1
|
Su Z, Tian M, Shibata E, Shibata Y, Yang T, Wang Z, Jin F, Zang C, Dutta A. Regulation of epigenetics and chromosome structure by human ORC2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.18.629220. [PMID: 39829907 PMCID: PMC11741241 DOI: 10.1101/2024.12.18.629220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites. The epigenetic changes regulate hundreds of genes, including some epigenetic regulators, adding an indirect mechanism by which ORC2 regulates epigenetics without local binding. DNA-bound ORC2 also prevents the acquisition of CTCF at focal sites in the genome to regulate chromatin loops. Thus, individual ORC subunits are major regulators, in both directions, of epigenetics, gene expression and chromosome structure, independent of the role of ORC in replication.
Collapse
|
2
|
Chappleboim M, Naveh-Tassa S, Carmi M, Levy Y, Barkai N. Ordered and disordered regions of the Origin Recognition Complex direct differential in vivo binding at distinct motif sequences. Nucleic Acids Res 2024; 52:5720-5731. [PMID: 38597680 PMCID: PMC11162778 DOI: 10.1093/nar/gkae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.
Collapse
Affiliation(s)
- Michal Chappleboim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Segev Naveh-Tassa
- Department of Chemical and structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Chemical and structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
4
|
Abstract
Nucleosomes package the entire eukaryotic genome, yet enzymes need access to the DNA for numerous metabolic activities, such as replication and transcription. Eukaryotic origins of replication in Saccharomyces cerevisiae are AT rich and are generally nucleosome free for the binding of ORC (origin recognition complex). However, the nucleosome-free region often undergoes expansion during G1/S phase, presumably to make room for MCM double-hexamer formation that nucleates the 11-subunit helicase, CMG (Cdc45, Mcm2–7, Cdc45). While nucleosome remodelers could perform this function, in vitro studies indicate that nucleosome remodeling may be intrinsic to the replication machinery. Indeed, we find here that ORC contains an intrinsic nucleosome remodeling activity that is capable of ATP-stimulated removal of H2A-H2B from nucleosomes. Eukaryotic DNA replication is initiated at multiple chromosomal sites known as origins of replication that are specifically recognized by the origin recognition complex (ORC) containing multiple ATPase sites. In budding yeast, ORC binds to specific DNA sequences known as autonomously replicating sequences (ARSs) that are mostly nucleosome depleted. However, nucleosomes may still inhibit the licensing of some origins by occluding ORC binding and subsequent MCM helicase loading. Using purified proteins and single-molecule visualization, we find here that the ORC can eject histones from a nucleosome in an ATP-dependent manner. The ORC selectively evicts H2A-H2B dimers but leaves the (H3-H4)2 tetramer on DNA. It also discriminates canonical H2A from the H2A.Z variant, evicting the former while retaining the latter. Finally, the bromo-adjacent homology (BAH) domain of the Orc1 subunit is essential for ORC-mediated histone eviction. These findings suggest that the ORC is a bona fide nucleosome remodeler that functions to create a local chromatin environment optimal for origin activity.
Collapse
|
5
|
Wang X, Paulo JA, Li X, Zhou H, Yu J, Gygi SP, Moazed D. A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin. Mol Cell 2021; 81:3979-3991.e4. [PMID: 34375584 DOI: 10.1016/j.molcel.2021.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Cheng L, Zhang X, Wang Y, Gan H, Xu X, Lv X, Hua X, Que J, Ordog T, Zhang Z. Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res 2020; 47:11114-11131. [PMID: 31586391 PMCID: PMC6868363 DOI: 10.1093/nar/gkz858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.
Collapse
Affiliation(s)
- Liang Cheng
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Xu Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Yan Wang
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiangdong Lv
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Structure and function of the Orc1 BAH-nucleosome complex. Nat Commun 2019; 10:2894. [PMID: 31263106 PMCID: PMC6602975 DOI: 10.1038/s41467-019-10609-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/03/2022] Open
Abstract
The Origin Recognition Complex (ORC) is essential for replication, heterochromatin formation, telomere maintenance and genome stability in eukaryotes. Here we present the structure of the yeast Orc1 BAH domain bound to the nucleosome core particle. Our data reveal that Orc1, unlike its close homolog Sir3 involved in gene silencing, does not appear to discriminate between acetylated and non-acetylated lysine 16, modification states of the histone H4 tail that specify open and closed chromatin respectively. We elucidate the mechanism for this unique feature of Orc1 and hypothesize that its ability to interact with nucleosomes regardless of K16 modification state enables it to perform critical functions in both hetero- and euchromatin. We also show that direct interactions with nucleosomes are essential for Orc1 to maintain the integrity of rDNA borders during meiosis, a process distinct and independent from its known roles in silencing and replication. The Origin Recognition Complex (ORC) plays conserved and diverse roles in eukaryotes. Here the authors present the structure of a chromatin interacting domain of yeast Orc1 in complex with the nucleosome core particle, revealing that Orc1 interacts with the histone H4 tail irrespective of K16 acetylation; a modification that regulates accessibility to chromatin.
Collapse
|
8
|
Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 2018; 115:E2030-E2039. [PMID: 29440488 DOI: 10.1073/pnas.1721573115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.
Collapse
|
9
|
Puddu F, Salguero I, Herzog M, Geisler NJ, Costanzo V, Jackson SP. Chromatin determinants impart camptothecin sensitivity. EMBO Rep 2017; 18:1000-1012. [PMID: 28389464 PMCID: PMC5452016 DOI: 10.15252/embr.201643560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.
Collapse
Affiliation(s)
- Fabio Puddu
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Israel Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mareike Herzog
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK
| | - Nicola J Geisler
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vincenzo Costanzo
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Stephen P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
11
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
12
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
13
|
Patel DJ. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Cold Spring Harb Perspect Biol 2016; 8:a018754. [PMID: 26931326 DOI: 10.1101/cshperspect.a018754] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article outlines the protein modules that target methylated lysine histone marks and 5mC DNA marks, and the molecular principles underlying recognition. The article focuses on the structural basis underlying readout of isolated marks by single reader molecules, as well as multivalent readout of multiple marks by linked reader cassettes at the histone tail and nucleosome level. Additional topics addressed include the role of histone mimics, cross talk between histone marks, technological developments at the genome-wide level, advances using chemical biology approaches, the linkage between histone and DNA methylation, the role for regulatory lncRNAs, and the promise of chromatin-based therapeutic modalities.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
14
|
Li S, Yang Z, Du X, Liu R, Wilkinson AW, Gozani O, Jacobsen SE, Patel DJ, Du J. Structural Basis for the Unique Multivalent Readout of Unmodified H3 Tail by Arabidopsis ORC1b BAH-PHD Cassette. Structure 2016; 24:486-94. [PMID: 26876097 DOI: 10.1016/j.str.2016.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/09/2016] [Indexed: 01/22/2023]
Abstract
DNA replication initiation relies on the formation of the origin recognition complex (ORC). The plant ORC subunit 1 (ORC1) protein possesses a conserved N-terminal BAH domain with an embedded plant-specific PHD finger, whose function may be potentially regulated by an epigenetic mechanism. Here, we report structural and biochemical studies on the Arabidopsis thaliana ORC1b BAH-PHD cassette which specifically recognizes the unmodified H3 tail. The crystal structure of ORC1b BAH-PHD cassette in complex with an H3(1-15) peptide reveals a strict requirement for the unmodified state of R2, T3, and K4 on the H3 tail and a novel multivalent BAH and PHD readout mode for H3 peptide recognition. Such recognition may contribute to epigenetic regulation of the initiation of DNA replication.
Collapse
Affiliation(s)
- Sisi Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Zhenlin Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alex W Wilkinson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jiamu Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
15
|
Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. Sci Rep 2015; 5:14929. [PMID: 26456755 PMCID: PMC4601075 DOI: 10.1038/srep14929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) heterohexamer preferentially binds replication origins to trigger initiation of DNA replication. Crystallographic studies using eubacterial and archaeal ORC orthologs suggested that eukaryotic ORC may bind to origin DNA via putative winged-helix DNA-binding domains and AAA+ ATPase domains. However, the mechanisms how eukaryotic ORC recognizes origin DNA remain elusive. Here, we show in budding yeast that Lys-362 and Arg-367 residues of the largest subunit (Orc1), both outside the aforementioned domains, are crucial for specific binding of ORC to origin DNA. These basic residues, which reside in a putative disordered domain, were dispensable for interaction with ATP and non-specific DNA sequences, suggesting a specific role in recognition. Consistent with this, both residues were required for origin binding of Orc1 in vivo. A truncated Orc1 polypeptide containing these residues solely recognizes ARS sequence with low affinity and Arg-367 residue stimulates sequence specific binding mode of the polypeptide. Lys-362 and Arg-367 residues of Orc1 are highly conserved among eukaryotic ORCs, but not in eubacterial and archaeal orthologs, suggesting a eukaryote-specific mechanism underlying recognition of replication origins by ORC.
Collapse
|
16
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
17
|
Young TJ, Kirchmaier AL. Cell cycle regulation of silent chromatin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:303-312. [PMID: 24459732 DOI: 10.1016/j.bbagrm.2011.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
18
|
Abstract
This review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level.
Collapse
Affiliation(s)
- Dinshaw J Patel
- Structural Biology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | |
Collapse
|
19
|
Varunan SM, Tripathi J, Bhattacharyya S, Suhane T, Bhattacharyya MK. Plasmodium falciparum origin recognition complex subunit 1 (PfOrc1) functionally complements Δsir3 mutant of Saccharomyces cerevisiae. Mol Biochem Parasitol 2013; 191:28-35. [PMID: 24018145 DOI: 10.1016/j.molbiopara.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Telomere position effect efficiently controls silencing of subtelomeric var genes, which are involved in antigenic variation in human malaria parasite Plasmodium falciparum. Although, PfOrc1 has been found to be associated with PfSir2 in the silencing complex, its function in telomere silencing remained uncertain especially due to an apparent lack of BAH domain at its amino-terminal region. Here we report that PfOrc1 possesses a Sir3/Orc1 like silencing activity. Using yeast as a surrogate organism we have shown that PfOrc1 could complement yeast Sir3 activity during telomere silencing in a Sir2 dependent manner. By constructing a series of chimera between PfOrc1 and ScSir3 we have observed that the amino-terminal domain of PfOrc1 harbors silencing activity similar to that present in the amino-terminal domain of ScSir3. We further generated several amino-terminal deletion mutants to dissect out such silencing activity and found that the first seventy amino acids at the amino-terminal domain are dispensable for its activity. Thus our results strongly supports that PfOrc1 may have a role in telomere silencing in this parasite. This finding will help to decipher the mechanism of telomere position effect in P. falciparum.
Collapse
Affiliation(s)
- Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
20
|
Yang D, Fang Q, Wang M, Ren R, Wang H, He M, Sun Y, Yang N, Xu RM. Nα-acetylated Sir3 stabilizes the conformation of a nucleosome-binding loop in the BAH domain. Nat Struct Mol Biol 2013; 20:1116-8. [DOI: 10.1038/nsmb.2637] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/21/2013] [Indexed: 01/18/2023]
|
21
|
Benmerzouga I, Concepción-Acevedo J, Kim HS, Vandoros AV, Cross GAM, Klingbeil MM, Li B. Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol Microbiol 2012; 87:196-210. [PMID: 23216794 DOI: 10.1111/mmi.12093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Binding of the Origin Recognition Complex (ORC) to replication origins is essential for initiation of DNA replication, but ORC has non-essential functions outside of DNA replication, including in heterochromatic gene silencing and telomere maintenance. Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis, uses antigenic variation as a major virulence mechanism to evade the host's immune attack by expressing its major surface antigen, the Variant Surface Glycoprotein (VSG), in a monoallelic manner. An Orc1/Cdc6 homologue has been identified in T. brucei, but its role in DNA replication has not been directly confirmed and its potential involvement in VSG repression or switching has not been thoroughly investigated. In this study, we show that TbOrc1 is essential for nuclear DNA replication in mammalian-infectious bloodstream and tsetse procyclic forms (BF and PF). Depletion of TbOrc1 resulted in derepression of telomere-linked silent VSGs in both BF and PF, and increased VSG switching particularly through the in situ transcriptional switching mechanism. TbOrc1 associates with telomere repeats but appears to do so independently of two known T. brucei telomere proteins, TbRAP1 and TbTRF. We conclude that TbOrc1 has conserved functions in DNA replication and is also required to control telomere-linked VSG expression and VSG switching.
Collapse
Affiliation(s)
- Imaan Benmerzouga
- Center for Gene Regulation in Health & Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Proteins containing Bromo Adjacent Homology (BAH) domain are often associated with biological processes involving chromatin, and mutations in BAH domains have been found in human diseases. A number of structural and functional studies have revealed that the BAH domain plays diverse and versatile roles in chromatin biology, including protein-protein interactions, recognition of methylated histones and nucleosome binding. Here we review recent developments in structural studies of the BAH domain, and intend to place the structural results in the context of biological functions of the BAH domain-containing proteins. A converging theme from the structural studies appears that the predominantly β-sheet fold of the BAH domain serves as a scaffold, and function-specific structural features are incorporated at the loops connecting the β-strands and surface-exposed areas. The structures clearly specified regions critical for protein-protein interactions, located the position of methyllysine-binding site and implicated areas important for nucleosome binding. The structural results provided valuable insights into the molecular mechanisms of BAH domains in molecular recognitions, and the information should greatly facilitate mechanistic understanding of BAH domain proteins in chromatin biology.
Collapse
Affiliation(s)
- Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
23
|
Hossain M, Stillman B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev 2012; 26:1797-810. [PMID: 22855792 DOI: 10.1101/gad.197178.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.
Collapse
Affiliation(s)
- Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
24
|
Sun J, Kawakami H, Zech J, Speck C, Stillman B, Li H. Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy. Structure 2012; 20:534-44. [PMID: 22405012 DOI: 10.1016/j.str.2012.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/21/2023]
Abstract
The eukaryotic origin recognition complex (ORC) interacts with and remodels origins of DNA replication prior to initiation in S phase. Here, we report a single-particle cryo-EM-derived structure of the supramolecular assembly comprising Saccharomyces cerevisiae ORC, the replication initiation factor Cdc6, and double-stranded ARS1 origin DNA in the presence of ATPγS. The six subunits of ORC are arranged as Orc1:Orc4:Orc5:Orc2:Orc3, with Orc6 binding to Orc2. Cdc6 binding changes the conformation of ORC, in particular reorienting the Orc1 N-terminal BAH domain. Segmentation of the 3D map of ORC-Cdc6 on DNA and docking with the crystal structure of the homologous archaeal Orc1/Cdc6 protein suggest an origin DNA binding model in which the DNA tracks along the interior surface of the crescent-like ORC. Thus, ORC bends and wraps the DNA. This model is consistent with the observation that binding of a single Cdc6 extends the ORC footprint on origin DNA from both ends.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, Patel DJ, Gozani O. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012; 484:115-9. [PMID: 22398447 PMCID: PMC3321094 DOI: 10.1038/nature10956] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/17/2012] [Indexed: 12/18/2022]
Abstract
Recognition of distinctly modified histones by specialized “effector” proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes1. Effector proteins influence DNA-templated processes, including transcription, DNA recombination, and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulates DNA replication. Here we show that ORC1 – a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing2 – contains a BAH (bromo adjacent homology) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyllysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at origins, ORC chromatin loading, and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the etiology of Meier-Gorlin syndrome (MGS)3,4, a form of primordial dwarfism5, and ORC1 depletion in zebrafish results in an MGS-like phenotype4. We find that wild-type human ORC1, but not ORC1 H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyllysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal etiologic role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.
Collapse
Affiliation(s)
- Alex J Kuo
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Q, Zhang Z. Linking DNA replication to heterochromatin silencing and epigenetic inheritance. Acta Biochim Biophys Sin (Shanghai) 2012; 44:3-13. [PMID: 22194009 DOI: 10.1093/abbs/gmr107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin is organized into distinct functional domains. During mitotic cell division, both genetic information encoded in DNA sequence and epigenetic information embedded in chromatin structure must be faithfully duplicated. The inheritance of epigenetic states is critical in maintaining the genome integrity and gene expression state. In this review, we will discuss recent progress on how proteins known to be involved in DNA replication and DNA replication-coupled nucleosome assembly impact on the inheritance and maintenance of heterochromatin, a tightly compact chromatin structure that silences gene transcription. As heterochromatin is important in regulating gene expression and maintaining genome stability, understanding how heterochromatin states are inherited during S phase of the cell cycle is of fundamental importance.
Collapse
|
27
|
Abstract
High-fidelity chromosomal DNA replication is vital for maintaining the integrity of the genetic material in all forms of cellular life. In eukaryotic cells, around 40-50 distinct conserved polypeptides are essential for chromosome replication, the majority of which are themselves component parts of a series of elaborate molecular machines that comprise the replication apparatus or replisome. How these complexes are assembled, what structures they adopt, how they perform their functions, and how those functions are regulated, are key questions for understanding how genome duplication occurs. Here I present a brief overview of current knowledge of the composition of the replisome and the dynamic molecular events that underlie chromosomal DNA replication in eukaryotic cells.
Collapse
|
28
|
Abstract
The origin recognition complex (ORC) was first discovered in the baker's yeast in 1992. Identification of ORC opened up a path for subsequent molecular level investigations on how eukaryotic cells initiate and control genome duplication each cell cycle. Twenty years after the first biochemical isolation, ORC is now taking on a three-dimensional shape, although a very blurry shape at the moment, thanks to the recent electron microscopy and image reconstruction efforts. In this chapter, we outline the current biochemical knowledge about ORC from several eukaryotic systems, with emphasis on the most recent structural and biochemical studies. Despite many species-specific properties, an emerging consensus is that ORC is an ATP-dependent machine that recruits other key proteins to form pre-replicative complexes (pre-RCs) at many origins of DNA replication, enabling the subsequent initiation of DNA replication in S phase.
Collapse
Affiliation(s)
- Huilin Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA, And, Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA, , Tel: 631-344-2931, Fax: 631-344-3407
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, , Tel: 516-367-8383
| |
Collapse
|
29
|
Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. EUKARYOTIC CELL 2011; 10:1183-92. [PMID: 21764908 DOI: 10.1128/ec.05123-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional silencing of the cryptic mating-type loci in Saccharomyces cerevisiae is one of the best-studied models of repressive heterochromatin. However, this type of heterochromatin, which is mediated by the Sir proteins, has a distinct molecular composition compared to the more ubiquitous type of heterochromatin found in Schizosaccharomyces pombe, other fungi, animals, and plants and characterized by the presence of HP1 (heterochromatin protein 1). This review discusses how the loss of important heterochromatin proteins, including HP1, in the budding yeast lineage presented an evolutionary opportunity for the development and diversification of alternative varieties of heterochromatin, in which the conserved deacetylase Sir2 and the replication protein Orc1 play key roles. In addition, we highlight how this diversification has been facilitated by gene duplications and has contributed to adaptations in lifestyle.
Collapse
|
30
|
Abstract
DNA replication is an essential cell cycle event required for the accurate and timely duplication of the chromosomes. It is essential that the genome is replicated accurately and completely within the confines of S-phase. Failure to completely copy the genome has the potential to result in catastrophic genomic instability. Replication initiates in a coordinated manner from multiple locations, termed origins of replication, distributed across each of the chromosomes. The selection of these origins of replication is a dynamic process responding to both developmental and tissue-specific signals. In this review, we explore the role of the local chromatin environment in regulating the DNA replication program at the level of origin selection and activation. Finally, there is increasing molecular evidence that the DNA replication program itself affects the chromatin landscape, suggesting that DNA replication is critical for both genetic and epigenetic inheritance.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27713
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27713
| |
Collapse
|
31
|
Ruault M, De Meyer A, Loïodice I, Taddei A. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast. J Cell Biol 2011; 192:417-31. [PMID: 21300849 PMCID: PMC3101097 DOI: 10.1083/jcb.201008007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/04/2011] [Indexed: 01/04/2023] Open
Abstract
A general feature of the nucleus is the organization of repetitive deoxyribonucleic acid sequences in clusters concentrating silencing factors. In budding yeast, we investigated how telomeres cluster in perinuclear foci associated with the silencing complex Sir2-Sir3-Sir4 and found that Sir3 is limiting for telomere clustering. Sir3 overexpression triggers the grouping of telomeric foci into larger foci that relocalize to the nuclear interior and correlate with more stable silencing in subtelomeric regions. Furthermore, we show that Sir3's ability to mediate telomere clustering can be separated from its role in silencing. Indeed, nonacetylable Sir3, which is unable to spread into subtelomeric regions, can mediate telomere clustering independently of Sir2-Sir4 as long as it is targeted to telomeres by the Rap1 protein. Thus, arrays of Sir3 binding sites at telomeres appeared as the sole requirement to promote trans-interactions between telomeres. We propose that similar mechanisms involving proteins able to oligomerize account for long-range interactions that impact genomic functions in many organisms.
Collapse
Affiliation(s)
- Myriam Ruault
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, F-75248 Paris, Cedex 05, France
- Centre de Recherche, Institut Curie, F-75248 Paris, Cedex 05, France
| | - Arnaud De Meyer
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, F-75248 Paris, Cedex 05, France
- Centre de Recherche, Institut Curie, F-75248 Paris, Cedex 05, France
| | - Isabelle Loïodice
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, F-75248 Paris, Cedex 05, France
- Centre de Recherche, Institut Curie, F-75248 Paris, Cedex 05, France
| | - Angela Taddei
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, F-75248 Paris, Cedex 05, France
- Centre de Recherche, Institut Curie, F-75248 Paris, Cedex 05, France
| |
Collapse
|
32
|
Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 2010; 331:1036-40. [PMID: 21163962 DOI: 10.1126/science.1195380] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of genomic methylation patterns is mediated primarily by DNA methyltransferase-1 (DNMT1). We have solved structures of mouse and human DNMT1 composed of CXXC, tandem bromo-adjacent homology (BAH1/2), and methyltransferase domains bound to DNA-containing unmethylated CpG sites. The CXXC specifically binds to unmethylated CpG dinucleotide and positions the CXXC-BAH1 linker between the DNA and the active site of DNMT1, preventing de novo methylation. In addition, a loop projecting from BAH2 interacts with the target recognition domain (TRD) of the methyltransferase, stabilizing the TRD in a retracted position and preventing it from inserting into the DNA major groove. Our studies identify an autoinhibitory mechanism, in which unmethylated CpG dinucleotides are occluded from the active site to ensure that only hemimethylated CpG dinucleotides undergo methylation.
Collapse
Affiliation(s)
- Jikui Song
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
33
|
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci U S A 2010; 107:19384-9. [PMID: 20974972 DOI: 10.1073/pnas.1006436107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The origin recognition complex (ORC) defines origins of replication and also interacts with heterochromatin proteins in a variety of species, but how ORC functions in heterochromatin assembly remains unclear. The largest subunit of ORC, Orc1, is particularly interesting because it contains a nucleosome-binding BAH domain and because it gave rise to Sir3, a key silencing protein in Saccharomyces cerevisiae, through gene duplication. We examined whether Orc1 possessed a Sir3-like silencing function before duplication and found that Orc1 from the yeast Kluyveromyces lactis, which diverged from S. cerevisiae before the duplication, acts in conjunction with the deacetylase Sir2 and the histone-binding protein Sir4 to generate heterochromatin at telomeres and a mating-type locus. Moreover, the ability of KlOrc1 to spread across a silenced locus depends on its nucleosome-binding BAH domain and the deacetylase Sir2. Interestingly, KlOrc1 appears to act independently of the entire ORC, as other subunits of the complex, Orc4 and Orc5, are not strongly associated with silenced domains. These findings demonstrate that Orc1 functioned in silencing before duplication and suggest that Orc1 and Sir2, both of which are broadly conserved among eukaryotes, may have an ancient history of cooperating to generate chromatin structures, with Sir2 deacetylating histones and Orc1 binding to these deacetylated nucleosomes through its BAH domain.
Collapse
|
34
|
Müller P, Park S, Shor E, Huebert DJ, Warren CL, Ansari AZ, Weinreich M, Eaton ML, MacAlpine DM, Fox CA. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev 2010; 24:1418-33. [PMID: 20595233 PMCID: PMC2895200 DOI: 10.1101/gad.1906410] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
Abstract
The origin recognition complex (ORC) binds to the specific positions on chromosomes that serve as DNA replication origins. Although ORC is conserved from yeast to humans, the DNA sequence elements that specify ORC binding are not. In particular, metazoan ORC shows no obvious DNA sequence specificity, whereas yeast ORC binds to a specific DNA sequence within all yeast origins. Thus, whereas chromatin must play an important role in metazoan ORC's ability to recognize origins, it is unclear whether chromatin plays a role in yeast ORC's recognition of origins. This study focused on the role of the conserved N-terminal bromo-adjacent homology domain of yeast Orc1 (Orc1BAH). Recent studies indicate that BAH domains are chromatin-binding modules. We show that the Orc1BAH domain was necessary for ORC's stable association with yeast chromosomes, and was physiologically relevant to DNA replication in vivo. This replication role was separable from the Orc1BAH domain's previously defined role in transcriptional silencing. Genome-wide analyses of ORC binding in ORC1 and orc1bahDelta cells revealed that the Orc1BAH domain contributed to ORC's association with most yeast origins, including a class of origins highly dependent on the Orc1BAH domain for ORC association (orc1bahDelta-sensitive origins). Orc1bahDelta-sensitive origins required the Orc1BAH domain for normal activity on chromosomes and plasmids, and were associated with a distinct local nucleosome structure. These data provide molecular insights into how the Orc1BAH domain contributes to ORC's selection of replication origins, as well as new tools for examining conserved mechanisms governing ORC's selection of origins within eukaryotic chromosomes.
Collapse
Affiliation(s)
- Philipp Müller
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Erika Shor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dana J. Huebert
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Christopher L. Warren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael Weinreich
- Laboratory for Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Matthew L. Eaton
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David M. MacAlpine
- Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Program in Cellular and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
35
|
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev 2010; 24:748-53. [PMID: 20351051 DOI: 10.1101/gad.1913210] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The origin recognition complex (ORC) specifies replication origin location. The Saccharomyces cerevisiae ORC recognizes the ARS (autonomously replicating sequence) consensus sequence (ACS), but only a subset of potential genomic sites are bound, suggesting other chromosomal features influence ORC binding. Using high-throughput sequencing to map ORC binding and nucleosome positioning, we show that yeast origins are characterized by an asymmetric pattern of positioned nucleosomes flanking the ACS. The origin sequences are sufficient to maintain a nucleosome-free origin; however, ORC is required for the precise positioning of nucleosomes flanking the origin. These findings identify local nucleosomes as an important determinant for origin selection and function.
Collapse
Affiliation(s)
- Matthew L Eaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Chromatin is a highly regulated nucleoprotein complex through which genetic material is structured and maneuvered to elicit cellular processes, including transcription, cell division, differentiation, and DNA repair. In eukaryotes, the core of this structure is composed of nucleosomes, or repetitive histone octamer units typically enfolded by 147 base pairs of DNA. DNA is arranged and indexed through these nucleosomal structures to adjust local chromatin compaction and accessibility. Histones are subject to multiple covalent posttranslational modifications, some of which alter intrinsic chromatin properties, others of which present or hinder binding modules for non-histone, chromatin-modifying complexes. Although certain histone marks correlate with different biological outputs, we have yet to fully appreciate their effects on transcription and other cellular processes. Tremendous advancements over the past years have uncovered intriguing histone-related matters and raised important related questions. This review revisits past breakthroughs and discusses novel developments that pertain to histone posttranslational modifications and the affects they have on transcription and DNA packaging.
Collapse
Affiliation(s)
- Eric I Campos
- Department of Biochemistry, Howard Hughes Medical Institute, NYU School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
37
|
Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae. Mol Cell Biol 2009; 30:626-39. [PMID: 19948882 DOI: 10.1128/mcb.00614-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The silenced chromatin at the cryptic mating-type loci (HML and HMR) of Saccharomyces cerevisiae requires a cell cycle event between early S phase and G(2)/M phase to achieve repression. Although DNA replication per se is not essential for silencing, mutations in many of the proteins involved in DNA replication affect silencing. Each of the four silencers, which flank the silenced loci, includes an origin recognition complex (ORC) binding site (ACS). ORC directly interacted with Sir1 and recruits Sir1 to the silencers. This study describes additional roles for ORC in the architecture of silenced chromatin. Using chromatin immunoprecipitation (ChIP) analysis, we found that ORC physically interacts throughout the internal regions of HMR as well as with silencers. This interaction depended on the presence of Sir proteins and, in part, on the HMR-I silencer. ORC remained associated with the internal regions of HMR even when these regions were recombinationally separated from the silencers. Moreover, ORC could be recruited to the silencers lacking an ACS through its Sir1 interaction.
Collapse
|
38
|
Abstract
The proteins of the origin recognition complex are found throughout all eukaryotes and have roles beyond that of DNA replication. Origin recognition complex (ORC) proteins were first discovered as a six-subunit assemblage in budding yeast that promotes the initiation of DNA replication. Orc1-5 appear to be present in all eukaryotes, and include both AAA+ and winged-helix motifs. A sixth protein, Orc6, shows no structural similarity to the other ORC proteins, and is poorly conserved between budding yeast and most other eukaryotic species. The replication factor Cdc6 has extensive sequence similarity with Orc1 and phylogenetic analysis suggests the genes that encode them may be paralogs. ORC proteins have also been found in the archaea, and the bacterial DnaA replication protein has ORC-like functional domains. In budding yeast, Orc1-6 are bound to origins of DNA replication throughout the cell cycle. Following association with Cdc6 in G1 phase, the sequential hydrolysis of Cdc6 - then ORC-bound ATP loads the Mcm2-7 helicase complex onto DNA. Localization of ORC subunits to the kinetochore and centrosome during mitosis and to the cleavage furrow during cytokinesis has been observed in metazoan cells and, along with phenotypes observed following knockdown with short interfering RNAs, point to additional roles at these cell-cycle stages. In addition, ORC proteins function in epigenetic gene silencing through interactions with heterochromatin factors such as Sir1 in budding yeast and HP1 in higher eukaryotes. Current avenues of research have identified roles for ORC proteins in the development of neuronal and muscle tissue, and are probing their relationship to genome integrity.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | |
Collapse
|
39
|
Mutational analysis of the Sir3 BAH domain reveals multiple points of interaction with nucleosomes. Mol Cell Biol 2009; 29:2532-45. [PMID: 19273586 DOI: 10.1128/mcb.01682-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sir3, a component of the transcriptional silencing complex in the yeast Saccharomyces cerevisiae, has an N-terminal BAH domain that is crucial for the protein's silencing function. Previous work has shown that the N-terminal alanine residue of Sir3 (Ala2) and its acetylation play an important role in silencing. Here we show that the silencing defects of Sir3 Ala2 mutants can be suppressed by mutations in histones H3 and H4, specifically, by H3 D77N and H4 H75Y mutations. Additionally, a mutational analysis demonstrates that three separate regions of the Sir3 BAH domain are important for its role in silencing. Many of these BAH mutations also can be suppressed by the H3 D77N and H4 H75Y mutations. In agreement with the results of others, in vitro experiments show that the Sir3 BAH domain can interact with partially purified nucleosomes. The silencing-defective BAH mutants are defective for this interaction. These results, together with the previously characterized interaction between the C-terminal region of Sir3 and the histone H3/H4 tails, suggest that Sir3 utilizes multiple domains to interact with nucleosomes.
Collapse
|
40
|
Abstract
The human Polybromo-1 protein (Pb1) was recently identified as a unique subunit of the PBAF (Polybromo, Brg1-Associated Factors) chromatin-remodeling complex required for kinetochore localization during mitosis and the transcription of estrogen-responsive genes. Pb1 coordinates key features common to all remodeling complexes, including chromatin localization, recruitment of protein subunits and alteration of chromatin architecture. A comprehensive analysis of individual domains composing Pb1 is used to propose new information regarding the function of Pb1 in the PBAF chromatin-remodeling complex. The newly identified regulatory role of this important protein is also examined to explain both native function and the emerging role of Pb1 as a tumor suppressor found to be mutated in breast cancer.
Collapse
Affiliation(s)
- Martin Thompson
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
41
|
Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 2009; 181:1477-91. [PMID: 19171939 DOI: 10.1534/genetics.108.099663] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.
Collapse
|
42
|
Abstract
The connection between DNA replication and heterochromatic silencing in yeast has been a topic of investigation for >20 years. While early studies showed that silencing requires passage through S phase and implicated several DNA replication factors in silencing, later works showed that silent chromatin could form without DNA replication. In this study we show that members of the replicative helicase (Mcm3 and Mcm7) play a role in silencing and physically interact with the essential silencing factor, Sir2, even in the absence of DNA replication. Another replication factor, Mcm10, mediates the interaction between these replication and silencing proteins via a short C-terminal domain. Mutations in this region of Mcm10 disrupt the interaction between Sir2 and several of the Mcm2-7 proteins. While such mutations caused silencing defects, they did not cause DNA replication defects or affect the association of Sir2 with chromatin. Our findings suggest that Mcm10 is required for the coupling of the replication and silencing machineries to silence chromatin in a context outside of DNA replication beyond the recruitment and spreading of Sir2 on chromatin.
Collapse
|
43
|
Phylogenetic conservation and homology modeling help reveal a novel domain within the budding yeast heterochromatin protein Sir1. Mol Cell Biol 2008; 29:687-702. [PMID: 19029247 DOI: 10.1128/mcb.00202-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Sir1 protein's ability to bind and silence the cryptic mating-type locus HMRa requires a protein-protein interaction between Sir1 and the origin recognition complex (ORC). A domain within the C-terminal half of Sir1, the Sir1 ORC interaction region (Sir1OIR), and the conserved bromo-adjacent homology (BAH) domain within Orc1, the largest subunit of ORC, mediate this interaction. The structure of the Sir1OIR-Orc1BAH complex is known. Sir1OIR and Orc1BAH interacted with a high affinity in vitro, but the Sir1OIR did not inhibit Sir1-dependent silencing when overproduced in vivo, suggesting that other regions of Sir1 helped it bind HMRa. Comparisons of diverged Sir1 proteins revealed two highly conserved regions, N1 and N2, within Sir1's poorly characterized N-terminal half. An N-terminal portion of Sir1 (residues 27 to 149 [Sir1(27-149)]) is similar in sequence to the Sir1OIR; homology modeling predicted a structure for Sir1(27-149) in which N1 formed a submodule similar to the known Orc1BAH-interacting surface on Sir1. Consistent with these findings, two-hybrid assays indicated that the Sir1 N terminus could interact with BAH domains. Amino acid substitutions within or near N1 or N2 reduced full-length Sir1's ability to bind and silence HMRa and to interact with Orc1BAH in a two-hybrid assay. Purified recombinant Sir1 formed a large protease-resistant structure within which the Sir1OIR domain was protected, and Orc1BAH bound Sir1OIR more efficiently than full-length Sir1 in vitro. Thus, the Sir1 N terminus exhibited both positive and negative roles in the formation of a Sir1-ORC silencing complex. This functional duality might contribute to Sir1's selectivity for silencer-bound ORCs in vivo.
Collapse
|
44
|
Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:6903-18. [PMID: 18794362 DOI: 10.1128/mcb.01210-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Silent chromatin in Saccharomyces cerevisiae is established in a stepwise process involving the SIR complex, comprised of the histone deacetylase Sir2 and the structural components Sir3 and Sir4. The Sir3 protein, which is the primary histone-binding component of the SIR complex, forms oligomers in vitro and has been proposed to mediate the spreading of the SIR complex along the chromatin fiber. In order to analyze the role of Sir3 in the spreading of the SIR complex, we performed a targeted genetic screen for alleles of SIR3 that dominantly disrupt silencing. Most mutations mapped to a single surface in the conserved N-terminal BAH domain, while one, L738P, localized to the AAA ATPase-like domain within the C-terminal half of Sir3. The BAH point mutants, but not the L738P mutant, disrupted the interaction between Sir3 and nucleosomes. In contrast, Sir3-L738P bound the N-terminal tail of histone H4 more strongly than wild-type Sir3, indicating that misregulation of the Sir3 C-terminal histone-binding activity also disrupted spreading. Our results underscore the importance of proper interactions between Sir3 and the nucleosome in silent chromatin assembly. We propose a model for the spreading of the SIR complex along the chromatin fiber through the two distinct histone-binding domains in Sir3.
Collapse
|
45
|
Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Umeyama H. The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation. Proteins 2008; 69:866-72. [PMID: 17853449 DOI: 10.1002/prot.21772] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We participated in rounds 6-12 of the critical assessment of predicted interaction (CAPRI) contest as the SKE-DOCK server and human teams. The SKE-DOCK server is based on simple geometry docking and a knowledge base scoring function. The procedure is summarized in the following three steps: (1) protein docking according to shape complementarity, (2) evaluating complex models, and (3) repacking side-chain of models. The SKE-DOCK server did not make use of biological information. On the other hand, the human team tried various intervention approaches. In this article, we describe in detail the processes of the SKE-DOCK server, together with results and reasons for success and failure. Good predicted models were obtained for target 25 by both the SKE-DOCK server and human teams. When the modeled receptor proteins were superimposed on the experimental structures, the smallest Ligand-rmsd values corresponding to the rmsd between the model and experimental structures were 3.307 and 3.324 A, respectively. Moreover, the two teams obtained 4 and 2 acceptable models for target 25. The overall result for both the SKE-DOCK server and human teams was medium accuracy for one (Target 25) out of nine targets.
Collapse
Affiliation(s)
- Genki Terashi
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Kanamori E, Murakami Y, Tsuchiya Y, Standley DM, Nakamura H, Kinoshita K. Docking of protein molecular surfaces with evolutionary trace analysis. Proteins 2008; 69:832-8. [PMID: 17803239 DOI: 10.1002/prot.21737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a new method to predict protein- protein complexes based on the shape complementarity of the molecular surfaces, along with sequence conservation obtained by evolutionary trace (ET) analysis. The docking is achieved by optimization of an object function that evaluates the degree of shape complementarity weighted by the conservation of the interacting residues. The optimization is carried out using a genetic algorithm in combination with Monte Carlo sampling. We applied this method to CAPRI targets and evaluated the performance systematically. Consequently, our method could achieve native-like predictions in several cases. In addition, we have analyzed the feasibility of the ET method for docking simulations, and found that the conservation information was useful only in a limited category of proteins (signal related proteins and enzymes).
Collapse
Affiliation(s)
- Eiji Kanamori
- Japan Biological Information Research Center, Japan Biological Informatics Consortium, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, Weng Z. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Proteins 2008; 69:719-25. [PMID: 17803212 DOI: 10.1002/prot.21747] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present an evaluation of our protein-protein docking approach using the ZDOCK and ZRANK algorithms, in combination with structural clustering and filtering, utilizing biological data in Rounds 6-11 of the CAPRI docking experiment. We achieved at least one prediction of acceptable accuracy for five of six targets submitted. In addition, two targets resulted in medium-accuracy predictions. In the new scoring portion of the CAPRI exercise, we were able to attain at least one acceptable prediction for the three targets submitted and achieved three medium-accuracy predictions for Target 26. Scoring was performed using ZRANK, a new algorithm for reranking initial-stage docking predictions using a weighted energy function and no structural refinement. Here we outline a practical and successful docking strategy, given limited prior biological knowledge of the complex to be predicted.
Collapse
Affiliation(s)
- Kevin Wiehe
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
48
|
May A, Zacharias M. Protein-protein docking in CAPRI using ATTRACT to account for global and local flexibility. Proteins 2008; 69:774-80. [PMID: 17803217 DOI: 10.1002/prot.21735] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A reduced protein model combined with a systematic docking approach has been employed to predict protein-protein complex structures in CAPRI rounds 6-11. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to the second protein starting from many thousand initial protein partner placements. It also allows for approximate inclusion of global flexibility of protein partners during systematic docking by conformational relaxation of the partner proteins in precalculated soft collective backbone degrees of freedom. We have submitted models for six targets, achieved acceptable docking solutions for two targets, and predicted >20% correct contacts for five targets. Possible improvements of the docking approach in particular at the scoring and refinement steps are discussed.
Collapse
Affiliation(s)
- Andreas May
- School of Engineering and Science, Jacobs University Bremen, D-28759 Bremen, Germany
| | | |
Collapse
|
49
|
May A, Zacharias M. Energy minimization in low‐frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins 2008; 70:794-809. [PMID: 17729269 DOI: 10.1002/prot.21579] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein-protein association can frequently involve significant backbone conformational changes of the protein partners. A computationally rapid method has been developed that allows to approximately account for global conformational changes during systematic protein-protein docking starting from many thousands of start configurations. The approach employs precalculated collective degrees of freedom as additional variables during protein-protein docking minimization. The global collective degrees of freedom are obtained from normal mode analysis using a Gaussian network model for the protein. Systematic docking searches were performed on 10 test systems that differed in the degree of conformational change associated with complex formation and in the degree of overlap between observed conformational changes and precalculated flexible degrees of freedom. The results indicate that in case of docking searches that minimize the influence of local side chain conformational changes inclusion of global flexibility can significantly improve the agreement of the near-native docking solutions with the corresponding experimental structures. For docking of unbound protein partners in several cases an improved ranking of near native docking solutions was observed. This was achieved at a very modest ( approximately 2-fold) increase of computational demands compared to rigid docking. For several test cases the number of docking solutions close to experiment was also significantly enhanced upon inclusion of soft collective degrees of freedom. This result indicates that inclusion of global flexibility can facilitate in silico protein-protein association such that a greater number of different start configurations results in favorable complex formation.
Collapse
Affiliation(s)
- Andreas May
- School of Engineering and Science, Jacobs University Bremen, D-28759 Bremen, Germany
| | | |
Collapse
|
50
|
Chaudhury S, Sircar A, Sivasubramanian A, Berrondo M, Gray JJ. Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12. Proteins 2007; 69:793-800. [PMID: 17894347 DOI: 10.1002/prot.21731] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In CAPRI rounds 6-12, RosettaDock successfully predicted 2 of 5 unbound-unbound targets to medium accuracy. Improvement over the previous method was achieved with computational mutagenesis to select decoys that match the energetics of experimentally determined hot spots. In the case of Target 21, Orc1/Sir1, this resulted in a successful docking prediction where RosettaDock alone or with simple site constraints failed. Experimental information also helped limit the interacting region of TolB/Pal, producing a successful prediction of Target 26. In addition, we docked multiple loop conformations for Target 20, and we developed a novel flexible docking algorithm to simultaneously optimize backbone conformation and rigid-body orientation to generate a wide diversity of conformations for Target 24. Continued challenges included docking of homology targets that differ substantially from their template (sequence identity <50%) and accounting for large conformational changes upon binding. Despite a larger number of unbound-unbound and homology model binding targets, Rounds 6-12 reinforced that RosettaDock is a powerful algorithm for predicting bound complex structures, especially when combined with experimental data.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|