1
|
Zhang K, Yue L, Cong J, Zhang J, Feng Z, Yang Q, Lu X. Increased production of pullulan in Aureobasidium pullulans YQ65 through reduction of intracellular glycogen content. Carbohydr Polym 2025; 352:123196. [PMID: 39843098 DOI: 10.1016/j.carbpol.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH. It is subsequently analyzed using the Conserved Domains and Expasy tools. It has been found that compared with its wild type, the △ApGph1 strain exhibits no significant differences in its growth pattern and morphology but a production volume of pullulan inversely proportional to its glycogen content. In addition, through fed-batch fermentation, an over-expressed ApGph1 strain can produce 42.7 g/L of pullulan within 144 h, which is related to the increased expression of key genes involved in pullulan synthesis. The results can provide a guide for the industrial production of pullulan.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Lei Yue
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jingxian Cong
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jianlong Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Zhibin Feng
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuechun Lu
- LuDong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Pianalto KM, Telzrow CL, Brown Harding H, Brooks JT, Granek JA, Gushiken-Ibañez E, LeibundGut-Landmann S, Heitman J, Ianiri G, Alspaugh JA. Malassezia responds to environmental pH signals through the conserved Rim/Pal pathway. mBio 2024; 15:e0206024. [PMID: 39189745 PMCID: PMC11481519 DOI: 10.1128/mbio.02060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
During mammalian colonization and infection, microorganisms must be able to rapidly sense and adapt to changing environmental conditions including alterations in extracellular pH. The fungus-specific Rim/Pal signaling pathway is one process that supports microbial adaptation to alkaline pH. This cascading series of interacting proteins terminates in the proteolytic activation of the highly conserved Rim101/PacC protein, a transcription factor that mediates microbial responses that favor survival in neutral/alkaline pH growth conditions, including many mammalian tissues. We identified the putative Rim pathway proteins Rim101 and Rra1 in the human skin colonizing fungus Malassezia sympodialis. Gene deletion by transconjugation and homologous recombination revealed that Rim101 and Rra1 are required for M. sympodialis growth at higher pH. In addition, comparative transcriptional analysis of the mutant strains compared to wild-type suggested mechanisms for fungal adaptation to alkaline conditions. These pH-sensing signaling proteins are required for optimal growth in a murine model of atopic dermatitis, a pathological condition associated with increased skin pH. Together, these data elucidate both conserved and phylum-specific features of microbial adaptation to extracellular stresses.IMPORTANCEThe ability to adapt to host pH has been previously associated with microbial virulence in several pathogenic fungal species. Here we demonstrate that a fungal-specific alkaline response pathway is conserved in the human skin commensal fungus Malassezia sympodialis (Ms). This pathway is characterized by the pH-dependent activation of the Rim101/PacC transcription factor that controls cell surface adaptations to changing environmental conditions. By disrupting genes encoding two predicted components of this pathway, we demonstrated that the Rim/Pal pathway is conserved in this fungal species as a facilitator of alkaline pH growth. Moreover, targeted gene mutation and comparative transcriptional analysis support the role of the Ms Rra1 protein as a cell surface pH sensor conserved within the basidiomycete fungi, a group including plant and human pathogens. Using an animal model of atopic dermatitis, we demonstrate the importance of Ms Rim/Pal signaling in this common inflammatory condition characterized by increased skin pH.
Collapse
Affiliation(s)
- Kaila M. Pianalto
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hannah Brown Harding
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jacob T. Brooks
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua A. Granek
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eduardo Gushiken-Ibañez
- Section of Immunology at Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology at Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Joseph Heitman
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Pianalto KM, Telzrow CL, Harding HB, Brooks JT, Granek JA, Gushiken-Ibañez E, LeibundGut-Landmann S, Heitman J, Ianiri G, Alspaugh JA. Malassezia responds to environmental pH signals through the conserved Rim/Pal pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603086. [PMID: 39026808 PMCID: PMC11257548 DOI: 10.1101/2024.07.11.603086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
During mammalian colonization and infection, microorganisms must be able to rapidly sense and adapt to changing environmental conditions including alterations in extracellular pH. The fungus-specific Rim/Pal signaling pathway is one process that supports microbial adaptation to alkaline pH. This cascading series of interacting proteins terminates in the proteolytic activation of the highly conserved Rim101/PacC protein, a transcription factor that mediates microbial responses that favor survival in neutral/alkaline pH growth conditions, including many mammalian tissues. We identified the putative Rim pathway proteins Rim101 and Rra1 in the human skin colonizing fungus Malassezia sympodialis. Gene deletion by transconjugation and homologous recombination revealed that Rim101 and Rra1 are required for M. sympodialis growth at higher pH. Additionally, comparative transcriptional analysis of the mutant strains compared to wild-type suggested mechanisms for fungal adaptation to alkaline conditions. These pH-sensing signaling proteins are required for optimal growth in a murine model of atopic dermatitis, a pathological condition associated with increased skin pH. Together these data elucidate both conserved and phylum-specific features of microbial adaptation to extracellular stresses.
Collapse
Affiliation(s)
- Kaila M. Pianalto
- Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Calla L. Telzrow
- Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Hannah Brown Harding
- Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacob T. Brooks
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua A. Granek
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Eduardo Gushiken-Ibañez
- Section of Immunology at Vetsuisse Faculty, University of Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology at Vetsuisse Faculty, University of Zurich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Switzerland
| | - Joseph Heitman
- Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Italy
| | - J. Andrew Alspaugh
- Departments of Medicine, Duke University School of Medicine, Durham, NC, USA
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Picazo I, Espeso EA. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in Aspergillus nidulans. Cells 2024; 13:651. [PMID: 38607089 PMCID: PMC11011638 DOI: 10.3390/cells13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.
Collapse
Affiliation(s)
| | - Eduardo A. Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (CIB) Margarita Salas, Spanish Research Council (CSIC), Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Zhuo R, Chen Y, Xing M, Zhang Z, Tian S, Li B. Ena Proteins Respond to PacC-Mediated pH Signaling Pathway and Play a Crucial Role in Patulin Biosynthesis. J Fungi (Basel) 2023; 9:806. [PMID: 37623577 PMCID: PMC10455529 DOI: 10.3390/jof9080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Penicillium expansum is a main producer of patulin that causes severe postharvest decay and food safety issues in the fruit industry. Development, pathogenicity, and patulin production of P. expansum are strongly influenced by the PacC-pH signaling pathway. Global transcription factor PacC regulates various fungal biological processes through a complicated molecular network. In the present study, three Ena family genes (PeEnas), PeEnaA, PeEnaB, and PeEnaC, as important downstream targets of PePacC, were identified in P. expansum. Deletion of PeEnaA, PeEnaB, and PeEnaC showed little effect on mycelial growth under alkaline or high salinity conditions, but double and triple deletion of these genes impaired the virulence of P. expansum on apple fruit. Notably, patulin biosynthesis of P. expansum was distinctly inhibited in the deletion mutants of PeEnas. PeEnas regulated expressions of the patulin gene cluster, AP1, CreA, Sge1, and Hog1 at the transcriptional level and played roles in maintaining membrane potential. Overexpression of PeEnaC in ΔPePacC restored the patulin production defect of ΔPePacC. Our results indicated that, as downstream targets of PePacC, the PeEna family proteins play a crucial role in patulin biosynthesis in P. expansum.
Collapse
Affiliation(s)
- Ruiling Zhuo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
6
|
Fernández-López MG, Batista-García RA, Aréchiga-Carvajal ET. Alkaliphilic/Alkali-Tolerant Fungi: Molecular, Biochemical, and Biotechnological Aspects. J Fungi (Basel) 2023; 9:652. [PMID: 37367588 DOI: 10.3390/jof9060652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Biotechnologist interest in extremophile microorganisms has increased in recent years. Alkaliphilic and alkali-tolerant fungi that resist alkaline pH are among these. Alkaline environments, both terrestrial and aquatic, can be created by nature or by human activities. Aspergillus nidulans and Saccharomyces cerevisiae are the two eukaryotic organisms whose pH-dependent gene regulation has received the most study. In both biological models, the PacC transcription factor activates the Pal/Rim pathway through two successive proteolytic mechanisms. PacC is a repressor of acid-expressed genes and an activator of alkaline-expressed genes when it is in an active state. It appears, however, that these are not the only mechanisms associated with pH adaptations in alkali-tolerant fungi. These fungi produce enzymes that are resistant to harsh conditions, i.e., alkaline pH, and can be used in technological processes, such as in the textile, paper, detergent, food, pharmaceutical, and leather tanning industries, as well as in bioremediation of pollutants. Consequently, it is essential to understand how these fungi maintain intracellular homeostasis and the signaling pathways that activate the physiological mechanisms of alkali resistance in fungi.
Collapse
Affiliation(s)
- Maikel Gilberto Fernández-López
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Mexico
| |
Collapse
|
7
|
Dey S, Chakraborty R, Taneja B. Biophysical Characterization of the C-Terminal Tail of T. rubrum PacC Reveals an Inherent Intrinsically Disordered Structure with pH-Induced Structural Plasticity. ACS OMEGA 2023; 8:357-364. [PMID: 36643486 PMCID: PMC9835192 DOI: 10.1021/acsomega.2c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
PacC is a key transcriptional regulator of human pathogenic fungus Trichophyton rubrum with pivotal roles in pH homeostasis and virulence. We report the first biophysical characterization of the C-terminal inhibitory tail of PacC, pertinent to its physiological role in maintaining the inactive state of PacC at acidic pH which undergoes conformational changes for its proteolytic removal and activation, at alkaline pH. To gain insights into the structural features of PacC that enable the required conformational flexibility, we performed gel filtration chromatography, dynamic light scattering, circular dichroism, and 1-anilino-8-naphthalenesulfonate binding and showed that the tail exhibits properties similar to intrinsically disordered proteins, as also predicted by bioinformatics tools. We demonstrate that the C-terminal tail is conformationally flexible and attains a molten globule-like state at extremely acidic pH and undergoes biphasic GdmCl-induced unfolding in a noncooperative manner with an intermediate X state. We hypothesize that the conformational plasticity of the C-terminal tail of PacC may play a significant role in modulating its pH-dependent transcriptional activation.
Collapse
Affiliation(s)
- Sanchita
Sanchaya Dey
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Rahul Chakraborty
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Taneja
- CSIR-Institute
of Genomics and Integrative Biology (CSIR-IGIB), New Delhi110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Mahata PK, Dass RS, Gunti L, Thorat PA. First report on the metabolic characterization of Sterigmatocystin production by select Aspergillus species from the Nidulantes section in Foeniculum vulgare. Front Microbiol 2022; 13:958424. [PMID: 36090109 PMCID: PMC9459157 DOI: 10.3389/fmicb.2022.958424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
Spices are typically grown in climates that support the growth of toxigenic fungi and the production of mycotoxins. The Aspergilli described in this study, as well as the sterigmatocystin (STC) detected, are causes for concern due to their potential to induce food poisoning. One of the most well-known producers of the carcinogenic STC is Aspergillus nidulans. This research explores the occurrence of STC-producing fungi in Foeniculum vulgare, a spice that is marketed in India and other parts of the world. This innovative study details the mycotoxigenic potential of five Aspergilli belonging to Section Nidulantes, namely Aspergillus latus (02 isolates), Emericella quadrilineata (02 isolates), and Aspergillus nidulans (01 isolate), with respect to STC contamination. These five isolates of Aspergilli were screened to produce STC on yeast extract sucrose (YES) medium in a controlled environment with regard to light, temperature, pH, and humidity, among other variables. The expression patterns of regulatory genes, namely, aflR, laeA, pacC, fluG, flbA, pksA, and mtfA were studied on the Czapek–Dox agar (CDA) medium. STC biosynthesis by the test isolates was done in potato dextrose broth (PDB) under optimum conditions, followed by the extraction and purification of the broth using ethyl acetate. High-performance liquid chromatography (HPLC) with an ultraviolet (UV) detector was utilized to detect compounds in eluted samples. F. vulgare contains Aspergilli that have been shown to have mycotoxigenic potential, which can accumulate in the spice during its active growth and thereby cause the elaboration of mycotoxins.
Collapse
|
9
|
Improvement of laccase activity by silencing PacC in Ganoderma lucidum. World J Microbiol Biotechnol 2022; 38:32. [PMID: 34989903 DOI: 10.1007/s11274-021-03216-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
Ganoderma lucidum is a representative white-rot fungus that has great potential to degrade lignocellulose biomass. Laccase is recognized as a class of the most important lignin-degrading enzymes in G. lucidum. However, the comprehensive regulatory mechanisms of laccase are still lacking. Based on the genome sequence of G. lucidum, 15 laccase genes were identified and their encoding proteins were analyzed in this study. All of the laccase proteins are predicted to be multicopper oxidases with conserved copper-binding domains. Most laccase proteins were secreted enzymes in addition to Lac14 in which the signal peptide could not be predicted. The activity of all laccases showed the highest level at pH 3.0 or pH 7.0, with total laccase activity of approximately 200 U/mg protein. Silencing PacC resulted in a 5.2 fold increase in laccase activity compared with WT. Five laccase genes (lac1, lac6, lac9, lac10 and lac14) showed an increased transcription levels (approximately 1.5-5.6 fold) in the PacC-silenced strains versus that in WT, while other laccase genes were downregulated or unchanged. The extracellular pH value was about 3.1, which was more acidic in the PacC-silenced strains than in the WT (pH 3.5). Moreover, maintaining the fermentation pH resulted in a downregulation of laccase activity which is induced by silencing PacC. Our findings indicate that in addition to its function in acidification of environmental pH, PacC plays an important role in regulating laccase activity in fungi.
Collapse
|
10
|
State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J Fungi (Basel) 2021; 7:jof7080629. [PMID: 34436168 PMCID: PMC8401872 DOI: 10.3390/jof7080629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
The burden of fungal infections is not widely appreciated. Although these infections are responsible for over one million deaths annually, it is estimated that one billion people are affected by severe fungal diseases. Mycoses of nails and skin, primarily caused by fungi known as dermatophytes, are the most common fungal infections. Trichophyton rubrum appears to be the most common causative agent of dermatophytosis, followed by Trichophyton interdigitale. An estimated 25% of the world’s population suffers from dermatomycosis. Although these infections are not lethal, they compromise the quality of life of infected patients. The outcome of antidermatophytic treatments is impaired by various conditions, such as resistance and tolerance of certain dermatophyte strains. The adage “know your enemy” must be the focus of fungal research. There is an urgent need to increase awareness about the significance of these infections with precise epidemiological data and to improve knowledge regarding fungal biology and pathogenesis, with an emphasis on adaptive mechanisms to tackle adverse conditions from host counteractions. This review outlines the current knowledge about dermatophyte infections, with a focus on signaling pathways required for fungal infection establishment and a broad perspective on cellular and molecular factors involved in antifungal resistance and tolerance.
Collapse
|
11
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
12
|
Role of RIM101 for Sporulation at Alkaline pH in Ashbya gossypii. J Fungi (Basel) 2021; 7:jof7070527. [PMID: 34209071 PMCID: PMC8304098 DOI: 10.3390/jof7070527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Microorganisms need to sense and adapt to fluctuations in the environmental pH. In fungal species, this response is mediated by the conserved pacC/RIM101 pathway. In Aspergillus nidulans, PacC activates alkaline-expressed genes and represses acid-controlled genes in response to alkaline pH and has important functions in regulating growth and conidia formation. In Saccharomyces cerevisiae, the PacC homolog Rim101 is required for adaptation to extracellular pH and to regulate transcription of IME1, the Initiator of MEiosis. S. cerevisiae rim101 mutants are defective in sporulation. In Ashbya gossypii, a filamentous fungus belonging to the family of Saccharomycetaceae, little is known about the role of pH in regulating growth and sporulation. Here, we deleted the AgRIM101 homolog (AFR190C). Our analyses show that Rim101 is important for growth and essential for sporulation at alkaline pH in A. gossypii. Acidic liquid sporulation media were alkalinized by sporulating strains, while the high pH of alkaline media (starting pH = 8.6) was reduced to a pH ~ 7.5 by these strains. However, Agrim101 mutants were unable to sporulate in alkaline media and failed to reduce the initial high pH, while they were capable of sporulation in acidic liquid media in which they increased the pH like the wild type.
Collapse
|
13
|
Toledo H, Sánchez CI, Marín L, Amich J, Calera JA. Regulation of zinc homeostatic genes by environmental pH in the filamentous fungus Aspergillus fumigatus. Environ Microbiol 2021; 24:643-666. [PMID: 33687784 DOI: 10.1111/1462-2920.15452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Aspergillus fumigatus can grow over a broad range of pH values even though zinc availability is greatly conditioned by ambient pH. It has been previously shown that regulation of zinc homeostatic genes in this fungus relies on the transcription factor ZafA. In addition, their expression is further modulated by the transcription factor PacC depending on ambient pH, which allows this fungus to grow in diverse types of niches, including soils and the lungs of immunosuppressed hosts. In this work the regulation by PacC of genes zrfB and zrfC that are expressed, respectively, under acidic and alkaline zinc-limiting conditions have been analysed in detail. Thus, data that extend the current model for PacC function, including the role of the full-length PacC72 protein and the PacC processed forms (PacC53 and PacC27 ) on gene expression has been provided, and a new mechanism for the repression of acid-expressed genes in alkaline media based on interference with the start of transcription has been described. Moreover, it was proposed that the transcription of both acid-expressed and alkaline-expressed genes under zinc-limiting conditions might also rely on a third factor (putatively Pontin/Reptin), which may be required to integrate the action of PacC and ZafA into gene specific transcriptional responses.
Collapse
Affiliation(s)
- Héctor Toledo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Servicio de Microbiología Clínica y Parasitología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Clara Inés Sánchez
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Laura Marín
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Jorge Amich
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Li B, Chen Y, Tian S. Function of pH-dependent transcription factor PacC in regulating development, pathogenicity, and mycotoxin biosynthesis of phytopathogenic fungi. FEBS J 2021; 289:1723-1730. [PMID: 33751796 DOI: 10.1111/febs.15808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
pH, as one of the most important environmental factors, affects various biological processes in pathogenic fungi. Sensing and responding to fluctuations in ambient pH are essential for these fungi to complete their life cycle. Fungi have evolved a complicated and conserved system, the so-called Pal-pH pathway, to regulate genes and adapt to alterations in ambient pH. PacC is the dominant transcription factor in the Pal-pH pathway and regulates various biological processes. The regulatory mode of PacC has been extensively studied in Aspergillus nidulans and is generally conserved in other fungal species, including numerous phytopathogenic fungi. However, species-specific alterations have been reported. This review summarizes recent advances in the regulatory mechanisms of PacC and its role in controlling development, pathogenicity, and mycotoxin biosynthesis in phytopathogenic fungi. Potential applications of these findings and some unresolved questions are also discussed.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins. Sci Rep 2020; 10:14325. [PMID: 32868868 PMCID: PMC7459330 DOI: 10.1038/s41598-020-71297-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
Tolerance of microorganisms to abiotic stress is enabled by regulatory mechanisms that coordinate the expression and activity of resistance genes. Alkalinity and high salt concentrations are major environmental physicochemical stresses. Here, we analyzed the roles of sodium-extrusion family (ENA) transporters EnaA, EnaB and EnaC in the response to these stress conditions in the filamentous fungus Aspergillus nidulans. While EnaC has a minor role, EnaB is a key element for tolerance to Na+ and Li+ toxicity. Adaptation to alkaline pH requires the concerted action of EnaB with EnaA. Accordingly, expression of enaA and enaB was induced by Na+, Li+ and pH 8. These expression patterns are altered in a sltAΔ background and completely inhibited in a mutant expressing non-functional PacC protein (palH72). However, a constitutively active PacC form was not sufficient to restore maximum enaA expression. In agreement with their predicted role as membrane ATPases, EnaA localized to the plasma membrane while EnaB accumulated at structures resembling the endoplasmic reticulum. Overall, results suggest different PacC- and SltA-dependent roles for EnaB in pH and salt homeostasis, acting in coordination with EnaA at pH 8 but independently under salt stress.
Collapse
|
16
|
Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom 2020; 6:mgen000415. [PMID: 32735212 PMCID: PMC7641419 DOI: 10.1099/mgen.0.000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.
Collapse
Affiliation(s)
- Irene Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Elena Requena
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Present address: Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña Km 7, 28040 Madrid, Spain
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, USA
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
17
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
18
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
19
|
Zhu J, Wu F, Yue S, Chen C, Song S, Wang H, Zhao M. Functions of reactive oxygen species in apoptosis and ganoderic acid biosynthesis in Ganoderma lucidum. FEMS Microbiol Lett 2019; 366:5714084. [PMID: 31967638 DOI: 10.1093/femsle/fnaa015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Ganoderma lucidum is a medicinal fungus that is widely used in traditional medicine. Fungal PacC is recognized as an important transcription factor that functions during adaptation to environmental pH, fungal development and secondary metabolism. Previous studies have revealed that GlPacC plays important roles in mycelial growth, fruiting body development and ganoderic acid (GA) biosynthesis. In this study, using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we found that the apoptosis level was increased when PacC was silenced. The transcript and activity levels of caspase-like proteins were significantly increased in the PacC-silenced (PacCi) strains compared with the control strains. Silencing PacC also resulted in an increased reactive oxygen species (ROS) levels (∼2-fold) and decreased activity levels of enzymes involved in the antioxidant system. Further, we found that the intracellular ROS levels contributed to apoptosis and GA biosynthesis. Adding N-acetyl-cysteine and vitamin C decreased intracellular ROS and resulted in the inhibition of apoptosis in the PacCi strains. Additionally, the GA biosynthesis was different between the control strains and the PacCi strains after intracellular ROS was eliminated. Taken together, the findings showed that silencing PacC can result in an intracellular ROS burst, which increases cell apoptosis and GA biosynthesis levels. Our study provides novel insight into the functions of PacC in filamentous fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Fengli Wu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Sining Yue
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Chen Chen
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Shuqi Song
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hui Wang
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
20
|
Menon RR, Luo J, Chen X, Zhou H, Liu Z, Zhou G, Zhang N, Jin C. Screening of Fungi for Potential Application of Self-Healing Concrete. Sci Rep 2019; 9:2075. [PMID: 30765831 PMCID: PMC6375922 DOI: 10.1038/s41598-019-39156-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2019] [Indexed: 02/03/2023] Open
Abstract
Concrete is susceptible to cracking owing to drying shrinkage, freeze-thaw cycles, delayed ettringite formation, reinforcement corrosion, creep and fatigue, etc. Continuous inspection and maintenance of concrete infrastructure require onerous labor and high costs. If the damaging cracks can heal by themselves without any human interference or intervention, that could be of great attraction. In this study, a novel self-healing approach is investigated, in which fungi are applied to heal cracks in concrete by promoting calcium carbonate precipitation. The goal of this investigation is to discover the most appropriate species of fungi for the application of biogenic crack repair. Our results showed that, despite the significant pH increase owing to the leaching of calcium hydroxide from concrete, Aspergillus nidulans (MAD1445), a pH regulatory mutant, could grow on concrete plates and promote calcium carbonate precipitation.
Collapse
Affiliation(s)
- Rakenth R Menon
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Jing Luo
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Xiaobo Chen
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Hui Zhou
- Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Guangwen Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Congrui Jin
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA. .,Materials Science and Engineering Program, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
21
|
Sánchez-Rangel D, Hernández-Domínguez EE, Pérez-Torres CA, Ortiz-Castro R, Villafán E, Rodríguez-Haas B, Alonso-Sánchez A, López-Buenfil A, Carrillo-Ortiz N, Hernández-Ramos L, Ibarra-Laclette E. Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018; 19:721. [PMID: 30285612 PMCID: PMC6167834 DOI: 10.1186/s12864-018-5083-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.
Collapse
Affiliation(s)
- Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Eric-Edmundo Hernández-Domínguez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
- Cátedra CONACYT en el Instituto de Ecología A.C, Xalapa, Veracruz Mexico
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| | | | - Abel López-Buenfil
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Nayeli Carrillo-Ortiz
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Lervin Hernández-Ramos
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Unidad Integral de Diagnóstico, Servicios y Constatación, 55740 Tecámac, Estado de México Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, 91070 Xalapa, Veracruz Mexico
| |
Collapse
|
22
|
Wu Y, Yin Z, Xu L, Feng H, Huang L. VmPacC Is Required for Acidification and Virulence in Valsa mali. Front Microbiol 2018; 9:1981. [PMID: 30190714 PMCID: PMC6115506 DOI: 10.3389/fmicb.2018.01981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPacC was up-regulated in neutral and alkaline pH and during infection. At pH 6–10, the radial growth of a VmPacC deletion mutant decreased compared to wild-type. In addition, the sensitivity to oxidative stress of the VmPacC deletion mutant was impaired, as its growth was more severely inhibited by H2O2 than that of the wild-type. The lesion size caused by the VmPacC deletion mutant was smaller than that of the wild-type on apple leaves and twigs. Interestingly, expression of pectinase genes increased in deletion mutant during infection. To further confirm the negative regulation, we generated dominant activated C-27 allele mutants that constitutively express VmPacC. The pectinase activity of activated mutants was reduced at pH 4. We further observed that V. mali can acidify the pH during infection, and that the capacity for acidification was impaired after VmPacC deletion. Furthermore, VmPacC is involved in the generation of citric acid, which affects virulence. These results indicate that VmPacC is part of the fungal responses to neutral and alkaline pH and oxidative stress. More importantly, VmPacC is required for acidification of its environment and for full virulence in V. mali.
Collapse
Affiliation(s)
- Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Wang Y, Liu F, Wang L, Wang Q, Selvaraj JN, Zhao Y, Wang Y, Xing F, Liu Y. pH-Signaling Transcription Factor AopacC Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4394-4401. [PMID: 29651846 DOI: 10.1021/acs.jafc.8b00790] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In Aspergillus and Penicillium species, an essential pH-response transcription factor pacC is involved in growth, pathogenicity, and toxigenicity. To investigate the connection between ochratoxin A (OTA) biosynthesis and ambient pH, the AopacC in Aspergillus ochraceus was functionally characterized using a loss-of-function mutant. The mycelium growth was inhibited under pH 4.5 and 10.0, while the sporulation increased under alkaline condition. A reduction of mycelium growth and an elevation of sporulation was observed in Δ AopacC mutant. Compared to neutral condition, OTA contents were respectively reduced by 71.6 and 79.8% under acidic and alkaline conditions. The expression of AopacC increased with the elevated pH, and deleting AopacC dramatically decreased OTA production and biosynthetic genes Aopks expression. Additionally, the Δ AopacC mutant exhibited attenuated infection ability toward pear fruits. These results suggest that AopacC is an alkaline-induced regulator responsible for growth and OTA biosynthesis in A. ochraceus and this regulatory mechanism might be pH-dependent.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Fei Liu
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Liuqing Wang
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Qi Wang
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Jonathan Nimal Selvaraj
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Yueju Zhao
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Yun Wang
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Fuguo Xing
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| | - Yang Liu
- Institute of Food Science and Technology , Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , PR China
| |
Collapse
|
25
|
Sherrington SL, Kumwenda P, Kousser C, Hall RA. Host Sensing by Pathogenic Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:159-221. [PMID: 29680125 DOI: 10.1016/bs.aambs.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to cause disease extends from the ability to grow within the host environment. The human host provides a dynamic environment to which fungal pathogens must adapt to in order to survive. The ability to grow under a particular condition (i.e., the ability to grow at mammalian body temperature) is considered a fitness attribute and is essential for growth within the human host. On the other hand, some environmental conditions activate signaling mechanisms resulting in the expression of virulence factors, which aid pathogenicity. Therefore, pathogenic fungi have evolved fitness and virulence attributes to enable them to colonize and infect humans. This review highlights how some of the major pathogenic fungi respond and adapt to key environmental signals within the human host.
Collapse
Affiliation(s)
- Sarah L Sherrington
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Pizga Kumwenda
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Courtney Kousser
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A Hall
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
26
|
Virgilio S, Bertolini MC. Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 2017; 64:529-534. [DOI: 10.1007/s00294-017-0772-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
27
|
Virgilio S, Cupertino FB, Bernardes NE, Freitas FZ, Takeda AAS, Fontes MRDM, Bertolini MC. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor. PLoS One 2016; 11:e0161659. [PMID: 27557053 PMCID: PMC4996508 DOI: 10.1371/journal.pone.0161659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.
Collapse
Affiliation(s)
- Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Natália Elisa Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
| | - Agnes Alessandra Sekijima Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Marcos Roberto de Mattos Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, 18.618-970, Botucatu, São Paulo, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14.800-060, Araraquara, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Lucena-Agell D, Hervás-Aguilar A, Múnera-Huertas T, Pougovkina O, Rudnicka J, Galindo A, Tilburn J, Arst HN, Peñalva MA. Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds. Mol Microbiol 2016; 101:982-1002. [PMID: 27279148 PMCID: PMC5026065 DOI: 10.1111/mmi.13438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7‐TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient‐exposed region comprising the extracellular loop connecting TM4‐TM5 and ambient‐proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak ‘constitutive’ activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316‐dependent transition between inactive and active PalH conformations, governed by an ambient‐exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.
Collapse
Affiliation(s)
- Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - América Hervás-Aguilar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Olga Pougovkina
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Antonio Galindo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.,Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
29
|
Mellado L, Arst HN, Espeso EA. Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans. Mol Biol Cell 2016; 27:2598-612. [PMID: 27307585 PMCID: PMC4985261 DOI: 10.1091/mbc.e16-01-0049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway.
Collapse
Affiliation(s)
- Laura Mellado
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain Section of Microbiology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
30
|
Barad S, Espeso EA, Sherman A, Prusky D. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2016; 17:727-40. [PMID: 26420024 PMCID: PMC6638319 DOI: 10.1111/mpp.12327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, Spain
| | - Amir Sherman
- Genomics Unit, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
31
|
Zhu J, Ying SH, Feng MG. The Pal pathway required for ambient pH adaptation regulates growth, conidiation, and osmotolerance of Beauveria bassiana in a pH-dependent manner. Appl Microbiol Biotechnol 2016; 100:4423-33. [DOI: 10.1007/s00253-016-7282-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 12/23/2022]
|
32
|
Prusky DB, Bi F, Moral J, Barad S. How Does Host Carbon Concentration Modulate the Lifestyle of Postharvest Pathogens during Colonization? FRONTIERS IN PLANT SCIENCE 2016; 7:1306. [PMID: 27635125 PMCID: PMC5007722 DOI: 10.3389/fpls.2016.01306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/15/2016] [Indexed: 05/10/2023]
Abstract
Postharvest pathogens can penetrate fruit by breaching the cuticle or directly through wounds, and they show disease symptoms only long after infection. During ripening and senescence, the fruit undergo physiological processes accompanied by a decline in antifungal compounds, which allows the pathogen to activate a mechanism of secretion of small effector molecules that modulate host environmental pH. These result in the activation of genes under their optimal pH conditions, enabling the fungus to use a specific group of pathogenicity factors at each particular pH. New research suggests that carbon availability in the environment is a key factor triggering the production and secretion of small pH-modulating molecules: ammonia and organic acids. Ammonia is secreted under limited carbon and gluconic acid under excess carbon. This mini review describes our most recent knowledge of the mechanism of activation of pH-secreted molecules and their contribution to colonization by postharvest pathogens to facilitate the transition from quiescence to necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov B Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center Beit Dagan, Israel
| | - Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture Guangzhou, China
| | - Juan Moral
- Departamento de Agronomía, Universidad de Córdoba Córdoba, Spain
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center Beit Dagan, Israel
| |
Collapse
|
33
|
Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae. Fungal Genet Biol 2015; 85:25-37. [DOI: 10.1016/j.fgb.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022]
|
34
|
Lou Y, Han Y, Yang L, Wu M, Zhang J, Cheng J, Wang M, Jiang D, Chen W, Li G. CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans. Environ Microbiol 2015; 17:4711-29. [PMID: 26278965 DOI: 10.1111/1462-2920.13018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 11/30/2022]
Abstract
The PacC/Rim101 pH-responsive transcription factor is an important pathogenicity element for many plant-pathogenic fungi. In this study, we investigated the roles of a PacC homologue, CmpacC, in the mycoparasitic fungus Coniothyrium minitans. CmpacC was confirmed to have the transcriptional activation activity by the transcriptional activation test in Saccharomyces cerevisiae. Disruption of CmpacC resulted in impaired fungal responses to ambient pH. Compared to the wild-type, the CmpacC-disruption mutant ΔCmpacC-29 was significantly suppressed for activities of chitinase and β-1,3-glucanase at pH 5 and 7, consistent with reduced expression levels of Cmch1 and Cmg1 coding for the two enzymes respectively. However, the mutant displayed acidity-mimicking phenotypes such as improved oxalate degradation and increased antifungal activity at pH 6 or higher. Improved efficacy in oxalate degradation by ΔCmpacC-29 was consistent with the enhanced expression level of Cmoxdc1 coding for oxalate decarboxylase. CmpacC transcriptional activation of Cmch1 and Cmg1 and repression of Cmoxdc1 were verified by the presence of the PacC/Rim101 consensus binding-motifs in gene promoter regions and by the promoter DNA-binding assays. This study suggests that CmpacC plays an activator role in regulation of C. minitans mycoparasitism, whereas plays a repressor role in regulation of oxalate degradation and possibly antifungal activity of C. minitans.
Collapse
Affiliation(s)
- Yi Lou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Han
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,The Institute of Industrial Crops of Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Moying Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA, USA
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
35
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
36
|
Peñalva MA, Lucena-Agell D, Arst HN. Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 2015; 22:49-59. [PMID: 25460796 DOI: 10.1016/j.mib.2014.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 12/21/2022]
Abstract
The alkaline pH-responsive Pal/Rim signal transduction pathway mediating regulation of gene expression by ambient pH has been extensively studied in Aspergillus nidulans and Saccharomyces cerevisiae. In A. nidulans, PalH, PalI, PalF, PalC, PalA and PalB are required for the proteolytic activation of the executing transcription factor PacC. Although necessary, Pal proteins are insufficient to transmit the signal, which additionally requires ESCRT-I, II and Vps20 with Snf7 in ESCRT-III. Although this initially suggested cooperation between a plasma membrane sensor and an ESCRT-containing Pal complex on endosomes, recent evidence convincingly indicates that pH signaling actually takes place in plasma membrane-associated foci in which Pal proteins and an ESCRT-III polymer scaffold cooperate for pH signaling purposes, representing another non-endosomal role of ESCRT components.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | | | |
Collapse
|
37
|
Mellado L, Calcagno-Pizarelli AM, Lockington RA, Cortese MS, Kelly JM, Arst HN, Espeso EA. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans. Fungal Genet Biol 2015; 82:116-28. [PMID: 26119498 PMCID: PMC4557415 DOI: 10.1016/j.fgb.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/07/2015] [Accepted: 06/13/2015] [Indexed: 11/30/2022]
Abstract
SltB is a novel component of the cation stress responsive pathway. Loss of SltB function results in sensitivity to elevated extracellular concentrations of cations and to alkalinity. SltB is involved in signaling to transcription factor SltA. SltA regulates expression of sltB. The Slt pathway is unique to fungi from the pezizomycotina subphylum.
The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to the pezizomycotina subphylum. The relevance of the Slt regulatory pathway to cell structure, intracellular trafficking and cation homeostasis and its restricted phylogenetic distribution makes this pathway of general interest for future investigation and as a source of targets for antifungal drugs.
Collapse
Affiliation(s)
- Laura Mellado
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | | | - Robin A Lockington
- Department of Genetics and Evolution, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marc S Cortese
- Dept. of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Joan M Kelly
- Department of Genetics and Evolution, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Herbert N Arst
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain; Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, UK
| | - Eduardo A Espeso
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Häkkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact 2015; 14:63. [PMID: 25925231 PMCID: PMC4446002 DOI: 10.1186/s12934-015-0247-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Extracellular pH is one of the several environmental factors affecting protein production by filamentous fungi. Regulatory mechanisms ensure that extracellular enzymes are produced under pH-conditions in which the enzymes are active. In filamentous fungi, the transcriptional regulation in different ambient pH has been studied especially in Aspergilli, whereas the effects of pH in the industrial producer of hydrolytic enzymes, Trichoderma reesei, have mainly been studied at the protein level. In this study, the pH-dependent expression of T. reesei genes was investigated by genome-wide transcriptional profiling and by analysing the effects of deletion of the gene encoding the transcriptional regulator pac1, the orthologue of Aspergillus nidulans pacC gene. Results Transcriptional analysis revealed the pH-responsive genes of T. reesei, and functional classification of the genes identified the activities most affected by changing pH. A large number of genes encoding especially transporters, signalling-related proteins, extracellular enzymes and proteins involved in different metabolism-related functions were found to be pH-responsive. Several cellulase- and hemicellulase-encoding genes were found among the pH-responsive genes. Especially, genes encoding hemicellulases with the similar type of activity were shown to include both genes up-regulated at low pH and genes up-regulated at high pH. However, relatively few of the cellulase- and hemicellulase-encoding genes showed direct PACI-mediated regulation, indicating the importance of other regulatory mechanisms affecting expression in different pH conditions. New information was gained on the effects of pH on the genes involved in ambient pH-signalling and on the known and candidate regulatory genes involved in regulation of cellulase and hemicellulase encoding genes. In addition, co-regulated genomic clusters responding to change of ambient pH were identified. Conclusions Ambient pH was shown to be an important determinant of T. reesei gene expression. The pH-responsive genes, including those affected by the regulator of ambient pH sensing, were identified, and novel information on the activity of genes encoding carbohydrate active enzymes at different pH was gained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Dhinakaran Sivasiddarthan
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Nina Aro
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, P.O. Box 1000, (Tietotie 2, Espoo), FI-02044 VTT, Finland.
| |
Collapse
|
39
|
Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet 2015; 11:e1005159. [PMID: 25859664 PMCID: PMC4393102 DOI: 10.1371/journal.pgen.1005159] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/19/2015] [Indexed: 12/28/2022] Open
Abstract
The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.
Collapse
Affiliation(s)
- Kyla S. Ost
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Teresa R. O’Meara
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Naureen Huda
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Shannon K. Esher
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Departments of Medicine/ Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis. EUKARYOTIC CELL 2015; 14:545-53. [PMID: 25841020 DOI: 10.1128/ec.00031-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 01/10/2023]
Abstract
Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis.
Collapse
|
41
|
Ment D, Alkan N, Luria N, Bi FC, Reuveni E, Fluhr R, Prusky D. A Role of AREB in the Regulation of PACC-Dependent Acid-Expressed-Genes and Pathogenicity of Colletotrichum gloeosporioides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:154-66. [PMID: 25317668 DOI: 10.1094/mpmi-09-14-0252-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gene expression regulation by pH in filamentous fungi and yeasts is controlled by the PACC/RIM101 transcription factor. In Colletotrichum gloeosporioides, PACC is known to act as positive regulator of alkaline-expressed genes, and this regulation was shown to contribute to fungal pathogenicity. PACC is also a negative regulator of acid-expressed genes, however; the mechanism of downregulation of acid-expressed genes by PACC and their contribution to C. gloeosporioides pathogenicity is not well understood. RNA sequencing data analysis was employed to demonstrate that PACC transcription factor binding sites (TFBS) are significantly overrepresented in the promoter of PACC-upregulated, alkaline-expressed genes. In contrast, they are not overrepresented in the PACC-downregulated, acid-expressed genes. Instead, acid-expressed genes showed overrepresentation of AREB GATA TFBS in C. gloeosporioides and in homologs of five other ascomycetes genomes. The areB promoter contains PACC TFBS; its transcript was upregulated at pH 7 and repressed in ΔpacC. Furthermore, acid-expressed genes were found to be constitutively upregulated in ΔareB during alkalizing conditions. The areB mutants showed significantly reduced ammonia secretion and pathogenicity on tomato fruit. Present results indicate that PACC activates areB expression, thereby conditionally repressing acid-expressed genes and contributing critically to C. gloeosporioides pathogenicity.
Collapse
|
42
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zeng LM, Zhang J, Han YC, Yang L, Wu MD, Jiang DH, Chen W, Li GQ. Degradation of oxalic acid by the mycoparasiteConiothyrium minitansplays an important role in interacting withSclerotinia sclerotiorum. Environ Microbiol 2014; 16:2591-610. [DOI: 10.1111/1462-2920.12409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Li-Mei Zeng
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Yong-Chao Han
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Ming-de Wu
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Dao-Hong Jiang
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| | - Weidong Chen
- United States Department of Agriculture; Agricultural Research Service; Washington State University; Pullman WA USA
| | - Guo-Qing Li
- State Key Laboratory of Agricultural Microbiology; Key Laboratory of Plant Pathology of Hubei Province; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
44
|
Zhou YH, Hou L, Zhang YJ, Fan YH, Luo ZB, Jin D, Zhou QS, Li YJ, Wang Y, Pei Y. Expression and promoter characterization of BbPacC, a pH response transcription factor gene of the entomopathogenic fungus Beauveria bassiana. Microbiology (Reading) 2014; 160:353-361. [DOI: 10.1099/mic.0.071159-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To survive, the entomopathogenic fungus Beauveria bassiana, which shows promise as a biocontrol agent for a variety of pests, including agricultural and forestry pests and vectors of human pathogens, must tailor gene expression to the particular pH of its environment. The pH response transcription factor gene BbPacC and its flanking sequence were cloned from this fungus. Quantitative reverse transcription (RT)-PCR revealed that it is highly induced by alkaline pH and salt stress, and the expression level achieved twice that of the housekeeping gene γ-actin. A microfluorometric assay indicated that the 1479 bp promoter region could activate the expression of enhanced green fluorescent protein (EGFP) under the same conditions. Truncation analysis showed that the 1479, 1274, 1040, 888 and 742 bp promoters have similar efficiencies in activating expression of β-glucuronidase (GUS). The GUS activities of corresponding transformants reached approximately 50 % that of those containing the strong constitutive promoter PtrpC. A truncation upstream at the –572 bp position (referenced to the translation start codon ATG), however, resulted in a significant loss of GUS activity. Both the upstream absences of the −502 and −387 bp positions caused almost complete loss of GUS activity. These results suggest that PPacC is an efficient, alkaline, and salt-inducible promoter, the core cis-elements are mainly located within the –742 to –502 bp region, and promoters equal to or longer than 742 bp may be feasible for regulating gene expression in response to an ambient pH or salt stress.
Collapse
Affiliation(s)
- Yong-Hong Zhou
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Lei Hou
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Yong-Jun Zhang
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Yan-Hua Fan
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Zhi-Bing Luo
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Qiao-Sheng Zhou
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Yu-Jie Li
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - You Wang
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, 215 Tiansheng Road, Beibei 400716, Chongqing, PR China
| |
Collapse
|
45
|
pH signaling in human fungal pathogens: a new target for antifungal strategies. EUKARYOTIC CELL 2014; 13:342-52. [PMID: 24442891 DOI: 10.1128/ec.00313-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.
Collapse
|
46
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
47
|
The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl Microbiol Biotechnol 2013; 97:9087-98. [PMID: 23917633 DOI: 10.1007/s00253-013-5129-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 01/27/2023]
Abstract
Penicillium digitatum is the most important postharvest pathogen of citrus fruits. Along disease progression, the infected citrus peel tissue is acidified due to the accumulation of organic acids. So far, relatively little is known about the environmental factors that regulate pathogenicity in this fungus. In this study, the role of the pH signaling transcription factor PacC in the pathogenesis of P. digitatum was investigated. We identified the pacC ortholog (PdpacC) in P. digitatum and found that its transcript levels were elevated under alkaline conditions (pH ≥ 7) in vitro, as well as during the infection of citrus fruits in spite of the low pH (about 3.0 to 3.5) of the macerated tissue. Na(+) and pectin also induced the expression of PdpacC. Disruption of PdpacC resulted in impaired mycelial growth under neutral or alkaline pH conditions and on synthetic medium supplemented with pectin as the sole carbon source, and attenuated virulence towards citrus fruits. Introducing the full length of PdpacC into the ΔPdpacC mutant restored all these phenotypes. The expression of the polygalacturonase gene Pdpg2 and pectin lyase gene Pdpnl1 in P. digitatum was upregulated in the wild type strain but not or weakly upregulated in the ΔPdpacC mutant during infection. Disruption of Pdpg2 also resulted in attenuated virulence of P. digitatum towards citrus fruits. Collectively, we conclude that PdPacC plays an important role in pathogenesis of P. digitatum via regulation of the expression of cell wall degradation enzyme genes, such as Pdpg2 and Pdpnl1.
Collapse
|
48
|
Ke R, Haynes K, Stark J. Modelling the activation of alkaline pH response transcription factor PacC in Aspergillus nidulans: involvement of a negative feedback loop. J Theor Biol 2013; 326:11-20. [PMID: 23458440 DOI: 10.1016/j.jtbi.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/12/2013] [Accepted: 02/14/2013] [Indexed: 01/21/2023]
Abstract
Alkaline pH adaptation represents an important environmental stress response in Aspergillus nidulans. It is mediated by the pal signalling pathway and the PacC transcription factor. Although studied extensively experimentally, the activation mechanism of PacC has not been quantified, and it is not clear how this activation is regulated. Here, by constructing mathematical models, we first show that the pattern of PacC activation observed in previously published experiments cannot be explained based on existing knowledge about PacC activation. Extending the model with a negative feedback loop is necessary to produce simulation results that are consistent with the data, suggesting the existence of a negative feedback loop in the PacC activation process. This extended model is then validated against published measurements for cells with drug treatment and mutant cells. Furthermore, we investigate the role of an intermediate form of PacC in the PacC activation process, and propose experiments that can be used to test our predictions. Our work illustrates how mathematical models can be used to uncover regulatory mechanisms in the transcription regulation, and generate hypotheses that guide further laboratory investigations.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, Imperial College London, United Kingdom.
| | | | | |
Collapse
|
49
|
PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013; 14:138. [PMID: 23445374 PMCID: PMC3618310 DOI: 10.1186/1471-2164-14-138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/23/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
Collapse
|
50
|
Grice CM, Bertuzzi M, Bignell EM. Receptor-mediated signaling in Aspergillus fumigatus. Front Microbiol 2013; 4:26. [PMID: 23430083 PMCID: PMC3576715 DOI: 10.3389/fmicb.2013.00026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/01/2013] [Indexed: 11/15/2022] Open
Abstract
Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted.
Collapse
Affiliation(s)
- C M Grice
- South Kensington Campus, Imperial College London London, UK
| | | | | |
Collapse
|