/bp is seemingly quite low in comparison to similar DNA translocases and we present potential models to account for this. Nevertheless, the tight coupling of ATP hydrolysis to DNA translocation suggests that DNA translocation is not energetically rate limiting for nucleosome repositioning by ISWI.
Collapse
|
12
|
Csefalvay E, Lapkouski M, Guzanova A, Csefalvay L, Baikova T, Shevelev I, Bialevich V, Shamayeva K, Janscak P, Kuta Smatanova I, Panjikar S, Carey J, Weiserova M, Ettrich R. Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme. PLoS One 2015; 10:e0128700. [PMID: 26039067 PMCID: PMC4454674 DOI: 10.1371/journal.pone.0128700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.
Collapse
Affiliation(s)
- Eva Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Mikalai Lapkouski
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Alena Guzanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Ladislav Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Tatsiana Baikova
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Igor Shevelev
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Vitali Bialevich
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
- Institute of Molecular Cancer Research, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ivana Kuta Smatanova
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Santosh Panjikar
- Australian Synchrotron, 800 Blackburn Road, Clayton VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800 Australia
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Chemistry Department, Princeton University, Princeton, New Jersey 08544–1009, United States of America
| | - Marie Weiserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Rüdiger Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology and Global Change Research Center, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| |
Collapse
|
13
|
Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc Natl Acad Sci U S A 2015; 112:3961-6. [PMID: 25775526 DOI: 10.1073/pnas.1417709112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.
Collapse
|
14
|
Rzechorzek NJ, Blackwood JK, Bray SM, Maman JD, Pellegrini L, Robinson NP. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea. Nat Commun 2014; 5:5506. [PMID: 25420454 PMCID: PMC4376295 DOI: 10.1038/ncomms6506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022] Open
Abstract
The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualises at atomic resolution the N-terminal HerA-ATP Synthase (HAS) domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.
Collapse
Affiliation(s)
- Neil J Rzechorzek
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - John K Blackwood
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sian M Bray
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Joseph D Maman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nicholas P Robinson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
15
|
Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus. Methods Mol Biol 2014; 1373:9-23. [PMID: 25646604 DOI: 10.1007/7651_2014_180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial "immunity" mechanisms against invading genomes are mainly associated with restriction-modification systems. To date, prokaryotic restriction-modification systems are classified into four different types (Type I-IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction-modification systems and the recent advances in the biology of restriction and modification in S. aureus.
Collapse
|
16
|
Deakyne JS, Huang F, Negri J, Tolliday N, Cocklin S, Mazin AV. Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. J Biol Chem 2013; 288:31567-80. [PMID: 24043618 PMCID: PMC3814753 DOI: 10.1074/jbc.m113.502195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/10/2013] [Indexed: 12/26/2022] Open
Abstract
RAD54, an important homologous recombination protein, is a member of the SWI2/SNF2 family of ATPase-dependent DNA translocases. In vitro, RAD54 stimulates RAD51-mediated DNA strand exchange and promotes branch migration of Holliday junctions. It is thought that an ATPase-dependent DNA translocation is required for both of these RAD54 activities. Here we identified, by high-throughput screening, a specific RAD54 inhibitor, streptonigrin (SN), and used it to investigate the mechanisms of RAD54 activities. We found that SN specifically targets the RAD54 ATPase, but not DNA binding, through direct interaction with RAD54 and generation of reactive oxygen species. Consistent with the dependence of branch migration (BM) on the ATPase-dependent DNA translocation of RAD54, SN inhibited RAD54 BM. Surprisingly, the ability of RAD54 to stimulate RAD51 DNA strand exchange was not significantly affected by SN, indicating a relatively smaller role of RAD54 DNA translocation in this process. Thus, the use of SN enabled us to identify important differences in the effect of the RAD54 ATPase and DNA translocation on two major activities of RAD54, BM of Holliday junctions and stimulation of DNA pairing.
Collapse
Affiliation(s)
- Julianna S. Deakyne
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Fei Huang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Joseph Negri
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Nicola Tolliday
- the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Simon Cocklin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Alexander V. Mazin
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
17
|
Roles for Helicases as ATP-Dependent Molecular Switches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:225-44. [PMID: 23161014 DOI: 10.1007/978-1-4614-5037-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of the familial name, a "helicase" might be expected to have an enzymatic activity that unwinds duplex polynucleotides to form single strands. A more encompassing taxonomy that captures alternative enzymatic roles has defined helicases as a sub-class of molecular motors that move directionally and processively along nucleic acids, the so-called "translocases". However, even this definition may be limiting in capturing the full scope of helicase mechanism and activity. Discussed here is another, alternative view of helicases-as machines which couple NTP-binding and hydrolysis to changes in protein conformation to resolve stable nucleoprotein assembly states. This "molecular switch" role differs from the classical view of helicases as molecular motors in that only a single catalytic NTPase cycle may be involved. This is illustrated using results obtained with the DEAD-box family of RNA helicases and with a model bacterial system, the ATP-dependent Type III restriction-modification enzymes. Further examples are discussed and illustrate the wide-ranging examples of molecular switches in genome metabolism.
Collapse
|
18
|
Park SY, Lee HJ, Song JM, Sun J, Hwang HJ, Nishi K, Kim JS. Structural characterization of a modification subunit of a putative type I restriction enzyme from Vibrio vulnificus YJ016. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1570-7. [PMID: 23090406 DOI: 10.1107/s0907444912038826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
In multifunctional type I restriction enzymes, active methyltransferases (MTases) are constituted of methylation (HsdM) and specificity (HsdS) subunits. In this study, the crystal structure of a putative HsdM subunit from Vibrio vulnificus YJ016 (vvHsdM) was elucidated at a resolution of 1.80 Å. A cofactor-binding site for S-adenosyl-L-methionine (SAM, a methyl-group donor) is formed within the C-terminal domain of an α/β-fold, in which a number of residues are conserved, including the GxGG and (N/D)PP(F/Y) motifs, which are likely to interact with several functional moieties of the SAM methyl-group donor. Comparison with the N6 DNA MTase of Thermus aquaticus and other HsdM structures suggests that two aromatic rings (Phe199 and Phe312) in the motifs that are conserved among the HsdMs may sandwich both sides of the adenine ring of the recognition sequence so that a conserved Asn residue (Asn309) can interact with the N6 atom of the target adenine base (a methyl-group acceptor) and locate the target adenine base close to the transferred SAM methyl group.
Collapse
Affiliation(s)
- Suk-Youl Park
- Department of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA metabolism. This review focuses on the basic mechanistic, structural and biological properties of each of the families of helicases within superfamily 2. There are ten separate families of helicases within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without translocation, and some translocate on double-stranded or single-stranded nucleic acids without unwinding.
Collapse
Affiliation(s)
- Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
20
|
Taylor JE, Swiderska A, Artero JB, Callow P, Kneale G. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I NT. PLoS One 2012; 7:e35263. [PMID: 22493743 PMCID: PMC3320862 DOI: 10.1371/journal.pone.0035263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124INT, based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN7TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R.EcoR124INT in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.
Collapse
Affiliation(s)
- James E. Taylor
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Swiderska
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Baptiste Artero
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
- Macromolecular Structure Research Group, Keele University, Keele, Staffordshire, United Kingdom
| | - Philip Callow
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
| | - Geoff Kneale
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
21
|
Fischer CJ, Tomko EJ, Wu CG, Lohman TM. Fluorescence methods to study DNA translocation and unwinding kinetics by nucleic acid motors. Methods Mol Biol 2012; 875:85-104. [PMID: 22573437 DOI: 10.1007/978-1-61779-806-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translocation of nucleic acid motor proteins (translocases) along linear nucleic acids can be studied by monitoring either the time course of the arrival of the motor protein at one end of the nucleic acid or the kinetics of ATP hydrolysis by the motor protein during translocation using pre-steady state ensemble kinetic methods in a stopped-flow instrument. Similarly, the unwinding of double-stranded DNA or RNA by helicases can be studied in ensemble experiments by monitoring either the kinetics of the conversion of the double-stranded nucleic acid into its complementary single strands by the helicase or the kinetics of ATP hydrolysis by the helicase during unwinding. Such experiments monitor translocation of the enzyme along or unwinding of a series of nucleic acids labeled at one position (usually the end) with a fluorophore or a pair of fluorophores that undergo changes in fluorescence intensity or efficiency of fluorescence resonance energy transfer (FRET). We discuss how the pre-steady state kinetic data collected in these ensemble experiments can be analyzed by simultaneous global nonlinear least squares (NLLS) analysis using simple sequential "n-step" mechanisms to obtain estimates of the macroscopic rates and processivities of translocation and/or unwinding, the rate-limiting step(s) in these mechanisms, the average "kinetic step-size," and the stoichiometry of coupling ATP binding and hydrolysis to movement along the nucleic acid.
Collapse
Affiliation(s)
- Christopher J Fischer
- Department of Physics and Astronomy, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | | | | | |
Collapse
|
22
|
Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP. Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res 2011; 40:3183-96. [PMID: 22135300 PMCID: PMC3326311 DOI: 10.1093/nar/gkr1157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helicase–nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.
Collapse
Affiliation(s)
- John K Blackwood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
23
|
Deakyne JS, Mazin AV. Fanconi anemia: at the crossroads of DNA repair. BIOCHEMISTRY (MOSCOW) 2011; 76:36-48. [PMID: 21568838 DOI: 10.1134/s0006297911010068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fanconi anemia (FA) is an autosomal disorder that causes genome instability. FA patients suffer developmental abnormalities, early-onset bone marrow failure, and a predisposition to cancer. The disease is manifested by defects in DNA repair, hypersensitivity to DNA crosslinking agents, and a high degree of chromosomal aberrations. The FA pathway comprises 13 disease-causing genes involved in maintaining genomic stability. The fast pace of study of the novel DNA damage network has led to the constant discovery of new FA-like genes involved in the pathway that when mutated lead to similar disorders. A majority of the FA proteins act as signal transducers and scaffolding proteins to employ other pathways to repair DNA. This review discusses what is known about the FA proteins and other recently linked FA-like proteins. The goal is to clarify how the proteins work together to carry out interstrand crosslink repair and homologous recombination-mediated repair of damaged DNA.
Collapse
Affiliation(s)
- J S Deakyne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
24
|
Mitson M, Kelley LA, Sternberg MJE, Higgs DR, Gibbons RJ. Functional significance of mutations in the Snf2 domain of ATRX. Hum Mol Genet 2011; 20:2603-10. [PMID: 21505078 DOI: 10.1093/hmg/ddr163] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ATRX is a member of the Snf2 family of chromatin-remodelling proteins and is mutated in an X-linked mental retardation syndrome associated with alpha-thalassaemia (ATR-X syndrome). We have carried out an analysis of 21 disease-causing mutations within the Snf2 domain of ATRX by quantifying the expression of the ATRX protein and placing all missense mutations in their structural context by homology modelling. While demonstrating the importance of protein dosage to the development of ATR-X syndrome, we also identified three mutations which primarily affect function rather than protein structure. We show that all three of these mutant proteins are defective in translocating along DNA while one mutant, uniquely for a human disease-causing mutation, partially uncouples adenosine triphosphate (ATP) hydrolysis from DNA binding. Our results highlight important mechanistic aspects in the development of ATR-X syndrome and identify crucial functional residues within the Snf2 domain of ATRX. These findings are important for furthering our understanding of how ATP hydrolysis is harnessed as useful work in chromatin remodelling proteins and the wider family of nucleic acid translocating motors.
Collapse
Affiliation(s)
- Matthew Mitson
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
25
|
Simons M, Szczelkun MD. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes. Nucleic Acids Res 2011; 39:7656-66. [PMID: 21712244 PMCID: PMC3177213 DOI: 10.1093/nar/gkr479] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5′-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can ‘turnover’ in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase–nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.
Collapse
Affiliation(s)
- Michelle Simons
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | |
Collapse
|
26
|
Crozat E, Grainge I. FtsK DNA translocase: the fast motor that knows where it's going. Chembiochem 2011; 11:2232-43. [PMID: 20922738 DOI: 10.1002/cbic.201000347] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FtsK is a double-stranded DNA translocase, a motor that converts the chemical energy of binding and hydrolysing ATP into movement of a DNA substrate. It moves DNA at an amazing rate->5000 bp per second-and is powerful enough to remove other proteins from the DNA. In bacteria it is localised to the site of cell division, the septum, where it functions as a DNA pump at the late stages of the cell cycle, to expedite cytokinesis and chromosome segregation. The N terminus of the protein is involved in the cell-cycle-specific localisation and assembly of the cell-division machinery, whereas the C terminus forms the motor. The motor portion of FtsK has been studied by a combination of biochemistry, genetics, X-ray crystallography and single-molecule mechanical assays, and these will be the focus here. The motor can be divided into three subdomains: α, β and γ. The α and β domains multimerise to produce a hexameric ring with a central channel for dsDNA, and contain a RecA-like nucleotide-binding/hydrolysis fold. The motor is given directionality by the regulatory γ domain, which binds to polarised chromosomal sequences-5'-GGGNAGGG-3', known as KOPS-to ensure that the motor is loaded onto DNA in a specific orientation such that subsequent translocation is always towards the region of the chromosome where replication usually terminates (the terminus), and specifically to the 28 bp dif site, located in this region. Once the FtsK translocase has located the dif site it then interacts with the XerCD site-specific recombinases to activate recombination.
Collapse
Affiliation(s)
- Estelle Crozat
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
27
|
Luzzietti N, Brutzer H, Klaue D, Schwarz FW, Staroske W, Clausing S, Seidel R. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res 2010; 39:e15. [PMID: 21071409 PMCID: PMC3035433 DOI: 10.1093/nar/gkq1004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Investigations of enzymes involved in DNA metabolism have strongly benefited from the establishment of single molecule techniques. These experiments frequently require elaborate DNA substrates, which carry chemical labels or nucleic acid tertiary structures. Preparing such constructs often represents a technical challenge: long modified DNA molecules are usually produced via multi-step processes, involving low efficiency intermolecular ligations of several fragments. Here, we show how long stretches of DNA (>50 bp) can be modified using nicking enzymes to produce complex DNA constructs. Multiple different chemical and structural modifications can be placed internally along DNA, in a specific and precise manner. Furthermore, the nicks created can be resealed efficiently yielding intact molecules, whose mechanical properties are preserved. Additionally, the same strategy is applied to obtain long single-strand overhangs subsequently used for efficient ligation of ss- to dsDNA molecules. This technique offers promise for a wide range of applications, in particular single-molecule experiments, where frequently multiple internal DNA modifications are required.
Collapse
Affiliation(s)
- Nicholas Luzzietti
- Biotechnology Center, Technische Universität Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
29
|
Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA. Proc Natl Acad Sci U S A 2010; 107:20263-8. [PMID: 21048089 DOI: 10.1073/pnas.1007518107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FtsK is a homohexameric, RecA-like dsDNA translocase that plays a key role in bacterial chromosome segregation. The FtsK regulatory γ-subdomain determines directionality of translocation through its interaction with specific 8 base pair chromosomal sequences [(KOPS); FtsK Orienting/Polarizing Sequence(s)] that are cooriented with the direction of replication in the chromosome. We use millisecond-resolution ensemble translocation and ATPase assays to analyze the assembly, initiation, and translocation of FtsK. We show that KOPS are used to initiate new translocation events rather than reorient existing ones. By determining kinetic parameters, we show sigmoidal dependences of translocation and ATPase rates on ATP concentration that indicate sequential cooperative coupling of ATP hydrolysis to DNA motion. We also estimate the ATP coupling efficiency of translocation to be 1.63-2.11 bp of dsDNA translocated/ATP hydrolyzed. The data were used to derive a model for the assembly, initiation, and translocation of FtsK hexamers.
Collapse
|
30
|
Toseland CP, Webb MR. Fluorescence tools to measure helicase activity in real time. Methods 2010; 51:259-68. [PMID: 20167273 DOI: 10.1016/j.ymeth.2010.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022] Open
Abstract
Methods are described to show how different fluorescent labeling strategies can be used to probe various aspects of the helicase mechanism. Fluorophores on the adenine nucleotide, the DNA or the helicase can modify the activity of the system to a greater or lesser extent. Reagentless biosensors, binding proteins that are labeled with a fluorophore, target products of the helicase reaction, namely ADP, inorganic phosphate or single-stranded DNA, and can be used to measure rates of product formation with little interference to the system. Protocols are described to examine ATP usage and translocation speeds and also to investigate details of the ATP hydrolysis cycle. The methods are described in terms of PcrA, a bacterial DNA helicase that moves in single base steps along either single-stranded or double-stranded DNA, hydrolyzing one ATP per base moved.
Collapse
Affiliation(s)
- Christopher P Toseland
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
31
|
Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat. Proc Natl Acad Sci U S A 2010; 107:9123-8. [PMID: 20435912 DOI: 10.1073/pnas.1001637107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleavage of viral DNA by the bacterial Type III Restriction-Modification enzymes requires the ATP-dependent long-range communication between a distant pair of DNA recognition sequences. The classical view is that Type III endonuclease activity is only activated by a pair of asymmetric sites in a specific head-to-head inverted repeat. Based on this assumption and due to the presence of helicase domains in Type III enzymes, various motor-driven DNA translocation models for communication have been suggested. Using both single-molecule and ensemble assays we demonstrate that Type III enzymes can also cleave DNA with sites in tail-to-tail repeat with high efficiency. The ability to distinguish both inverted repeat substrates from direct repeat substrates in a manner independent of DNA topology or accessory proteins can only be reconciled with an alternative sliding mode of communication.
Collapse
|
32
|
Abstract
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.
Collapse
Affiliation(s)
- Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
33
|
Ayel E, Escudé C. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents. Nucleic Acids Res 2010; 38:e31. [PMID: 20007154 PMCID: PMC2836567 DOI: 10.1093/nar/gkp1139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A SELEX approach has been developed in order to select oligonucleotides that bind double-stranded DNA in the presence of a triplex-stabilizing agent, and was applied to a target sequence containing an oligopurine-oligopyrimidine stretch. After only seven rounds of selection, the process led to the identification of oligonucleotides that were able to form triple helices within the antiparallel motif. Inspection of the selected sequences revealed that, contrary to GC base pair which were always recognized by guanines, recognition of AT base pair could be achieved by either adenine or thymine, depending on the sequence context. While thymines are strongly preferred for several positions, some others can accommodate the presence of adenines. These results contribute to set the rules for designing oligonucleotides that form stable triple helices in the presence of triplex-stabilizing agents at physiological pH. They set the basis for further experiments regarding extension of potential target sequences for triple-helix formation or recognition of ligand-DNA complexes.
Collapse
Affiliation(s)
- Elodie Ayel
- CNRS UMR 7196, Muséum National d'Histoire Naturelle, INSERM U 565, Case Postale 26, 43 rue Cuvier, Cedex 05, 75005 Paris, France
| | | |
Collapse
|
34
|
Smith RM, Josephsen J, Szczelkun MD. The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops. Nucleic Acids Res 2010; 37:7219-30. [PMID: 19783815 PMCID: PMC2790907 DOI: 10.1093/nar/gkp794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To cleave DNA, the single polypeptide restriction–modification enzyme LlaGI must communicate between a pair of indirectly repeated recognition sites. We demonstrate that this communication occurs by a 1-dimensional route, namely unidirectional dsDNA loop translocation rightward of the specific recognition sequence 5′-CTnGAyG-3′ as written (where n is either A, G, C or T and y is either C or T). Motion across thousands of base pairs is catalysed by the helicase domain and requires the hydrolysis of 1.5-2 ATP per base pair. DNA loop extrusion is accompanied by changes in DNA twist consistent with the motor following the helical pitch of the polynucleotide track. LlaGI is therefore an example of a polypeptide that is a completely self-contained, multi-functional molecular machine.
Collapse
Affiliation(s)
- Rachel M Smith
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
35
|
Smith RM, Diffin FM, Savery NJ, Josephsen J, Szczelkun MD. DNA cleavage and methylation specificity of the single polypeptide restriction-modification enzyme LlaGI. Nucleic Acids Res 2010; 37:7206-18. [PMID: 19808936 PMCID: PMC2790903 DOI: 10.1093/nar/gkp790] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
LlaGI is a single polypeptide restriction-modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a gamma-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5'-CTnGAyG-3' (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5'-CrTCnAG-3' being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction-modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide).
Collapse
Affiliation(s)
- Rachel M Smith
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
36
|
Abstract
The translocation of nucleic acid motor proteins along DNA or RNA can be studied in ensemble experiments by monitoring either the kinetics of the arrival of the protein at a specific site on the nucleic acid filament (generally one end of the filament) or the kinetics of ATP hydrolysis by the motor protein during translocation. The pre-steady state kinetic data collected in ensemble experiments can be analyzed by simultaneous global non-linear least squares (NLLS) analysis using a simple sequential "n-step" mechanism to obtain estimates of the rate-limiting step(s) in the translocation cycle, the average "kinetic step-size," and the efficiency of coupling ATP binding and hydrolysis to translocation.
Collapse
|
37
|
Abstract
ATP-driven translocation of helicases along DNA can be assayed in several ways. Reagentless biosensors, based on fluorophore-protein adducts, provide convenient ways for real-time assays of both the separation of dsDNA and the hydrolysis of ATP. Single-stranded DNA can be assayed using a modified single-stranded DNA-binding protein (SSB), and phosphate production during ATP hydrolysis can be measured by a modified phosphate-binding protein. Advantages and limitations of these approaches are compared with those of other types of measurements.
Collapse
Affiliation(s)
- Martin R Webb
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
38
|
Graham JE, Sivanathan V, Sherratt DJ, Arciszewska LK. FtsK translocation on DNA stops at XerCD-dif. Nucleic Acids Res 2009; 38:72-81. [PMID: 19854947 PMCID: PMC2800217 DOI: 10.1093/nar/gkp843] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKγ regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.
Collapse
Affiliation(s)
- James E Graham
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
39
|
Sanchez M, Drechsler M, Stark H, Lipps G. DNA translocation activity of the multifunctional replication protein ORF904 from the archaeal plasmid pRN1. Nucleic Acids Res 2009; 37:6831-48. [PMID: 19762479 PMCID: PMC2777425 DOI: 10.1093/nar/gkp742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.
Collapse
Affiliation(s)
- Martin Sanchez
- Department of Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Switzerland
| | | | | | | |
Collapse
|
40
|
Murphy MN, Gong P, Ralto K, Manelyte L, Savery NJ, Theis K. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res 2009; 37:6042-53. [PMID: 19700770 PMCID: PMC2764443 DOI: 10.1093/nar/gkp680] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motor proteins that translocate on nucleic acids are key players in gene expression and maintenance. While the function of these proteins is diverse, they are driven by highly conserved core motor domains. In transcription-coupled DNA repair, motor activity serves to remove RNA polymerase stalled on damaged DNA, making the lesion accessible for repair. Structural and biochemical data on the bacterial transcription-repair coupling factor Mfd suggest that this enzyme undergoes large conformational changes from a dormant state to an active state upon substrate binding. Mfd can be functionally dissected into an N-terminal part instrumental in recruiting DNA repair proteins (domains 1–3, MfdN), and a C-terminal part harboring motor activity (domains 4–7, MfdC). We show that isolated MfdC has elevated ATPase and motor activities compared to the full length protein. While MfdN has large effects on MfdC activity and thermostability in cis, these effects are not observed in trans. The structure of MfdN is independent of interactions with MfdC, implying that MfdN acts as a clamp that restrains motions of the motor domains in the dormant state. We conclude that releasing MfdN:MfdC interactions serves as a central molecular switch that upregulates Mfd functions during transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Michael N Murphy
- Department of Chemistry, Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
41
|
Uyen NT, Park SY, Choi JW, Lee HJ, Nishi K, Kim JS. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Nucleic Acids Res 2009; 37:6960-9. [PMID: 19625490 PMCID: PMC2777439 DOI: 10.1093/nar/gkp603] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity.
Collapse
Affiliation(s)
- Nguyen To Uyen
- Interdisciplinary Graduate Program in Molecular Medicine, Gwangju 501-746, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res 2009; 37:3531-44. [PMID: 19357093 PMCID: PMC2699502 DOI: 10.1093/nar/gkp214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction-modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.
Collapse
Affiliation(s)
- Ken Ishikawa
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
43
|
Abstract
Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
44
|
Type III restriction enzymes communicate in 1D without looping between their target sites. Proc Natl Acad Sci U S A 2009; 106:1748-53. [PMID: 19181848 DOI: 10.1073/pnas.0807193106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To cleave DNA, Type III restriction enzymes must communicate the relative orientation of two asymmetric recognition sites over hundreds of base pairs. The basis of this long-distance communication, for which ATP hydrolysis by their helicase domains is required, is poorly understood. Several conflicting DNA-looping mechanisms have been proposed, driven either by active DNA translocation or passive 3D diffusion. Using single-molecule DNA stretching in combination with bulk-solution assays, we provide evidence that looping is both highly unlikely and unnecessary, and that communication is strictly confined to a 1D route. Integrating our results with previous data, a simple communication scheme is concluded based on 1D diffusion along DNA.
Collapse
|
45
|
Yu S, Smirnova JB, Friedberg EC, Stillman B, Akiyama M, Owen-Hughes T, Waters R, Reed SH. ABF1-binding sites promote efficient global genome nucleotide excision repair. J Biol Chem 2009; 284:966-73. [PMID: 18996839 PMCID: PMC3443742 DOI: 10.1074/jbc.m806830200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/05/2008] [Indexed: 11/06/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) removes DNA damage from nontranscribing DNA. In Saccharomyces cerevisiae, the RAD7 and RAD16 genes are specifically required for GG-NER. We have reported that autonomously replicating sequence-binding factor 1 (ABF1) protein forms a stable complex with Rad7 and Rad16 proteins. ABF1 functions in transcription, replication, gene silencing, and NER in yeast. Here we show that binding of ABF1 to its DNA recognition sequence found at multiple genomic locations promotes efficient GG-NER in yeast. Mutation of the I silencer ABF1-binding site at the HMLalpha locus caused loss of ABF1 binding, which resulted in a domain of reduced GG-NER efficiency on one side of the ABF1-binding site. During GG-NER, nucleosome positioning at this site was not altered, and this correlated with an inability of the GG-NER complex to reposition nucleosomes in vitro.We discuss how the GG-NER complex might facilitate GG-NER while preventing unregulated gene transcription during this process.
Collapse
Affiliation(s)
- Shirong Yu
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Julia B. Smirnova
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Errol C. Friedberg
- the Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| | - Masahiro Akiyama
- the Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-01, Japan, and
| | - Tom Owen-Hughes
- the Wellcome Trust Centre for Gene Regulation, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Raymond Waters
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Simon H. Reed
- From the Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
46
|
|
47
|
Sisáková E, Weiserová M, Dekker C, Seidel R, Szczelkun MD. The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. J Mol Biol 2008; 384:1273-86. [PMID: 18952104 PMCID: PMC2602864 DOI: 10.1016/j.jmb.2008.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
The type I restriction–modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed.
Collapse
Affiliation(s)
- Eva Sisáková
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
48
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
49
|
EcoR124I: from plasmid-encoded restriction-modification system to nanodevice. Microbiol Mol Biol Rev 2008; 72:365-77, table of contents. [PMID: 18535150 DOI: 10.1128/mmbr.00043-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
SUMMARY Plasmid R124 was first described in 1972 as being a new member of incompatibility group IncFIV, yet early physical investigations of plasmid DNA showed that this type of classification was more complex than first imagined. Throughout the history of the study of this plasmid, there have been many unexpected observations. Therefore, in this review, we describe the history of our understanding of this plasmid and the type I restriction-modification (R-M) system that it encodes, which will allow an opportunity to correct errors, or misunderstandings, that have arisen in the literature. We also describe the characterization of the R-M enzyme EcoR124I and describe the unusual properties of both type I R-M enzymes and EcoR124I in particular. As we approached the 21st century, we began to see the potential of the EcoR124I R-M enzyme as a useful molecular motor, and this leads to a description of recent work that has shown that the R-M enzyme can be used as a nanoactuator. Therefore, this is a history that takes us from a plasmid isolated from (presumably) an infected source to the potential use of the plasmid-encoded R-M enzyme in bionanotechnology.
Collapse
|
50
|
Ptacin JL, Nollmann M, Becker EC, Cozzarelli NR, Pogliano K, Bustamante C. Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat Struct Mol Biol 2008; 15:485-93. [PMID: 18391964 PMCID: PMC2885143 DOI: 10.1038/nsmb.1412] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Department of Molecular and Cell Biology, 642 Stanley Hall, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|