1
|
Fu Y, He X, Ma L, Gao XD, Liu P, Shi H, Chai P, Ge S, Jia R, Liu DR, Fan X, Yang Z. In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa. Nat Commun 2025; 16:2394. [PMID: 40064881 PMCID: PMC11893901 DOI: 10.1038/s41467-025-57628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking. Herein, a PE system is designed to target the PDE6B Y347X mutation in the rd1 mouse strain, a preclinical RP model. We screen and develop the PE system with epegRNA and RTΔRnH, which is delivered via dual-AAV in vivo with an editing efficiency of 26.47 ± 13.35%, with negligible off-target effects confirmed by AID-Seq and PE-tag. Treatment with the PE system in vivo greatly restores PDE6B protein expression and protects rod cells from degeneration. Mouse behavioural experiments also show that compared with no treatment, prime editing inhibits vision deterioration in littermate rd1 mice. This study provides a therapeutic opportunity for the use of PE to correct mutated RPs at the genomic level.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Pengpeng Liu
- Institute of Advanced Biotechnology, Institute of Homeostatic Medicine, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
2
|
Valero-Ochando J, Cantó A, López-Pedrajas R, Almansa I, Miranda M. Role of Gonadal Steroid Hormones in the Eye: Therapeutic Implications. Biomolecules 2024; 14:1262. [PMID: 39456195 PMCID: PMC11506707 DOI: 10.3390/biom14101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of enzymatic steps starting in the mitochondria and includes enzymes such as cytochrome P450 and aromatase. Beyond their genomic actions, which involve altering gene transcription over hours, gonadal steroids also exhibit rapid, nongenomic effects through receptors located on the cell membrane. Additionally, recent research has highlighted the role of these hormones in the central nervous system (CNS). However, the interactions between gonadal steroid hormones and the retina have received limited attention, though it has been suggested that they may play a protective role in retinal diseases. This review explores the synthesis of gonadal hormones, their mechanisms of action, and their potential implications in various retinal and optic nerve diseases, such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), or retinitis pigmentosa (RP), discussing both protective and risk factors associated with hormone levels and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Valencia, Spain; (J.V.-O.); (A.C.); (R.L.-P.); (I.A.)
| |
Collapse
|
3
|
Romero FJ, Diaz-Llopis M, Romero-Gomez MI, Miranda M, Romero-Wenz R, Sancho-Pelluz J, Romero B, Muriach M, Barcia JM. Small Extracellular Vesicles and Oxidative Pathophysiological Mechanisms in Retinal Degenerative Diseases. Int J Mol Sci 2024; 25:1618. [PMID: 38338894 PMCID: PMC10855665 DOI: 10.3390/ijms25031618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This review focuses on the role of small extracellular vesicles in the pathophysiological mechanisms of retinal degenerative diseases. Many of these mechanisms are related to or modulated by the oxidative burden of retinal cells. It has been recently demonstrated that cellular communication in the retina involves extracellular vesicles and that their rate of release and cargo features might be affected by the cellular environment, and in some instances, they might also be mediated by autophagy. The fate of these vesicles is diverse: they could end up in circulation being used as markers, or target neighbor cells modulating gene and protein expression, or eventually, in angiogenesis. Neovascularization in the retina promotes vision loss in diseases such as diabetic retinopathy and age-related macular degeneration. The importance of micro RNAs, either as small extracellular vesicles' cargo or free circulating, in the regulation of retinal angiogenesis is also discussed.
Collapse
Affiliation(s)
- Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Manuel Diaz-Llopis
- Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain;
| | | | - Maria Miranda
- Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, 46115 Alfara del Patriarca, Spain;
| | - Rebeca Romero-Wenz
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Javier Sancho-Pelluz
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
| | - Belén Romero
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
- Unidad de Cuidados intensivos, Hospital de Manises, 46940 Manises, Spain
| | - Maria Muriach
- Facultad de Ciencias de la Salud, Universitat Jaume I, 12006 Castelló de la Plana, Spain;
| | - Jorge M. Barcia
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia, 46001 Valencia, Spain; (J.S.-P.); (B.R.); (J.M.B.)
| |
Collapse
|
4
|
Intartaglia D, Giamundo G, Naso F, Nusco E, Di Giulio S, Salierno FG, Polishchuk E, Conte I. Induction of Autophagy Promotes Clearance of RHOP23H Aggregates and Protects From Retinal Degeneration. Front Aging Neurosci 2022; 14:878958. [PMID: 35847673 PMCID: PMC9281868 DOI: 10.3389/fnagi.2022.878958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a critical metabolic process that acts as a major self-digestion and recycling pathway contributing to maintain cellular homeostasis. An emerging field of research supports the therapeutic modulation of autophagy for treating human neurodegenerative disorders, in which toxic aggregates are accumulated in neurons. Our previous study identified Ezrin protein as an inhibitor of autophagy and lysosomal functions in the retina; thus, in turn, identifying it as a potential pharmacological target for increasing retinal cell clearance to treat inherited retinal dystrophies in which misfolded proteins have accumulated. This study aimed to verify the therapeutic inhibition of Ezrin to induce clearance of toxic aggregates in a mouse model for a dominant form of retinitis pigmentosa (i.e., RHOP23H/+). We found that daily inhibition of Ezrin significantly decreased the accumulation of misfolded RHOP23H aggregates. Remarkably, induction of autophagy, by a drug-mediated pulsatile inhibition of Ezrin, promoted the lysosomal clearance of disease-linked RHOP23H aggregates. This was accompanied with a reduction of endoplasmic reticulum (ER)-stress, robust decrease of photoreceptors' cell death, amelioration in both retinal morphology and function culminating in a better preservation of vision. Our study opens new perspectives for a pulsatile pharmacological induction of autophagy as a mutation-independent therapy paving the way toward a more effective therapeutic strategy to treat these devastating retinal disorders due to an accumulation of intracellular toxic aggregates.
Collapse
Affiliation(s)
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Federica Naso
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | | | | | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Ivan Conte
| |
Collapse
|
5
|
Canto A, Martínez-González J, Miranda M, Olivar T, Almansa I, Hernández-Rabaza V. Sulforaphane Modulates the Inflammation and Delays Neurodegeneration on a Retinitis Pigmentosa Mice Model. Front Pharmacol 2022; 13:811257. [PMID: 35300301 PMCID: PMC8921528 DOI: 10.3389/fphar.2022.811257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
The term retinitis pigmentosa (RP) describes a large group of hereditary retinopathies. From a cellular view, retinal degeneration is prompted by an initial death of rods, followed later by cone degeneration. This cellular progressive degeneration is translated clinically in tunnel vision, which evolves to complete blindness. The mechanism underlying the photoreceptor degeneration is unknown, but several mechanisms have been pointed out as main co-stars, inflammation being one of the most relevant. Retinal inflammation is characterized by proliferation, migration, and morphological changes in glial cells, in both microglia and Müller cells, as well as the increase in the expression of inflammatory mediators. Retinal inflammation has been reported in several animal models and clinical cases of RP, but the specific role that inflammation plays in the pathology evolution remains uncertain. Sulforaphane (SFN) is an antioxidant natural compound that has shown anti-inflammatory properties, including the modulation of glial cells activation. The present work explores the effects of SFN on retinal degeneration and inflammation, analyzing the modulation of glial cells in the RP rd10 mice model. A daily dose of 20 mg/kg of sulforaphane was administered intraperitoneally to control (C57BL/6J wild type) and rd10 (Pde6brd10) mice, from postnatal day 14 to day 20. On postnatal day 21, euthanasia was performed. Histological retina samples were used to assess cellular degeneration, Müller cells, and microglia activation. SFN administration delayed the loss of photoreceptors. It also ameliorated the characteristic reactive gliosis, assessed by retinal GFAP expression. Moreover, sulforaphane treatment regulated the microglia activation state, inducing changes in the microglia morphology, migration, and expression through the retina. In addition, SFN modulated the expression of the interleukins 1β, 4, Ym1, and arginase inflammatory mediators. Surprisingly, M2 polarization marker expression was increased at P21 and was reduced by SFN treatment. To summarize, SFN administration reduced retinal neurodegeneration and modified the inflammatory profile of RP, which may contribute to the SFN neuroprotective effect.
Collapse
Affiliation(s)
- Antolín Canto
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Javier Martínez-González
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Inma Almansa
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Vicente Hernández-Rabaza
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| |
Collapse
|
6
|
Deficiency in Retinal TGFβ Signaling Aggravates Neurodegeneration by Modulating Pro-Apoptotic and MAP Kinase Pathways. Int J Mol Sci 2022; 23:ijms23052626. [PMID: 35269767 PMCID: PMC8910086 DOI: 10.3390/ijms23052626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Transforming growth factor β (TGFβ) signaling has manifold functions such as regulation of cell growth, differentiation, migration, and apoptosis. Moreover, there is increasing evidence that it also acts in a neuroprotective manner. We recently showed that TGFβ receptor type 2 (Tgfbr2) is upregulated in retinal neurons and Müller cells during retinal degeneration. In this study we investigated if this upregulation of TGFβ signaling would have functional consequences in protecting retinal neurons. To this end, we analyzed the impact of TGFβ signaling on photoreceptor viability using mice with cell type-specific deletion of Tgfbr2 in retinal neurons and Müller cells (Tgfbr2ΔOC) in combination with a genetic model of photoreceptor degeneration (VPP). We examined retinal morphology and the degree of photoreceptor degeneration, as well as alterations of the retinal transcriptome. In summary, retinal morphology was not altered due to TGFβ signaling deficiency. In contrast, VPP-induced photoreceptor degeneration was drastically exacerbated in double mutant mice (Tgfbr2ΔOC; VPP) by induction of pro-apoptotic genes and dysregulation of the MAP kinase pathway. Therefore, TGFβ signaling in retinal neurons and Müller cells exhibits a neuroprotective effect and might pose promising therapeutic options to attenuate photoreceptor degeneration in humans.
Collapse
|
7
|
Zhang HJ, Liu XB, Chen XM, Kong QH, Liu YS, So KF, Chen JS, Xu Y, Mi XS, Tang SB. Lutein delays photoreceptor degeneration in a mouse model of retinitis pigmentosa. Neural Regen Res 2021; 17:1596-1603. [PMID: 34916446 PMCID: PMC8771084 DOI: 10.4103/1673-5374.330622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinitis pigmentosa is a retinal disease characterized by photoreceptor degeneration. There is currently no effective treatment for retinitis pigmentosa. Although a mixture of lutein and other antioxidant agents has shown promising effects in protecting the retina from degeneration, the role of lutein alone remains unclear. In this study, we administered intragastric lutein to Pde6brd10 model mice, which display degeneration of retinal photoreceptors, on postnatal days 17 (P17) to P25, when rod apoptosis reaches peak. Lutein at the optimal protective dose of 200 mg/kg promoted the survival of photoreceptors compared with vehicle control. Lutein increased rhodopsin expression in rod cells and opsin expression in cone cells, in line with an increased survival rate of photoreceptors. Functionally, lutein improved visual behavior, visual acuity, and retinal electroretinogram responses in Pde6brd10 mice. Mechanistically, lutein reduced the expression of glial fibrillary acidic protein in Müller glial cells. The results of this study confirm the ability of lutein to postpone photoreceptor degeneration by reducing reactive gliosis of Müller cells in the retina and exerting anti-inflammatory effects. This study was approved by the Laboratory Animal Ethics Committee of Jinan University (approval No. LACUC-20181217-02) on December 17, 2018.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University; Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Xiao-Bin Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiong-Min Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Qi-Hang Kong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Yu-Sang Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Aier Academician Station, Changsha, Hunan Province; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Su Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province; Laboratory of Retinal Cell Biology, Aier Eye Institute; Aier Academician Station, Changsha, Hunan Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Aier Academician Station, Changsha, Hunan Province; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Song Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province; Aier Academician Station, Changsha, Hunan Province, China
| | - Shi-Bo Tang
- Laboratory of Retinal Cell Biology, Aier Eye Institute; Aier Academician Station, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Pharmacological Inhibition of the VCP/Proteasome Axis Rescues Photoreceptor Degeneration in RHO P23H Rat Retinal Explants. Biomolecules 2021; 11:biom11101528. [PMID: 34680161 PMCID: PMC8534135 DOI: 10.3390/biom11101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Rhodopsin (RHO) misfolding mutations are a common cause of the blinding disease autosomal dominant retinitis pigmentosa (adRP). The most prevalent mutation, RHOP23H, results in its misfolding and retention in the endoplasmic reticulum (ER). Under homeostatic conditions, misfolded proteins are selectively identified, retained at the ER, and cleared via ER-associated degradation (ERAD). Overload of these degradation processes for a prolonged period leads to imbalanced proteostasis and may eventually result in cell death. ERAD of misfolded proteins, such as RHOP23H, includes the subsequent steps of protein recognition, targeting for ERAD, retrotranslocation, and proteasomal degradation. In the present study, we investigated and compared pharmacological modulation of ERAD at these four different major steps. We show that inhibition of the VCP/proteasome activity favors cell survival and suppresses P23H-mediated retinal degeneration in RHOP23H rat retinal explants. We suggest targeting this activity as a therapeutic approach for patients with currently untreatable adRP.
Collapse
|
9
|
Bielmeier CB, Roth S, Schmitt SI, Boneva SK, Schlecht A, Vallon M, Tamm ER, Ergün S, Neueder A, Braunger BM. Transcriptional Profiling Identifies Upregulation of Neuroprotective Pathways in Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126307. [PMID: 34208383 PMCID: PMC8231189 DOI: 10.3390/ijms22126307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and Müller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.
Collapse
Affiliation(s)
- Christina B. Bielmeier
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Saskia Roth
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Sabrina I. Schmitt
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Stefaniya K. Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, D-79078 Freiburg, Germany;
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany; (S.I.S.); (E.R.T.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
| | - Andreas Neueder
- Department of Neurology, University of Ulm, D-89069 Ulm, Germany;
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Wuerzburg, Koellikerstr. 6, D-97070 Würzburg, Germany; (C.B.B.); (S.R.); (A.S.); (M.V.); (S.E.)
- Correspondence: ; Tel.: +49-931-31-84387; Fax: +49-931-31-82087
| |
Collapse
|
10
|
Khelashvili G, Pillai AN, Lee J, Pandey K, Payne AM, Siegel Z, Cuendet MA, Lewis TR, Arshavsky VY, Broichhagen J, Levitz J, Menon AK. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Sci Rep 2021; 11:10536. [PMID: 34006992 PMCID: PMC8131606 DOI: 10.1038/s41598-021-90039-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in the G protein-coupled receptor (GPCR) rhodopsin are a common cause of autosomal dominant retinitis pigmentosa, a blinding disease. Rhodopsin self-associates in the membrane, and the purified monomeric apo-protein opsin dimerizes in vitro as it transitions from detergent micelles to reconstitute into a lipid bilayer. We previously reported that the retinitis pigmentosa-linked F220C opsin mutant fails to dimerize in vitro, reconstituting as a monomer. Using fluorescence-based assays and molecular dynamics simulations we now report that whereas wild-type and F220C opsin display distinct dimerization propensities in vitro as previously shown, they both dimerize in the plasma membrane of HEK293 cells. Unexpectedly, molecular dynamics simulations show that F220C opsin forms an energetically favored dimer in the membrane when compared with the wild-type protein. The conformation of the F220C dimer is unique, with transmembrane helices 5 and 6 splayed apart, promoting widening of the intracellular vestibule of each protomer and influx of water into the protein interior. FRET experiments with SNAP-tagged wild-type and F220C opsin expressed in HEK293 cells are consistent with this conformational difference. We speculate that the unusual mode of dimerization of F220C opsin in the membrane may have physiological consequences.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA.
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Alexander M Payne
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Zarek Siegel
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michel A Cuendet
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne, 1009, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Zhao T, Liang Q, Meng X, Duan P, Wang F, Li S, Liu Y, Yin ZQ. Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells Maintains and Partially Improves Visual Function in Patients with Advanced Retinitis Pigmentosa. Stem Cells Dev 2020; 29:1029-1037. [PMID: 32679004 DOI: 10.1089/scd.2020.0037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal degeneration disease with no effective therapeutic approaches. Inflammatory and immune disorders are thought to play an important role in the pathogenesis of RP. Human umbilical cord mesenchymal stem cells (UCMSCs), with multiple biological functions such as anti-inflammation and immunoregulation, have been applied in different systemic diseases. We conducted a phase I/II clinical trial aiming to evaluate the safety and efficacy of intravenous administration of UCMSCs in advanced RP patients. All 32 subjects were intravenously infused with one dose of 108 UCMSCs and were followed up for 12 months. No serious local or systemic adverse effects occurred in the whole follow-up. Most patients improved their best corrected visual acuity (BCVA) in the first 3 months. The proportions of patients with improved or maintained BCVA were 96.9%, 95.3%, 93.8%, 95.4%, 90.6%, and 90.6% at the 1st, 2nd, 3rd, 6th, 9th, and 12th month follow-up, respectively. Most of the patients (81.3%) maintained or improved their visual acuities for 12 months. The average NEI VFQ-25 questionnaire scores were significantly improved at the third month (P < 0.05). The average visual field sensitivity and flash visual evoked potential showed no significant difference (P = 0.185, P = 0.711). Our results indicated that the intravenous infusion of UCMSCs was safe for advanced RP patients. Most of the patients improved or maintained their visual functions in a long term. The life qualities were improved significantly in the first 3 months, suggesting that the intravenous infusion of UCMSCs may be a promising therapeutic approach for advanced RP patients.
Collapse
Affiliation(s)
- Tongtao Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingling Liang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Lewis TR, Shores CR, Cady MA, Hao Y, Arshavsky VY, Burns ME. The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Sci Rep 2020; 10:7538. [PMID: 32371886 PMCID: PMC7200662 DOI: 10.1038/s41598-020-64437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa is a retinal degenerative disease that leads to blindness through photoreceptor loss. Rhodopsin is the most frequently mutated protein in this disease. While many rhodopsin mutations have well-understood consequences that lead to cell death, the disease association of several rhodopsin mutations identified in retinitis pigmentosa patients, including F220C and F45L, has been disputed. In this study, we generated two knockin mouse lines bearing each of these mutations. We did not observe any photoreceptor degeneration in either heterozygous or homozygous animals of either line. F220C mice exhibited minor disruptions of photoreceptor outer segment dimensions without any mislocalization of outer segment proteins, whereas photoreceptors of F45L mice were normal. Suction electrode recordings from individual photoreceptors of both mutant lines showed normal flash sensitivity and photoresponse kinetics. Taken together, these data suggest that neither the F220C nor F45L mutation has pathological consequences in mice and, therefore, may not be causative of retinitis pigmentosa in humans.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Camilla R Shores
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States. .,Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, CA, 95616, United States.
| |
Collapse
|
13
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
14
|
Looking into dental pulp stem cells in the therapy of photoreceptors and retinal degenerative disorders. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111727. [PMID: 31862637 DOI: 10.1016/j.jphotobiol.2019.111727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023]
Abstract
Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.
Collapse
|
15
|
Gene Therapy in Retinal Dystrophies. Int J Mol Sci 2019; 20:ijms20225722. [PMID: 31739639 PMCID: PMC6888000 DOI: 10.3390/ijms20225722] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of clinically and genetically heterogeneous degenerative disorders. To date, mutations have been associated with IRDs in over 270 disease genes, but molecular diagnosis still remains elusive in about a third of cases. The methodologic developments in genome sequencing techniques that we have witnessed in this last decade have represented a turning point not only in diagnosis and prognosis but, above all, in the identification of new therapeutic perspectives. The discovery of new disease genes and pathogenetic mechanisms underlying IRDs has laid the groundwork for gene therapy approaches. Several clinical trials are ongoing, and the recent approval of Luxturna, the first gene therapy product for Leber congenital amaurosis, marks the beginning of a new era. Due to its anatomical and functional characteristics, the retina is the organ of choice for gene therapy, although there are quite a few difficulties in the translational approaches from preclinical models to humans. In the first part of this review, an overview of the current knowledge on methodological issues and future perspectives of gene therapy applied to IRDs is discussed; in the second part, the state of the art of clinical trials on the gene therapy approach in IRDs is illustrated.
Collapse
|
16
|
Sex-related differences in the progressive retinal degeneration of the rd10 mouse. Exp Eye Res 2019; 187:107773. [PMID: 31445902 DOI: 10.1016/j.exer.2019.107773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023]
Abstract
The retinal degeneration 10 (rd10) mouse is a model of autosomal recessive retinitis pigmentosa (RP), a disease that causes blindness through the progressive loss of photoreceptors. This study shows evidence of sex-related differences in RP onset and progression in rd10 retinas. The disease onset was considerably earlier in the female rd10 mice than in the male rd10 mice, as evidenced by a loss of PDE6β proteins and rod-dominated electroretinogram (ERG) responses at an early age. Single photopic flash and flicker ERG responses and immunolabeling of opsin molecules were analyzed in both genders to assess the sex differences in the degeneration of cones in the RP retinas. The averaged amplitudes of cone-mediated ERG responses obtained from the females were significantly smaller than the amplitudes of the responses from the age-matched males in the late stages of the RP, suggesting that cones might degenerate faster in the female retinas as the disease progressed. The rapid degeneration of cones caused a more substantial decrease in the ERG responses derived from the On-pathway than the Off-pathway in the females. In addition, the male rd10 mice had heavier body weights than their female counterparts aged between postnatal (P)18 and P50 days. In summary, female rd10 mice were more susceptible to retinal degeneration, suggesting that the female sex might be a risk factor for RP. The results have important implications for future studies exploring potential sex-related differences in RP development and progression in the clinic.
Collapse
|
17
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
18
|
Lehmann M, Knust E, Hebbar S. Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa. Methods Mol Biol 2019; 1834:221-249. [PMID: 30324448 DOI: 10.1007/978-1-4939-8669-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a complex inherited disease. It is associated with mutations in a wide variety of genes with many different functions. These mutations impact the integrity of rod photoreceptors and ultimately result in the progressive degeneration of rods and cone photoreceptors in the retina, leading to complete blindness. A hallmark of this disease is the variable degree to which symptoms are manifest in patients. This is indicative of the influence of the environment, and/or of the distinct genetic makeup of the individual.The fruit fly, Drosophila melanogaster, has effectively proven to be a great model system to better understand interconnected genetic networks. Unraveling genetic interactions and thereby different cellular processes is relatively easy because more than a century of research on flies has enabled the creation of sophisticated genetic tools to perturb gene function. A remarkable conservation of disease genes across evolution and the similarity of the general organization of the fly and vertebrate photoreceptor cell had prompted research on fly retinal degeneration. To date six fly models for RP, including RP4, RP11, RP12, RP14, RP25, and RP26, have been established, and have provided useful information on RP disease biology. In this chapter, an outline of approaches and experimental specifications are described to enable utilizing or developing new fly models of RP.
Collapse
Affiliation(s)
- Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
19
|
Qiu W, Sandberg MA, Rosner B. Application of empirical Bayes methods to predict the rate of decline in ERG at the individual level among patients with retinitis pigmentosa. Stat Med 2018; 37:2586-2598. [PMID: 29855067 DOI: 10.1002/sim.7662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 11/10/2022]
Abstract
Retinitis pigmentosa is one of the most common forms of inherited retinal degeneration. The electroretinogram (ERG) can be used to determine the severity of retinitis pigmentosa-the lower the ERG amplitude, the more severe the disease is. In practice for career, lifestyle, and treatment counseling, it is of interest to predict the ERG amplitude of a patient at a future time. One approach is prediction based on the average rate of decline for individual patients. However, there is considerable variation both in initial amplitude and in rate of decline. In this article, we propose an empirical Bayes (EB) approach to incorporate the variations in initial amplitude and rate of decline for the prediction of ERG amplitude at the individual level. We applied the EB method to a collection of ERGs from 898 patients with 3 or more visits over 5 or more years of follow-up tested in the Berman-Gund Laboratory and observed that the predicted values at the last (kth) visit obtained by using the proposed method based on data for the first k-1 visits are highly correlated with the observed values at the kth visit (Spearman correlation =0.93) and have a higher correlation with the observed values than those obtained based on either the population average decline rate or those obtained based on the individual decline rate. The mean square errors for predicted values obtained by the EB method are also smaller than those predicted by the other methods.
Collapse
Affiliation(s)
- Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Michael A Sandberg
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
20
|
Moreno ML, Mérida S, Bosch-Morell F, Miranda M, Villar VM. Autophagy Dysfunction and Oxidative Stress, Two Related Mechanisms Implicated in Retinitis Pigmentosa. Front Physiol 2018; 9:1008. [PMID: 30093867 PMCID: PMC6070619 DOI: 10.3389/fphys.2018.01008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of the most common clinical subtypes of retinal degeneration (RD), and it is a neurodegenerative disease that could cause complete blindness in humans because it ultimately affects the photoreceptors viability. RP afflicts an estimated 1.5 million patients worldwide. The retina is highly susceptible to oxidative stress which can impair mitochondrial function. Many retina pathologies, such as diabetic retinopathy and secondary cone photoreceptor death in RP, have been related directly or indirectly with mitochondrial dysfunction. The possible role of autophagy in retina and cell differentiation is described and also the implications of autophagy dysregulation in RP. The present review shows the crucial role of autophagy in maintaining the retina homeostasis and possible therapeutic approaches for the treatment of RP.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Basic Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Salvador Mérida
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Francisco Bosch-Morell
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.,Department of Medical Ophtalmology, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - María Miranda
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Vincent M Villar
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
21
|
Trachsel-Moncho L, Benlloch-Navarro S, Fernández-Carbonell Á, Ramírez-Lamelas DT, Olivar T, Silvestre D, Poch E, Miranda M. Oxidative stress and autophagy-related changes during retinal degeneration and development. Cell Death Dis 2018; 9:812. [PMID: 30042417 PMCID: PMC6057918 DOI: 10.1038/s41419-018-0855-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
Retinitis pigmentosa (RP) is an inherited retinopathy that leads to photoreceptor loss. RP has been related to oxidative stress, autophagy, and inflammation. This study aimed to identify changes in the levels of oxidative stress and autophagy markers in the retina of control and rd10 mice during different phases of retinal development. Changes in the retinal oxidation system were investigated by measuring the levels of oxidized and reduced glutathione (GSH/GSSG), retinal avidin-positive cells, and 4-hydroxynonenal (4-HNE) staining intensity. Autophagy characterization was explored by measuring the levels of microtubule-associated protein 1 light chain 3 (LC3), beclin, autophagy-related proteins 5 and 7 (Atg5 and Atg7), and lysosomal associated membrane protein-2A (LAMP-2A). At P28 retinal GSH concentrations decreased in rd10 mice compared to the controls. No differences were found in retinal GSSG concentrations between the control and rd10 mice. There was an increase in retinal GSSG concentrations and a decrease in the GSH/GSSG ratio in the control and rd10 mice at P21 and P28 compared to P13. We observed an increase in avidin-positive cells in rd10 retinas. 4-HNE was increased in rd10 retinas at P13, and it also increased in control mice with age. We did not observe any differences in the retinal levels of LC3II/I ratio, Beclin, Atg5, or Atg7 in the rd10 mice compared to the controls. There was an increase in the LAMP-2A concentrations in the control and rd10 mice with development age (P28 concentrations vs. P13). Although only slight differences were found in the oxidative stress and autophagy markers between the control and rd10 mice, there were increases in the GSSG, 4-HNE, and LAMP-2A with age. This increase in the oxidative stress and chaperone-mediated autophagy has not been described before and occurred just after the mice opened their eyes, potentially indicating a retinal response to light exposure.
Collapse
Affiliation(s)
- Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ángel Fernández-Carbonell
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Dolores Tania Ramírez-Lamelas
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Dolores Silvestre
- Departamento Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Enric Poch
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
22
|
Ramírez-Lamelas DT, Benlloch-Navarro S, López-Pedrajas R, Gimeno-Hernández R, Olivar T, Silvestre D, Miranda M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front Pharmacol 2018; 9:469. [PMID: 29867476 PMCID: PMC5954235 DOI: 10.3389/fphar.2018.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.
Collapse
Affiliation(s)
- Dolores T Ramírez-Lamelas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Rosa López-Pedrajas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Dolores Silvestre
- Departamento Farmacia, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
23
|
Al-Khersan H, Shah KP, Jung SC, Rodriguez A, Madduri RK, Grassi MA. A novel MERTK mutation causing retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2017; 255:1613-1619. [PMID: 28462455 PMCID: PMC5542860 DOI: 10.1007/s00417-017-3679-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a genetically heterogeneous inherited retinal dystrophy. To date, over 80 genes have been implicated in RP. However, the disease demonstrates significant locus and allelic heterogeneity not entirely captured by current testing platforms. The purpose of the present study was to characterize the underlying mutation in a patient with RP without a molecular diagnosis after initial genetic testing. METHODS Whole-exome sequencing of the affected proband was performed. Candidate gene mutations were selected based on adherence to expected genetic inheritance pattern and predicted pathogenicity. Sanger sequencing of MERTK was completed on the patient's unaffected mother, affected brother, and unaffected sister to determine genetic phase. RESULTS Eight sequence variants were identified in the proband in known RP-associated genes. Sequence analysis revealed that the proband was a compound heterozygote with two independent mutations in MERTK, a novel nonsense mutation (c.2179C > T) and a previously reported missense variant (c.2530C > T). The proband's affected brother also had both mutations. Predicted phase was confirmed in unaffected family members. CONCLUSION Our study identifies a novel nonsense mutation in MERTK in a family with RP and no prior molecular diagnosis. The present study also demonstrates the clinical value of exome sequencing in determining the genetic basis of Mendelian diseases when standard genetic testing is unsuccessful.
Collapse
Affiliation(s)
- Hasenin Al-Khersan
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Kaanan P Shah
- Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Segun C Jung
- Argonne National Laboratory - Computation Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Alex Rodriguez
- Argonne National Laboratory - Computation Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Ravi K Madduri
- Argonne National Laboratory - Computation Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Michael A Grassi
- Grassi Retina, Naperville, IL, 60564, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1012 95th St., Suite 9, Naperville, IL, 60564, USA.
| |
Collapse
|
24
|
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B. Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res 2016; 55:206-245. [PMID: 27566190 DOI: 10.1016/j.preteyeres.2016.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye.
Collapse
Affiliation(s)
- Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Lorena Esteban-Martínez
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Serrano-Puebla
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
25
|
Pensado A, Diaz-Corrales FJ, De la Cerda B, Valdés-Sánchez L, Del Boz AA, Rodriguez-Martinez D, García-Delgado AB, Seijo B, Bhattacharya SS, Sanchez A. Span poly-L-arginine nanoparticles are efficient non-viral vectors for PRPF31 gene delivery: An approach of gene therapy to treat retinitis pigmentosa. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2251-2260. [PMID: 27381066 DOI: 10.1016/j.nano.2016.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/31/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness in adults. Mutations in the PRPF31 gene produce autosomal dominant RP (adRP). To date there are no effective treatments for this disease. The purpose of this study was to design an efficient non-viral vector for human PRPF31 gene delivery as an approach to treat this form of adRP. Span based nanoparticles were developed to mediate gene transfer in the subretinal space of a mouse model of adRP carrying a point mutation (A216P) in the Prpf31 gene. Funduscopic examination, electroretinogram, optomotor test and optical coherence tomography were conducted to further in vivo evaluate the safety and efficacy of the nanosystems developed. Span-polyarginine (SP-PA) nanoparticles were able to efficiently transfect the GFP and PRPF31 plasmid in mice retinas. Statistically significant improvement in visual acuity and retinal thickness were found in Prpf31A216P/+ mice treated with the SP-PA-PRPF31 nanomedicine.
Collapse
Affiliation(s)
- Andrea Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Francisco J Diaz-Corrales
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Berta De la Cerda
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Lourdes Valdés-Sánchez
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Ana Aramburu Del Boz
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Daniel Rodriguez-Martinez
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Ana B García-Delgado
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Shomi S Bhattacharya
- Department of Cell Therapy and Regenerative Medicine, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain; Molecular Image Group, Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Yau EH, Butler MC, Sullivan JM. A cellular high-throughput screening approach for therapeutic trans-cleaving ribozymes and RNAi against arbitrary mRNA disease targets. Exp Eye Res 2016; 151:236-55. [PMID: 27233447 DOI: 10.1016/j.exer.2016.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/25/2016] [Accepted: 05/22/2016] [Indexed: 12/11/2022]
Abstract
Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N = G,C,A,U; H = C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a large set of potential VAI-hhRz expression plasmids against diverse NUH↓ cleavage sites uses cultured human HEK293S cells stably expressing a dicistronic Target-IRES-SEAP target fusion mRNA. Broad utility of this rational RNA drug discovery approach is feasible for any ophthalmological disease-relevant mRNA targets and any disease mRNA targets in general. The approach will permit rank ordering of PTGS agents based on potency to identify a lead therapeutic compound for further optimization.
Collapse
Affiliation(s)
- Edwin H Yau
- Department of Pharmacology/Toxicology, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA
| | - Mark C Butler
- Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA
| | - Jack M Sullivan
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Ophthalmology (Ira G. Ross Eye Institute), University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Pharmacology/Toxicology, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Department of Physiology/Biophysics, University at Buffalo- SUNY, Buffalo, NY 14209, USA; Neuroscience Program, University at Buffalo- SUNY, Buffalo, NY 14209, USA; SUNY Eye Institute, University at Albany- SUNY, USA; RNA Institute, University at Albany- SUNY, USA.
| |
Collapse
|
27
|
Hassan T, Akram MU, Hassan B, Syed AM, Bazaz SA. Automated segmentation of subretinal layers for the detection of macular edema. APPLIED OPTICS 2016; 55:454-61. [PMID: 26835917 DOI: 10.1364/ao.55.000454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Macular edema (ME) is considered as one of the major indications of proliferative diabetic retinopathy and it is commonly caused due to diabetes. ME causes retinal swelling due to the accumulation of protein deposits within subretinal layers. Optical coherence tomography (OCT) imaging provides an early detection of ME by showing the cross-sectional view of macular pathology. Many researchers have worked on automated identification of macular edema from fundus images, but this paper proposes a fully automated method for extracting and analyzing subretinal layers from OCT images using coherent tensors. These subretinal layers are then used to predict ME from candidate images using a support vector machine (SVM) classifier. A total of 71 OCT images of 64 patients are collected locally in which 15 persons have ME and 49 persons are healthy. Our proposed system has an overall accuracy of 97.78% in correctly classifying ME patients and healthy persons. We have also tested our proposed implementation on spectral domain OCT (SD-OCT) images of the Duke dataset consisting of 109 images from 10 patients and it correctly classified all healthy and ME images in the dataset.
Collapse
|
28
|
Mastorakos P, Kambhampati SP, Mishra MK, Wu T, Song E, Hanes J, Kannan RM. Hydroxyl PAMAM dendrimer-based gene vectors for transgene delivery to human retinal pigment epithelial cells. NANOSCALE 2015; 7:3845-56. [PMID: 25213606 PMCID: PMC4797994 DOI: 10.1039/c4nr04284k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ocular gene therapy holds promise for the treatment of numerous blinding disorders. Despite the significant progress in the field of viral and non-viral gene delivery to the eye, significant obstacles remain in the way of achieving high-level transgene expression without adverse effects. The retinal pigment epithelium (RPE) is involved in the pathogenesis of retinal diseases and is a key target for a number of gene-based therapeutics. In this study, we addressed the inherent drawbacks of non-viral gene vectors and combined different approaches to design an efficient and safe dendrimer-based gene-delivery platform for delivery to human RPE cells. We used hydroxyl-terminated polyamidoamine (PAMAM) dendrimers functionalized with various amounts of amine groups to achieve effective plasmid compaction. We further used triamcinolone acetonide (TA) as a nuclear localization enhancer for the dendrimer-gene complex and achieved significant improvement in cell uptake and transfection of hard-to-transfect human RPE cells. To improve colloidal stability, we further shielded the gene vector surface through incorporation of PEGylated dendrimer along with dendrimer-TA for DNA complexation. The resultant complexes showed improved stability while minimally affecting transgene delivery, thus improving the translational relevance of this platform.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zieger M, Ahnelt PK, Uhrin P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS One 2014; 9:e106562. [PMID: 25191897 PMCID: PMC4156323 DOI: 10.1371/journal.pone.0106562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
We aimed to investigate fractalkine (CX3CL1) protein expression in wild type (wt) retina and its alterations during retinal degeneration in mouse model (rd10) of retinitis pigmentosa. Forms of retinal protein CX3CL1, total protein and mRNA levels of CX3CL1 were analyzed at postnatal days (P) 5, 10, 14, 22, 30, 45, and 60 by Western blotting and real-time PCR. Cellular sources of CX3CL1 were investigated by in situ hybridization histochemistry (ISH) and using transgenic (CX3CL1cherry) mice. The immunoblots revealed that in both, wt and rd10 retinas, a membrane integrated ∼100 kDa CX3CL1 form and a cleaved ∼85 kDa CX3CL1 form were present at P5. At P10, accumulation of another presumably intra-neuronal ∼95 kDa form and a decrease in the ∼85-kDa form were observed. From P14, a ∼95 kDa form became principal in wt retina, while in rd10 retinas a soluble ∼85 kDa form increased at P45 and P60. In comparison, retinas of rd10 mice had significantly lower levels of total CX3CL1 protein (from P10 onwards) and lower CX3CL1 mRNA levels (from P14), even before the onset of primary rod degeneration. ISH and mCherry reporter fluorescence showed neurons in the inner retina layers as principal sites of CX3CL1 synthesis both in wt and rd10 retinas. In conclusion, our results demonstrate that CX3CL1 has a distinctive course of expression and functional regulation in rd10 retina starting at P10. The biological activity of CX3CL1 is regulated by conversion of a membrane integrated to a soluble form during neurogenesis and in response to pathologic changes in the adult retinal milieu. Viable mature neurons in the inner retina likely exhibit a dynamic intracellular storage depot of CX3CL1.
Collapse
Affiliation(s)
- Marina Zieger
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology and Gene Therapy Centre, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (MZ); (PU)
| | - Peter K. Ahnelt
- Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail: (MZ); (PU)
| |
Collapse
|
30
|
Morillo M, Toledo D, Pérez JJ, Ramon E, Garriga P. Mercury-induced dark-state instability and photobleaching alterations of the visual g-protein coupled receptor rhodopsin. Chem Res Toxicol 2014; 27:1219-26. [PMID: 24911398 DOI: 10.1021/tx500114s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercuric compounds were previously shown to affect the visual phototransduction cascade, and this could result in vision impairment. We have analyzed the effect of mercuric chloride on the structure and stability of the dim light vision photoreceptor rhodopsin. For this purpose, we have used both native rhodopsin immunopurified from bovine retinas and a recombinant mutant rhodopsin carrying several Cys to Ser substitutions in order to investigate the potential binding site of mercury on the receptor. Our results show that mercuric chloride dramatically reduces the stability of dark-state rhodopsin and alters the molecular features of the photoactived conformation obtained upon illumination by eliciting the formation of an altered photointermediate. The thermal bleaching kinetics of native and mutant rhodopsin is markedly accelerated by mercury in a concentration-dependent manner, and its chromophore regeneration ability is severely reduced without significantly affecting its G-protein activation capacity. Furthermore, fluorescence spectroscopic measurements on the retinal release process, ensuing illumination, suggest that mercury impairs complete retinal release from the receptor binding pocket. Our results provide further support for the capacity of mercury as a hazardous metal ion with reported deleterious effect on vision and provide a molecular explanation for such an effect at the rhodopsin photoreceptor level. We suggest that mercury could alter vision by acting in a specific manner on the molecular components of the retinoid cycle, particularly by modifying the ability of the visual photoreceptor protein rhodopsin to be regenerated and to be normally photoactivated by light.
Collapse
Affiliation(s)
- Margarita Morillo
- Chemical Engineering Department, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya , Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia Spain
| | | | | | | | | |
Collapse
|
31
|
Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, Grossniklaus HE, Naash MI, Lewin AS, Horsager A, Edelhauser HF. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci 2014; 55:2714-30. [PMID: 24777644 DOI: 10.1167/iovs.13-13707] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
|
33
|
Nguyen ATH, Campbell M, Kiang AS, Humphries MM, Humphries P. Current therapeutic strategies for P23H RHO-linked RP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:471-6. [PMID: 24664733 DOI: 10.1007/978-1-4614-3209-8_60] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The first autosomal dominant mutation identified to cause retinitis pigmentosa in the North American population was the substitution of proline to histidine at position 23 of the rhodopsin gene (P23H RHO). Many biochemical studies have demonstrated that P23H mutation induces rhodopsin (RHO) misfolding leading to endoplasmic reticulum stress. Herein, we review current thinking of this topic.
Collapse
Affiliation(s)
- Anh T H Nguyen
- The Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, College Green, Dublin 2, Ireland,
| | | | | | | | | |
Collapse
|
34
|
Han J, Dinculescu A, Dai X, Du W, Smith WC, Pang J. Review: the history and role of naturally occurring mouse models with Pde6b mutations. Mol Vis 2013; 19:2579-89. [PMID: 24367157 PMCID: PMC3869645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/18/2013] [Indexed: 11/08/2022] Open
Abstract
Mouse models are useful tools for developing potential therapies for human inherited retinal diseases, such as retinitis pigmentosa (RP), since more strains are being identified with the same mutant genes and phenotypes as humans with corresponding retinal degenerative diseases. Mutations in the beta subunit of the human rod phosphodiesterase (PDE6B) gene are a common cause of autosomal recessive RP (arRP). This article focuses on two well-established naturally occurring mouse models of arRP caused by spontaneous mutations in Pde6b, their discovery, phenotype, mechanism of degeneration, strengths and limitations, and therapeutic approaches to restore vision and delay disease progression. Viral vector, especially adeno-associated viral vector (AAV) -mediated gene replacement therapy, pharmacological treatment, cell-based therapy and other approaches that extend the therapeutic window of treatment, is a potentially promising strategy for improving photoreceptor function and significantly slowing the process of retinal degeneration.
Collapse
Affiliation(s)
- Juanjuan Han
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | - Xufeng Dai
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Du
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | - W. Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | - Jijing Pang
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Ophthalmology, University of Florida, Gainesville, FL
| |
Collapse
|
35
|
Roska B, Busskamp V, Sahel JA, Picaud S. [Retinitis pigmentosa: eye sight restoration by optogenetic therapy]. Biol Aujourdhui 2013; 207:109-121. [PMID: 24103341 DOI: 10.1051/jbio/2013011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal disease leading to blindness, which affects two million people worldwide. Restoring vision in these blind patients was proposed by gene delivery of microbial light-activated ionic channels or pumps "optogenetic proteins" to transform surviving cells into artificial photoreceptors. This therapeutic strategy was validated in blind animal models of RP by recording at the level of the retina and cortex and by behavioural tests. The translational potentials of these optogenetic approaches have been evaluated using in vitro studies on post-mortem human retinal tissues. Here, we review these recent results and discuss the potential clinical applications of the optogenetic therapy for RP patients.
Collapse
Affiliation(s)
- Botond Roska
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66F, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
36
|
Liu K, Wang Y, Yin Z, Weng C. Light-evoked currents in retinal ganglion cells from dystrophic RCS rats. Ophthalmic Res 2013; 50:141-50. [PMID: 23948861 DOI: 10.1159/000351639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. METHODS We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. RESULTS We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. CONCLUSIONS Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Kang Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | |
Collapse
|
37
|
Chua J, Nivison-Smith L, Fletcher EL, Trenholm S, Awatramani GB, Kalloniatis M. Early remodeling of müller cells in therd/rdmouse model of retinal dystrophy. J Comp Neurol 2013; 521:2439-53. [DOI: 10.1002/cne.23307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/11/2012] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
|
38
|
Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:1732-7. [PMID: 23319618 DOI: 10.1073/pnas.1214387110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration.
Collapse
|
39
|
|
40
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Price BA, Sandoval IM, Chan F, Nichols R, Roman-Sanchez R, Wensel TG, Wilson JH. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. PLoS One 2012; 7:e49889. [PMID: 23185477 PMCID: PMC3503812 DOI: 10.1371/journal.pone.0049889] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/17/2012] [Indexed: 01/26/2023] Open
Abstract
Two outstanding unknowns in the biology of photoreceptors are the molecular determinants of cell size, which is remarkably uniform among mammalian species, and the mechanisms of rod cell death associated with inherited neurodegenerative blinding diseases such as retinitis pigmentosa. We have addressed both questions by performing an in vivo titration with rhodopsin gene copies in genetically engineered mice that express only normal rhodopsin or an autosomal dominant allele, encoding rhodopsin with a disease-causing P23H substitution. The results reveal that the volume of the rod outer segment is proportional to rhodopsin gene expression; that P23H-rhodopsin, the most common rhodopsin gene disease allele, causes cell death via a dominant-negative mechanism; and that long term survival of rod cells carrying P23H-rhodopsin can be achieved by increasing the levels of wild type rhodopsin. These results point to promising directions in gene therapy for autosomal dominant neurodegenerative diseases caused by dominant-negative mutations.
Collapse
Affiliation(s)
- Brandee A. Price
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ivette M. Sandoval
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ralph Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ramon Roman-Sanchez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
42
|
Abu-Safieh L, Alrashed M, Anazi S, Alkuraya H, Khan AO, Al-Owain M, Al-Zahrani J, Al-Abdi L, Hashem M, Al-Tarimi S, Sebai MA, Shamia A, Ray-Zack MD, Nassan M, Al-Hassnan ZN, Rahbeeni Z, Waheeb S, Alkharashi A, Abboud E, Al-Hazzaa SAF, Alkuraya FS. Autozygome-guided exome sequencing in retinal dystrophy patients reveals pathogenetic mutations and novel candidate disease genes. Genome Res 2012; 23:236-47. [PMID: 23105016 PMCID: PMC3561865 DOI: 10.1101/gr.144105.112] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retinal dystrophy (RD) is a heterogeneous group of hereditary diseases caused by loss of photoreceptor function and contributes significantly to the etiology of blindness globally but especially in the industrialized world. The extreme locus and allelic heterogeneity of these disorders poses a major diagnostic challenge and often impedes the ability to provide a molecular diagnosis that can inform counseling and gene-specific treatment strategies. In a large cohort of nearly 150 RD families, we used genomic approaches in the form of autozygome-guided mutation analysis and exome sequencing to identify the likely causative genetic lesion in the majority of cases. Additionally, our study revealed six novel candidate disease genes (C21orf2, EMC1, KIAA1549, GPR125, ACBD5, and DTHD1), two of which (ACBD5 and DTHD1) were observed in the context of syndromic forms of RD that are described for the first time.
Collapse
Affiliation(s)
- Leen Abu-Safieh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Greenwald DL, Cashman SM, Kumar-Singh R. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Gene Ther 2012; 20:425-34. [PMID: 22809998 DOI: 10.1038/gt.2012.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinitis Pigmentosa (RP) is the leading cause of inherited blindness in the developed world, affecting approximately 1 in 3000 individuals. Although there is currently no cure for RP, the genetic pathology has been well established. In this study, we developed a novel mouse model of RP (huRhoP347S) expressing a pathogenic human rhodopsin gene with a Pro347Ser (P347S) mutation on a rhodopsin knockout background. These mice undergo severe retinal degeneration at 1 month of age. In contrast to prior studies, this model was administered a gene therapy treatment at 19 days postnata. We evaluated several self-complementary adeno-associated virus (AAV) serotypes for photoreceptor tropism, including scAAV2/2, scAAV2/5, scAAV2/6.2 and scAAV2/9, and found that scAAV2/9 transduced photoreceptors with greater efficiency and expression than other vectors. We engineered an scAAV2/9 vector to contain a microRNA sequence specifically targeting the human rhodopsin gene and demonstrated its ability to silence rhodopsin by 60.2±8.2% in vitro. In addition, we constructed an scAAV2/9 vector to contain a replacement 'codon-modified' rhodopsin transgene (RhoR2) that was resistant to degradation by the microRNA. We found that delivery of the RhoR2 by scAAV2/9 is capable of restoring vision to rhodopsin knockout mice, and rescuing our novel transgenic huRhoP347S mouse model of dominant RP. Average a-wave responses of RhoR2-injected eyes were 1.8-fold higher than those of control-injected eyes. We found that delivery of the microRNA and replacement rhodopsin in a 1:2 ratio produced an average electroretinography (ERG) a-wave response of 17.4±2.9 compared to 6.5±2.8 μV for eyes injected with negative control virus.
Collapse
Affiliation(s)
- D L Greenwald
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Cronin T, Chung DC, Yang Y, Nandrot EF, Bennett J. The Signalling Role of the avβ5-Integrin Can Impact the Efficacy of AAV in Retinal Gene Therapy. Pharmaceuticals (Basel) 2012; 5:447-59. [PMID: 24281556 PMCID: PMC3763646 DOI: 10.3390/ph5050447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/03/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022] Open
Abstract
Sub-retinal injection of the common AAV2 pseudotypes frequently results in strong transduction of the retinal pigment epithelium (RPE) as well as the retina itself. This has been of benefit to date in human clinical trials using AAV, where the disease target is in the RPE. However, many mutations predisposing to retinal disease are located in the photoreceptor cells, present in the neural retina and not the RPE; in this case the sub-retinal injection route may cause an effective “loss” of therapeutic AAV to the RPE. The αvβ5 integrin receptor is highly expressed on the apical surface of the RPE, and is essential to the daily phagocytosis of the outer segment tips of photoreceptor cells. The transduction efficiency of AAV was tested in the retinas of β5−/− mice lacking this receptor and showing defects in photoreceptor outer segment phagocytosis. Following sub-retinal injection of AAV2/5-eGFP, fluorescence was found to be stronger and more widespread in the neural retina of β5−/− mice compared to wild-types with greatly reduced fluorescence in the RPE. Increased levels of the phagocytic signalling protein MFG-E8, the ligand for the αvβ5 integrin receptor, is found to have a moderate inhibitory effect on AAV transduction of the retina. However the opposite effect is found when only the integrin-binding domain of MFG-E8, the RGD (Arginine-Glycine-Aspartic acid) domain, was increased. In this case RGD enhanced AAV-mediated retinal transduction relative to RPE transduction. These results are presented for their relevance for the design of AAV-based retinal gene therapy strategies strategies targeting retinal/photoreceptor cells.
Collapse
Affiliation(s)
- Therese Cronin
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA; (D.C.C.); (J.B.)
- Author to whom correspondence should be addressed; ; Tel.: +1-215-898-0163; Fax: +1-215-573-7155
| | - Daniel C. Chung
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA; (D.C.C.); (J.B.)
| | - Ying Yang
- INSERM, U968, 17 rue Moreau, Paris F-75012, France
- Author to whom correspondence should be addressed; ; Tel.: +1-215-898-0163; Fax: +1-215-573-7155
| | | | - Jean Bennett
- F.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA; (D.C.C.); (J.B.)
| |
Collapse
|
45
|
Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:199-205. [PMID: 22183334 DOI: 10.1007/978-1-4614-0631-0_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autosomal dominant retinitis pigmentosa (ADRP) is frequently caused by mutations within the gene for the opsin of rod photoreceptor cells. Studies on transgenic mice, carrying mutated rhodopsin (RHO) transgene on different genetic backgrounds suggested that that an increased amount of wild-type RHO in ADRP photoreceptors attenuated the impact of the mutant transgene. Therefore, we employed a gene therapy approach with a help of Adeno-associated virus (AAV) to treat mice expressing a P23H mutant human RHO transgene. Knowing that AAV5 primarily transduces photoreceptor cells, we designed “hardened” form of the rhodopsin gene (RHO301) that expressed normal rhodopsin and was specifically resistant to degradation by the previously tested siRNA301. AAV5 RHO301 was subretinaly injected into the right eyes of P23H RHO mice at post-natal day 15. Animals were analyzed monthly by electroretinography (ERG) for 6 months. Analysis of the full field scotopic electroretinogram (ERG) demonstrated that increased expression of opsin slowed the rate of retinal degeneration in P23H mice with increased amplitudes in both a-wave and b-wave amplitudes compared to control eyes. An increase in the ERG amplitudes was correlated with improvement of retinal structure. The thickness of the outer nuclear layer in AAV-RHO301 injected eyes was increased by 80% compared to control eyes. This finding indicates that wild -type RHO could rescue the retinal degeneration in transgenic mice carrying a dominant RHO mutation and that increased production of normal rhodopsin could suppress the effect of the mutant protein. These findings suggest that wild-type RHO can used as a therapeutic agent to retard retinal degeneration in ADRP caused by different mutations of RHO via increased production of normal rhodopsin protein.
Collapse
|
46
|
|
47
|
Mitra A, Chinchore Y, Kinser R, Dolph PJ. Characterization of two dominant alleles of the major rhodopsin-encoding gene ninaE in Drosophila. Mol Vis 2011; 17:3224-33. [PMID: 22194648 PMCID: PMC3244490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 12/10/2011] [Indexed: 10/26/2022] Open
Abstract
PURPOSE In this study we investigated the biochemical and cell biologic characteristics of flies expressing two novel dominant alleles of the major rhodopsin encoding gene neither inactivation nor afterpotential E (ninaE) in a heterozygous background. METHODS Presence of the deep pseudopupil in flies was assayed 5 days post eclosion. For structural analysis, 1-μm-retinal cross sections were obtained from fixed and resin-embedded Drosophila heads. Confocal microscopy was performed on dissected retinas stained with antibodies specific for rhodopsin, NinaA, and F-actin. Rhodopsin levels were determined by western and slot blot analysis. RESULTS Dominant rhodopsin mutants showed progressive age-dependent and light-independent loss of the deep pseudopupil, without any apparent retinal degeneration at the morphological level. Expression of mutant rhodopsin caused rhodopsin to mislocalize to the cell body and the endoplasmic reticulum compartment. Mutant rhodopsin also caused loss of solubility of wild-type rhodopsin and its accumulation presumably as a high molecular mass complex in the photoreceptor cell body. CONCLUSIONS In heterozygous mutant flies, there is loss of wild-type rhodopsin immunoreactivity on a western assay but less reduction using slot blot analysis. This suggests that mutant rhodopsin is likely inducing the misfolding and insolubility of wild-type rhodopsin. Localization of rhodopsin revealed that in mutant flies, wild-type rhodopsin is mislocalized to the cell body and the endoplasmic reticulum.
Collapse
|
48
|
Farrar GJ, Millington-Ward S, Chadderton N, Humphries P, Kenna PF. Gene-based therapies for dominantly inherited retinopathies. Gene Ther 2011; 19:137-44. [DOI: 10.1038/gt.2011.172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina 2011; 31:1207-14. [PMID: 21293313 DOI: 10.1097/iae.0b013e3181f9c242] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE To evaluate the short-term (10 months) safety of a single intravitreal injection of autologous bone marrow-derived mononuclear cells in patients with retinitis pigmentosa or cone-rod dystrophy. METHODS A prospective, Phase I, nonrandomized, open-label study including 3 patients with retinitis pigmentosa and 2 patients with cone-rod dystrophy and an Early Treatment Diabetic Retinopathy Study best-corrected visual acuity of 20/200 or worse. Evaluations including best-corrected visual acuity, full-field electroretinography, kinetic visual field (Goldman), fluorescein and indocyanine green angiography, and optical coherence tomography were performed at baseline and 1, 7, 13, 18, 22, and 40 weeks after intravitreal injection of 10 × 10(6) autologous bone marrow-derived mononuclear cells (0.1 mL) into 1 study eye of each patient. RESULTS No adverse event associated with the injection was observed. A 1-line improvement in best-corrected visual acuity was measured in 4 patients 1 week after injection and was maintained throughout follow-up. Three patients showed undetectable electroretinography responses at all study visits, while 1 patient demonstrated residual responses for dark-adapted standard flash stimulus (a wave amplitude approximately 35 μV), which remained recordable throughout follow-up, and 1 patient showed a small response (a wave amplitude approximately 20 μV) recordable only at Weeks 7, 13, 22, and 40. Visual fields showed no reduction (with a Goldman Standard V5e stimulus) for any patient at any visit. No other changes were observed on optical coherence tomography or fluorescein and indocyanine green angiograms. CONCLUSION Intravitreal injection of autologous bone marrow-derived mononuclear cells in eyes with advanced retinitis pigmentosa or cone-rod dystrophy was associated with no detectable structural or functional toxicity over a period of 10 months. Further studies are required to investigate the role, if any, of autologous bone marrow-derived mononuclear cell therapy in the management of retinal dystrophies.
Collapse
|
50
|
|