1
|
Li T, Zeng F, Li Y, Li H, Wu J. The Integrator complex: an emerging complex structure involved in the regulation of gene expression by targeting RNA polymerase II. Funct Integr Genomics 2024; 24:192. [PMID: 39424688 DOI: 10.1007/s10142-024-01479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The Integrator complex is a multisubunit complex that participates in the processing of small nuclear RNA molecules in eukaryotic cells by cleaving the 3' end. In protein-coding genes, Integrator is a key regulator of promoter-proximal pausing, release, and recruitment of RNA polymerase II. Research on Integrator has revealed its critical role in the regulation of gene expression and RNA processing. Dysregulation of the Integrator complex has been implicated in a variety of human diseases including cancer and developmental disorders. Therefore, understanding the structure and function of the Integrator complex is critical to uncovering the mechanisms of gene expression and developing potential therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Tingyue Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fulei Zeng
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hu Li
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jiayuan Wu
- School of Stomatology, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
2
|
Cugusi S, Bajpe PK, Mitter R, Patel H, Stewart A, Svejstrup JQ. An Important Role for RPRD1B in the Heat Shock Response. Mol Cell Biol 2022; 42:e0017322. [PMID: 36121223 PMCID: PMC9583720 DOI: 10.1128/mcb.00173-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
During the heat shock response (HSR), heat shock factor (HSF1 in mammals) binds to target gene promoters, resulting in increased expression of heat shock proteins that help maintain protein homeostasis and ensure cell survival. Besides HSF1, only a relatively few transcription factors with a specific role in ensuring correctly regulated gene expression during the HSR have been described. Here, we use proteomic and genomic (CRISPR) screening to identify a role for RPRD1B in the response to heat shock. Indeed, cells depleted for RPRD1B are heat shock sensitive and show decreased expression of key heat shock proteins (HSPs). These results add to our understanding of the connection between basic gene expression mechanisms and the HSR.
Collapse
Affiliation(s)
- Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Prashanth Kumar Bajpe
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Tellier M, Zaborowska J, Neve J, Nojima T, Hester S, Fournier M, Furger A, Murphy S. CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation. EMBO Rep 2022; 23:e54520. [PMID: 35980303 PMCID: PMC9535751 DOI: 10.15252/embr.202154520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Jonathan Neve
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Takayuki Nojima
- Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Svenja Hester
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | | - Andre Furger
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Guiro J, Fagbemi M, Tellier M, Zaborowska J, Barker S, Fournier M, Murphy S. CAPTURE of the Human U2 snRNA Genes Expands the Repertoire of Associated Factors. Biomolecules 2022; 12:704. [PMID: 35625631 PMCID: PMC9138887 DOI: 10.3390/biom12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
In order to identify factors involved in transcription of human snRNA genes and 3' end processing of the transcripts, we have carried out CRISPR affinity purification in situ of regulatory elements (CAPTURE), which is deadCas9-mediated pull-down, of the tandemly repeated U2 snRNA genes in human cells. CAPTURE enriched many factors expected to be associated with these human snRNA genes including RNA polymerase II (pol II), Cyclin-Dependent Kinase 7 (CDK7), Negative Elongation Factor (NELF), Suppressor of Ty 5 (SPT5), Mediator 23 (MED23) and several subunits of the Integrator Complex. Suppressor of Ty 6 (SPT6); Cyclin K, the partner of Cyclin-Dependent Kinase 12 (CDK12) and Cyclin-Dependent Kinase 13 (CDK13); and SWI/SNF chromatin remodelling complex-associated SWI/SNF-related, Matrix-associated, Regulator of Chromatin (SMRC) factors were also enriched. Several polyadenylation factors, including Cleavage and Polyadenylation Specificity Factor 1 (CPSF1), Cleavage Stimulation Factors 1 and 2 (CSTF1,and CSTF2) were enriched by U2 gene CAPTURE. We have already shown by chromatin immunoprecipitation (ChIP) that CSTF2-and Pcf11 and Ssu72, which are also polyadenylation factors-are associated with the human U1 and U2 genes. ChIP-seq and ChIP-qPCR confirm the association of SPT6, Cyclin K, and CDK12 with the U2 genes. In addition, knockdown of SPT6 causes loss of subunit 3 of the Integrator Complex (INTS3) from the U2 genes, indicating a functional role in snRNA gene expression. CAPTURE has therefore expanded the repertoire of transcription and RNA processing factors associated with these genes and helped to identify a functional role for SPT6.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Mathias Fagbemi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Stephanie Barker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; (J.G.); (M.F.); (M.T.); (J.Z.); (S.B.)
| |
Collapse
|
5
|
Yamazaki T, Liu L, Manley JL. Oxidative stress induces Ser 2 dephosphorylation of the RNA polymerase II CTD and premature transcription termination. Transcription 2021; 12:277-293. [PMID: 34874799 DOI: 10.1080/21541264.2021.2009421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) consists of YSPTSPS heptapeptide repeats, and the phosphorylation status of the repeats controls multiple transcriptional steps and co-transcriptional events. However, how CTD phosphorylation status responds to distinct environmental stresses is not fully understood. In this study, we found that a drastic reduction in phosphorylation of a subset of Ser2 residues occurs rapidly but transiently following exposure to H2O2. ChIP analysis indicated that Ser2-P, and to a lesser extent Tyr1-P was reduced only at the gene 3' end. Significantly, the levels of polyadenylation factor CstF77, as well as Pol II, were also reduced. However, no increase in uncleaved or readthrough RNA products was observed, suggesting transcribing Pol II prematurely terminates at the gene end in response to H2O2. Further analysis found that the reduction of Ser2-P is, at least in part, regulated by CK2 but independent of FCP1 and other known Ser2 phosphatases. Finally, the H2O2 treatment also affected snRNA 3' processing although surprisingly the U2 processing was not impaired. Together, our data suggest that H2O2 exposure creates a unique CTD phosphorylation state that rapidly alters transcription to deal with acute oxidative stress, perhaps creating a novel "emergency brake" mechanism to transiently dampen gene expression.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY USA
| |
Collapse
|
6
|
Liu C, Zhang W, Xing W. Diverse and conserved roles of the protein Ssu72 in eukaryotes: from yeast to higher organisms. Curr Genet 2020; 67:195-206. [PMID: 33244642 DOI: 10.1007/s00294-020-01132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Gene transcription is a complex biological process that involves a set of factors, enzymes and nucleotides. Ssu72 plays a crucial role in every step of gene transcription. RNA polymerase II (RNAPII) occupies an important position in the synthesis of mRNAs. The largest subunit of RNAPII, Rpb1, harbors its C-terminal domain (CTD), which participates in the initiation, elongation and termination of transcription. The CTD consists of heptad repeats of the consensus motif Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 and is highly conserved among different species. The CTD is flexible in structure and undergoes conformational changes in response to serine phosphorylation and proline isomerization, which are regulated by specific kinases/phosphatases and isomerases, respectively. Ssu72 is a CTD phosphatase with catalytic activity against phosphorylated Ser5 and Ser7. The isomerization of Pro6 affects the binding of Ssu72 to its substrate. Ssu72 can also indirectly change the phosphorylation status of Ser2. In addition, Ssu72 is a member of the 3'-end cleavage and polyadenylation factor (CPF) complex. Together with other CPF components, Ssu72 regulates the 3'-end processing of premature mRNA. Recent studies have revealed other roles of Ssu72, including its roles in balancing phosphate homeostasis and controlling chromosome behaviors, which should be further explored. In conclusion, the protein Ssu72 is an enzyme worthy of attention, not confined to its role in gene transcription.
Collapse
Affiliation(s)
- Changfu Liu
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihao Zhang
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenge Xing
- Department of Interventional Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
7
|
Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex. Proc Natl Acad Sci U S A 2020; 117:20325-20333. [PMID: 32747542 DOI: 10.1073/pnas.2002115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3'-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show that DSP1 is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants, DSP1α and DSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3'-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3' end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.
Collapse
|
8
|
Mendoza-Figueroa MS, Tatomer DC, Wilusz JE. The Integrator Complex in Transcription and Development. Trends Biochem Sci 2020; 45:923-934. [PMID: 32800671 DOI: 10.1016/j.tibs.2020.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
The Integrator complex is conserved across metazoans and controls the fate of many nascent RNAs transcribed by RNA polymerase II (RNAPII). Among the 14 subunits of Integrator is an RNA endonuclease that is crucial for the biogenesis of small nuclear RNAs and enhancer RNAs. Integrator is further employed to trigger premature transcription termination at many protein-coding genes, thereby attenuating gene expression. Integrator thus helps to shape the transcriptome and ensure that genes can be robustly induced when needed. The molecular functions of Integrator subunits beyond the RNA endonuclease remain poorly understood, but some can act independently of the multisubunit complex. We highlight recent molecular insights into Integrator and propose how misregulation of this complex may lead to developmental defects and disease.
Collapse
Affiliation(s)
- María Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Deirdre C Tatomer
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Gene-Specific Control of tRNA Expression by RNA Polymerase II. Mol Cell 2020; 78:765-778.e7. [PMID: 32298650 DOI: 10.1016/j.molcel.2020.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that tRNA levels are dynamically and specifically regulated in response to internal and external cues to modulate the cellular translational program. However, the molecular players and the mechanisms regulating the gene-specific expression of tRNAs are still unknown. Using an inducible auxin-degron system to rapidly deplete RPB1 (the largest subunit of RNA Pol II) in living cells, we identified Pol II as a direct gene-specific regulator of tRNA transcription. Our data suggest that Pol II transcription robustly interferes with Pol III function at specific tRNA genes. This activity was further found to be essential for MAF1-mediated repression of a large set of tRNA genes during serum starvation, indicating that repression of tRNA genes by Pol II is dynamically regulated. Hence, Pol II plays a direct and central role in the gene-specific regulation of tRNA expression.
Collapse
|
10
|
Hu A, Li J, Tang W, Liu G, Zhang H, Liu C, Chen X. Anthralin Suppresses the Proliferation of Influenza Virus by Inhibiting the Cap-Binding and Endonuclease Activity of Viral RNA Polymerase. Front Microbiol 2020; 11:178. [PMID: 32132985 PMCID: PMC7040080 DOI: 10.3389/fmicb.2020.00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
Influenza virus RNA-dependent RNA polymerase (vRdRp) does not have capping activity and relies on the capped RNAs produced by the host RNA polymerase II (RNAPII). The viral polymerases process the capped RNAs to produce short capped RNA fragments that are used as primers to initiate the transcription of viral mRNAs. This process, known as cap-snatching, can be targeted by antiviral therapeutics. Here, anthralin was identified as an inhibitor against influenza a virus (IAV) infection by targeting the cap-snatching activity of the viral polymerase. Anthralin, an FDA-approved drug used in the treatment of psoriasis, shows antiviral activity against IAV infection in vitro and in vivo. Importantly, anthralin significantly reduces weight loss, lung injury, and mortality caused by IAV infection in mice. The mechanism of action study revealed that anthralin inhibits the cap-binding function of PB2 subunit and endonuclease activity of PA. As a result, viral mRNA transcription is blocked, leading to the decreases in viral RNA replication and viral protein expression. In conclusion, anthralin has been demonstrated to have the potential of an alternative antiviral against influenza virus infection. Also, targeting the captive pocket structure that includes the N-terminus of PA endonuclease domain and the C-terminal of PB2 cap-binding domain of IAV RdRp may be an excellent strategy for developing anti-influenza drugs.
Collapse
Affiliation(s)
- Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Fukudome A, Sun D, Zhang X, Koiwa H. Salt Stress and CTD PHOSPHATASE-LIKE4 Mediate the Switch between Production of Small Nuclear RNAs and mRNAs. THE PLANT CELL 2017; 29:3214-3233. [PMID: 29093215 PMCID: PMC5757270 DOI: 10.1105/tpc.17.00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 05/23/2023]
Abstract
Phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) regulates transcription of protein-coding mRNAs and noncoding RNAs. CTD function in transcription of protein-coding RNAs has been studied extensively, but its role in plant noncoding RNA transcription remains obscure. Here, using Arabidopsis thaliana CTD PHOSPHATASE-LIKE4 knockdown lines (CPL4RNAi ), we showed that CPL4 functions in genome-wide, conditional production of 3'-extensions of small nuclear RNAs (snRNAs) and biogenesis of novel transcripts from protein-coding genes downstream of the snRNAs (snRNA-downstream protein-coding genes [snR-DPGs]). Production of snR-DPGs required the Pol II snRNA promoter (PIIsnR), and CPL4RNAi plants showed increased read-through of the snRNA 3'-end processing signal, leading to continuation of transcription downstream of the snRNA gene. We also discovered an unstable, intermediate-length RNA from the SMALL SCP1-LIKE PHOSPHATASE14 locus (imRNASSP14 ), whose expression originated from the 5' region of a protein-coding gene. Expression of the imRNASSP14 was driven by a PIIsnR and was conditionally 3'-extended to produce an mRNA. In the wild type, salt stress induced the snRNA-to-snR-DPG switch, which was associated with alterations of Pol II-CTD phosphorylation at the target loci. The snR-DPG transcripts occur widely in plants, suggesting that the transcriptional snRNA-to-snR-DPG switch may be a ubiquitous mechanism to regulate plant gene expression in response to environmental stresses.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/metabolism
- DNA Transposable Elements/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genetic Loci
- Luciferases/metabolism
- Models, Biological
- Mutation/genetics
- Nucleotide Motifs/genetics
- Open Reading Frames/genetics
- Phosphoprotein Phosphatases/metabolism
- Phosphorylation
- Plants, Genetically Modified
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/metabolism
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/genetics
- Salt Stress/physiology
- Transcription Factors/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| | - Di Sun
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| | - Xiuren Zhang
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
12
|
Egloff S, Vitali P, Tellier M, Raffel R, Murphy S, Kiss T. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression. EMBO J 2017; 36:934-948. [PMID: 28254838 DOI: 10.15252/embj.201695740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.
Collapse
Affiliation(s)
- Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Patrice Vitali
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Raoul Raffel
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse Cedex 9, France .,Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
13
|
Huang S, Balgi A, Pan Y, Li M, Zhang X, Du L, Zhou M, Roberge M, Li X. Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics. MOLECULAR PLANT 2016; 9:1620-1633. [PMID: 27756575 DOI: 10.1016/j.molp.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/01/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins serve as immune receptors in both plants and animals. To identify components required for NLR-mediated immunity, we designed and carried out a chemical genetics screen to search for small molecules that can alter immune responses in Arabidopsis thaliana. From 13 600 compounds, we identified Ro 8-4304 that was able to specifically suppress the severe autoimmune phenotypes of chs3-2D (chilling sensitive 3, 2D), including the arrested growth morphology and heightened PR (Pathogenesis Related) gene expression. Further, six Ro 8-4304 insensitive mutants were uncovered from the Ro 8-4304-insensitive mutant (rim) screen using a mutagenized chs3-2D population. Positional cloning revealed that rim1 encodes an allele of AtICln (I, currents; Cl, chloride; n, nucleotide). Genetic and biochemical analysis demonstrated that AtICln is in the same protein complex with the methylosome components small nuclear ribonucleoprotein D3b (SmD3b) and protein arginine methyltransferase 5 (PRMT5), which are required for the biogenesis of small nuclear ribonucleoproteins (snRNPs) involved in mRNA splicing. Double mutant analysis revealed that SmD3b is also involved in the sensitivity to Ro 8-4304, and the prmt5-1 chs3-2D double mutant is lethal. Loss of AtICln, SmD3b, or PRMT5 function results in enhanced disease resistance against the virulent oomycete pathogen Hyaloperonospora arabidopsidis Noco2, suggesting that mRNA splicing plays a previously unknown negative role in plant immunity. The successful implementation of a high-throughput chemical genetic screen and the identification of a small-molecule compound affecting plant immunity indicate that chemical genetics is a powerful tool to study whole-organism plant defense pathways.
Collapse
Affiliation(s)
- Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aruna Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yaping Pan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xiaoran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lilin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
14
|
Liu Y, Li S, Chen Y, Kimberlin AN, Cahoon EB, Yu B. snRNA 3' End Processing by a CPSF73-Containing Complex Essential for Development in Arabidopsis. PLoS Biol 2016; 14:e1002571. [PMID: 27780203 PMCID: PMC5079582 DOI: 10.1371/journal.pbio.1002571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023] Open
Abstract
Uridine-rich small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play essential roles in splicing. The biogenesis of the majority of snRNAs involves 3′ end endonucleolytic cleavage of the nascent transcript from the elongating DNA-dependent RNA ploymerase II. However, the protein factors responsible for this process remain elusive in plants. Here, we show that DEFECTIVE in snRNA PROCESSING 1 (DSP1) is an essential protein for snRNA 3′ end maturation in Arabidopsis. A hypomorphic dsp1-1 mutation causes pleiotropic developmental defects, impairs the 3′ end processing of snRNAs, increases the levels of snRNA primary transcripts (pre-snRNAs), and alters the occupancy of Pol II at snRNA loci. In addition, DSP1 binds snRNA loci and interacts with Pol-II in a DNA/RNA-dependent manner. We further show that DSP1 forms a conserved complex, which contains at least four additional proteins, to catalyze snRNA 3′ end maturation in Arabidopsis. The catalytic component of this complex is likely the cleavage and polyadenylation specificity factor 73 kDa-I (CSPF73-I), which is the nuclease cleaving the pre-mRNA 3′ end. However, the DSP1 complex does not affect pre-mRNA 3′ end cleavage, suggesting that plants may use different CPSF73-I-containing complexes to process snRNAs and pre-mRNAs. This study identifies a complex responsible for the snRNA 3′ end maturation in plants and uncovers a previously unknown function of CPSF73 in snRNA maturation. This study identifies a protein complex in plants that is responsible for the maturation of the 3′ ends of spliceosomal snRNAs and uncovers a novel function for the mRNA 3′ cleavage nuclease CPSF73. snRNAs form the RNA components of the spliceosome and are required for spliceosome formation and splicing. The generation of snRNAs involves 3′ end endonucleolytic cleavage of primary snRNA transcripts (pre-snRNAs). The factors responsible for pre-snRNA 3′ end cleavage are known in metazoans, but many of these components are missing in plants. Therefore, the proteins that catalyze pre-snRNA cleavage in plants and the mechanism leading to plant snRNA 3′ maturation are unknown. Here, we show that a DSP1 complex (containing DSP1, DSP2, DSP3, DSP4, and CPFS73-I) is responsible for pre-snRNA 3′ end cleavage in Arabidopsis. We further show that CPSF73-I, which is known to cleave the pre-mRNA 3′ end, is likely the enzyme also catalyzing snRNA 3′ end maturation in plants. Interestingly, plants appear to use two different CPSF73-I-containing complexes to catalyze the maturation of mRNAs and snRNAs. The study thereby identifies an snRNA-processing complex in plants and also elucidates a new role for CPSF73-I in this process.
Collapse
Affiliation(s)
- Yunfeng Liu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Shengjun Li
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yuan Chen
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, University of California-Berkeley, Albany, California, United States of America
| | - Athen N. Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rienzo M, Casamassimi A. Integrator complex and transcription regulation: Recent findings and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1269-80. [PMID: 27427483 DOI: 10.1016/j.bbagrm.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
In the last decade, a novel molecular complex has been added to the RNA polymerase II-mediated transcription machinery as one of the major components. This multiprotein complex, named Integrator, plays a pivotal role in the regulation of most RNA Polymerase II-dependent genes. This complex consists of at least 14 different subunits. However, studies investigating its structure and composition are still lacking. Although it was originally discovered as a complex implicated in the 3'-end formation of noncoding small nuclear RNAs, recent studies indicate additional roles for Integrator in transcription regulation, for example during transcription pause-release and elongation of polymerase, in the biogenesis of transcripts derived from enhancers, as well as in DNA and RNA metabolism for some of its components. Noteworthy, several subunits have been emerging to play roles during development and differentiation; more importantly, their alterations are likely to be involved in several human pathologies, including cancer and lung diseases.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
16
|
Laitem C, Zaborowska J, Tellier M, Yamaguchi Y, Cao Q, Egloff S, Handa H, Murphy S. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Transcription 2015; 6:79-90. [PMID: 26399478 PMCID: PMC4802788 DOI: 10.1080/21541264.2015.1095269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.
Collapse
Affiliation(s)
- Clélia Laitem
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK.,e Current address: Immunocore Limited; Milton Park , Abingdon , Oxon , UK
| | - Justyna Zaborowska
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Michael Tellier
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Yuki Yamaguchi
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Qingfu Cao
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Sylvain Egloff
- c Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote ; Toulouse , France
| | - Hiroshi Handa
- d Department of Nanoparticle Translational Research ; Tokyo Medical University ; Tokyo , Japan
| | - Shona Murphy
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| |
Collapse
|
17
|
Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat Struct Mol Biol 2015; 22:396-403. [PMID: 25849141 PMCID: PMC4424039 DOI: 10.1038/nsmb.3000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.
Collapse
Affiliation(s)
- Clélia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Nur F Isa
- 1] Sir William Dunn School of Pathology, University of Oxford, Oxford, UK. [2] Department of Biotechnology, International Islamic University Malaysia, Pahang, Malaysia
| | - Johann Kufs
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Dienstbier
- Computational Genomics Analysis and Training Programme, Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Baillat D, Wagner EJ. Integrator: surprisingly diverse functions in gene expression. Trends Biochem Sci 2015; 40:257-64. [PMID: 25882383 DOI: 10.1016/j.tibs.2015.03.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 01/06/2023]
Abstract
The discovery of the metazoan-specific Integrator (INT) complex represented a breakthrough in our understanding of noncoding U-rich small nuclear RNA (UsnRNA) maturation and has triggered a reevaluation of their biosynthesis mechanism. In the decade since, significant progress has been made in understanding the details of its recruitment, specificity, and assembly. While some discrepancies remain on how it interacts with the C-terminal domain (CTD) of the RNA polymerase II (RNAPII) and the details of its recruitment to UsnRNA genes, preliminary models have emerged. Recent provocative studies now implicate INT in the regulation of protein-coding gene transcription initiation and RNAPII pause-release, thereby broadening the scope of INT functions in gene expression regulation. We discuss the implications of these findings while putting them into the context of what is understood about INT function at UsnRNA genes.
Collapse
Affiliation(s)
- David Baillat
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Zaborowska J, Baumli S, Laitem C, O'Reilly D, Thomas PH, O'Hare P, Murphy S. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. PLoS One 2014; 9:e107654. [PMID: 25233083 PMCID: PMC4169428 DOI: 10.1371/journal.pone.0107654] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
The Herpes Simplex Virus 1 (HSV-1)-encoded ICP22 protein plays an important role in viral infection and affects expression of host cell genes. ICP22 is known to reduce the global level of serine (Ser)2 phosphorylation of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 heptapeptide repeats comprising the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II. Accordingly, ICP22 is thought to associate with and inhibit the activity of the positive-transcription elongation factor b (P-TEFb) pol II CTD Ser2 kinase. We show here that ICP22 causes loss of CTD Ser2 phosphorylation from pol II engaged in transcription of protein-coding genes following ectopic expression in HeLa cells and that recombinant ICP22 interacts with the CDK9 subunit of recombinant P-TEFb. ICP22 also interacts with pol II in vitro. Residues 193 to 256 of ICP22 are sufficient for interaction with CDK9 and inhibition of pol II CTD Ser2 phosphorylation but do not interact with pol II. These results indicate that discrete regions of ICP22 interact with either CDK9 or pol II and that ICP22 interacts directly with CDK9 to inhibit expression of host cell genes.
Collapse
Affiliation(s)
- Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sonja Baumli
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clelia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Peter H. Thomas
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter O'Hare
- Section of Virology, Faculty of Medicine, Imperial College, St Mary's Medical School, London, United Kingdom
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Yamamoto J, Hagiwara Y, Chiba K, Isobe T, Narita T, Handa H, Yamaguchi Y. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat Commun 2014; 5:4263. [PMID: 24968874 DOI: 10.1038/ncomms5263] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023] Open
Abstract
The elongation factors DSIF and NELF are responsible for promoter-proximal RNA polymerase II (Pol II) pausing. NELF is also involved in 3' processing of replication-dependent histone genes, which produce non-polyadenylated mRNAs. Here we show that DSIF and NELF contribute to the synthesis of small nuclear RNAs (snRNAs) through their association with Integrator, the large multisubunit complex responsible for 3' processing of pre-snRNAs. In HeLa cells, Pol II, Integrator, DSIF and NELF accumulate at the 3' end of the U1 snRNA gene. Knockdown of NELF results in misprocessing of U1, U2, U4 and U5 snRNAs, while DSIF is required for proper transcription of these genes. Knocking down NELF also disrupts transcription termination and induces the production of polyadenylated U1 transcripts caused by an enhanced recruitment of cleavage stimulation factor. Our results indicate that NELF plays a key role in determining the post-transcriptional fate of Pol II-transcribed genes.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuri Hagiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kunitoshi Chiba
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tomoyasu Isobe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Narita
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuki Yamaguchi
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan [2] PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
21
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
22
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
24
|
The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol Cell 2013; 51:493-505. [PMID: 23932780 DOI: 10.1016/j.molcel.2013.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022]
Abstract
The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the little elongation complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL.
Collapse
|
25
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
26
|
Peart N, Sataluri A, Baillat D, Wagner EJ. Non-mRNA 3' end formation: how the other half lives. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:491-506. [PMID: 23754627 DOI: 10.1002/wrna.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
The release of nascent RNA from transcribing RNA polymerase complexes is required for all further functions carried out by RNA molecules. The elements and processing machinery involved in 3' end formation therefore represent key determinants in the biogenesis and accumulation of cellular RNA. While these factors have been well-characterized for messenger RNA, recent work has elucidated analogous pathways for the 3' end formation of other important cellular RNA. Here, we discuss four specific cases of non-mRNA 3' end formation-metazoan small nuclear RNA, Saccharomyces cerevisiae small nuclear RNA, Schizosaccharomyces pombe telomerase RNA, and the mammalian MALAT1 large noncoding RNA-as models of alternative mechanisms to generate RNA 3' ends. Comparison of these disparate processing pathways reveals an emerging theme of evolutionary ingenuity. In some instances, evidence for the creation of a dedicated processing complex exists; while in others, components are utilized from the existing RNA processing machinery and modified to custom fit the unique needs of the RNA substrate. Regardless of the details of how non-mRNA 3' ends are formed, the lengths to which biological systems will go to release nascent transcripts from their DNA templates are fundamental for cell survival.
Collapse
Affiliation(s)
- Natoya Peart
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, TX, USA
| | | | | | | |
Collapse
|
27
|
Andersen PK, Jensen TH, Lykke-Andersen S. Making ends meet: coordination between RNA 3'-end processing and transcription initiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:233-46. [PMID: 23450686 DOI: 10.1002/wrna.1156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. Conversely, RNAPII is 'reset' as part of the 3'-end processing/termination event, thus preparing the enzyme for its next round of transcription--possibly on the same gene. There is both direct and circumstantial evidence for preferential recycling of RNAPII from the gene terminator back to its own promoter, which supposedly increases the efficiency of the transcription process under conditions where RNAPII levels are rate limiting. Here, we review differences and commonalities between initiation and 3'-end processing/termination processes on various types of RNAPII transcribed genes. In doing so, we discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
28
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
29
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
30
|
Chen J, Ezzeddine N, Waltenspiel B, Albrecht TR, Warren WD, Marzluff WF, Wagner EJ. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation. RNA (NEW YORK, N.Y.) 2012; 18:2148-2156. [PMID: 23097424 PMCID: PMC3504667 DOI: 10.1261/rna.035725.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
Formation of the 3' end of RNA polymerase II-transcribed snRNAs requires a poorly understood group of proteins called the Integrator complex. Here we used a fluorescence-based read-through reporter that expresses GFP in response to snRNA misprocessing and performed a genome-wide RNAi screen in Drosophila S2 cells to identify novel factors required for snRNA 3'-end formation. In addition to the known Integrator complex members, we identified Asunder and CG4785 as additional Integrator subunits. Functional and biochemical experiments revealed that Asunder and CG4785 are additional core members of the Integrator complex. We also identified a conserved requirement in both fly and human snRNA 3'-end processing for cyclin C and Cdk8 that is distinct from their function in the Mediator Cdk8 module. Moreover, we observed biochemical association between Integrator proteins and cyclin C/Cdk8, and that overexpression of a kinase-dead Cdk8 causes snRNA misprocessing. These data functionally define the Drosophila Integrator complex and demonstrate an additional function for cyclin C/Cdk8 unrelated to its function in Mediator.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Bernhard Waltenspiel
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - Todd R. Albrecht
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - William D. Warren
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
31
|
In vitro RNase and nucleic acid binding activities implicate coilin in U snRNA processing. PLoS One 2012; 7:e36300. [PMID: 22558428 PMCID: PMC3338655 DOI: 10.1371/journal.pone.0036300] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/04/2012] [Indexed: 11/21/2022] Open
Abstract
Coilin is known as the marker protein for Cajal bodies (CBs), subnuclear domains important for the biogenesis of small nuclear ribonucleoproteins (snRNPs) which function in pre-mRNA splicing. CBs associate non-randomly with U1 and U2 gene loci, which produce the small nuclear RNA (snRNA) component of the respective snRNP. Despite recognition as the CB marker protein, coilin is primarily nucleoplasmic, and the function of this fraction is not fully characterized. Here we show that coilin binds double stranded DNA and has RNase activity in vitro. U1 and U2 snRNAs undergo a processing event of the primary transcript prior to incorporation in the snRNP. We find that coilin displays RNase activity within the CU region of the U2 snRNA primary transcript in vitro, and that coilin knockdown results in accumulation of the 3′ pre-processed U1 and U2 snRNA. These findings present new characteristics of coilin in vitro, and suggest additional functions of the protein in vivo.
Collapse
|
32
|
Zaborowska J, Taylor A, Roeder RG, Murphy S. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes. Transcription 2012; 3:92-104. [PMID: 22441827 PMCID: PMC3337830 DOI: 10.4161/trns.19783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.
Collapse
Affiliation(s)
| | - Alice Taylor
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology; The Rockefeller University; New York, NY USA
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
33
|
Egloff S, Zaborowska J, Laitem C, Kiss T, Murphy S. Ser7 phosphorylation of the CTD recruits the RPAP2 Ser5 phosphatase to snRNA genes. Mol Cell 2011; 45:111-22. [PMID: 22137580 PMCID: PMC3262128 DOI: 10.1016/j.molcel.2011.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/07/2011] [Accepted: 09/30/2011] [Indexed: 11/30/2022]
Abstract
The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
34
|
Cazalla D, Xie M, Steitz JA. A primate herpesvirus uses the integrator complex to generate viral microRNAs. Mol Cell 2011; 43:982-92. [PMID: 21925386 PMCID: PMC3176678 DOI: 10.1016/j.molcel.2011.07.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
Herpesvirus saimiri (HVS) is a γ-herpesvirus that expresses Sm class U RNAs (HSURs) in latently infected marmoset T cells. By deep sequencing, we identified six HVS microRNAs (miRNAs) that are derived from three hairpin structures located immediately downstream of the 3' end processing signals of three of the HSURs. The viral miRNAs associate with Ago proteins and are biologically active. We confirmed that the expression of the two classes of viral noncoding RNAs is linked by identifying chimeric HSUR-pre-miRNA transcripts. We show that HVS miRNA biogenesis relies on cis-acting elements specifically required for synthesis and processing of Sm class RNAs. Knockdown of protein components in vivo and processing assays in vitro demonstrated that HVS does not utilize the Microprocessor complex that generates most host miRNAs. Instead, the Integrator complex cleaves to generate the 3' end of the HSUR and the pre-miRNA hairpin. Exportin-5 and Dicer are then required to generate mature viral miRNAs.
Collapse
Affiliation(s)
- Demián Cazalla
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
35
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Vierna J, Jensen KT, Martínez-Lage A, González-Tizón AM. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity (Edinb) 2011; 107:127-42. [PMID: 21364693 DOI: 10.1038/hdy.2010.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.
Collapse
Affiliation(s)
- J Vierna
- Department of Molecular and Cell Biology, Evolutionary Biology Group (GIBE), Universidade da Coruña, La Coruña, Spain.
| | | | | | | |
Collapse
|
37
|
Chiba K, Yamamoto J, Yamaguchi Y, Handa H. Promoter-proximal pausing and its release: molecular mechanisms and physiological functions. Exp Cell Res 2010; 316:2723-30. [PMID: 20541545 DOI: 10.1016/j.yexcr.2010.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/26/2010] [Accepted: 05/30/2010] [Indexed: 10/19/2022]
Abstract
For a long time, not much attention had been paid to post-initiation steps in transcription, because it was widely believed that transcriptional control was brought about almost entirely through the regulation of transcription initiation. However, it has become clear that the process of elongation is also tightly controlled by a collection of regulatory factors called transcription elongation factors and contributes, for example, to rapid induction of immediate-early genes and to the control over the viral life cycle. Transcription elongation has attracted attention also because this process is coupled with various RNA processing events. In this review, we discuss biochemical and physiological aspects of elongation control, particularly focusing on the role of the negative elongation factor NELF.
Collapse
Affiliation(s)
- Kunitoshi Chiba
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
38
|
Egloff S, Szczepaniak SA, Dienstbier M, Taylor A, Knight S, Murphy S. The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain. J Biol Chem 2010; 285:20564-9. [PMID: 20457598 PMCID: PMC2898319 DOI: 10.1074/jbc.m110.132530] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (pol II) comprises multiple tandem repeats of the heptapeptide Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This unusual structure serves as a platform for the binding of factors required for expression of pol II-transcribed genes, including the small nuclear RNA (snRNA) gene-specific Integrator complex. The pol II CTD specifically mediates recruitment of Integrator to the promoter of snRNA genes to activate transcription and direct 3′ end processing of the transcripts. Phosphorylation of the CTD and a serine in position 7 are necessary for Integrator recruitment. Here, we have further investigated the requirement of the serines in the CTD heptapeptide and their phosphorylation for Integrator binding. We show that both Ser2 and Ser7 of the CTD are required and that phosphorylation of these residues is necessary and sufficient for efficient binding. Using synthetic phosphopeptides, we have determined the pattern of the minimal Ser2/Ser7 double phosphorylation mark required for Integrator to interact with the CTD. This novel double phosphorylation mark is a new addition to the functional repertoire of the CTD code and may be a specific signal for snRNA gene expression.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Gérard MA, Myslinski E, Chylak N, Baudrey S, Krol A, Carbon P. The scaRNA2 is produced by an independent transcription unit and its processing is directed by the encoding region. Nucleic Acids Res 2010; 38:370-81. [PMID: 19906720 PMCID: PMC2811027 DOI: 10.1093/nar/gkp988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/12/2009] [Accepted: 10/15/2009] [Indexed: 01/30/2023] Open
Abstract
The C/D box scaRNA2 is predicted to guide specific 2'-O-methylation of U2 snRNA. In contrast to other SCARNA genes, SCARNA2 appears to be independently transcribed. By transient expression of SCARNA2-reporter gene constructs, we have demonstrated that this gene is transcribed by RNA polymerase II and that the promoter elements responsible for its transcription are contained within a 161 bp region upstream of the transcription start site. In mammals, we have identified four cross species conserved promoter elements, a TATA motif, an hStaf/ZNF143 binding site and two novel elements that are required for full promoter activity. Binding of the human hStaf/ZNF143 transcription factor to its target sequence is required for promoter activity, suggesting that hStaf/ZNF143 is a fundamental regulator of the SCARNA2 gene. We also showed that RNA polymerase II continues transcription past the 3'-end of the mature RNA, irrespective of the identity of the Pol II promoter. The 3'-end processing and accumulation are governed by the sole information contained in the scaRNA2 encoding region, the maturation occurring via a particular pathway incompatible with that of mRNA or snRNA production.
Collapse
Affiliation(s)
| | | | | | | | | | - Philippe Carbon
- Architecture et Réactivité de l'A;RN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
40
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
41
|
Chromatin structure is implicated in "late" elongation checkpoints on the U2 snRNA and beta-actin genes. Mol Cell Biol 2009; 29:4002-13. [PMID: 19451231 PMCID: PMC2704739 DOI: 10.1128/mcb.00189-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The negative elongation factor NELF is a key component of an early elongation checkpoint generally located within 100 bp of the transcription start site of protein-coding genes. Negotiation of this checkpoint and conversion to productive elongation require phosphorylation of the carboxy-terminal domain of RNA polymerase II (pol II), NELF, and DRB sensitivity-inducing factor (DSIF) by positive transcription elongation factor b (P-TEFb). P-TEFb is dispensable for transcription of the noncoding U2 snRNA genes, suggesting that a NELF-dependent checkpoint is absent. However, we find that NELF at the end of the 800-bp U2 gene transcription unit and RNA interference-mediated knockdown of NELF causes a termination defect. NELF is also associated 800 bp downstream of the transcription start site of the beta-actin gene, where a "late" P-TEFb-dependent checkpoint occurs. Interestingly, both genes have an extended nucleosome-depleted region up to the NELF-dependent control point. In both cases, transcription through this region is P-TEFb independent, implicating chromatin in the formation of the terminator/checkpoint. Furthermore, CTCF colocalizes with NELF on the U2 and beta-actin genes, raising the possibility that it helps the positioning and/or function of the NELF-dependent control point on these genes.
Collapse
|
42
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
43
|
Abstract
In addition to protein-coding genes, mammalian pol II (RNA polymerase II) transcribes independent genes for some non-coding RNAs, including the spliceosomal U1 and U2 snRNAs (small nuclear RNAs). snRNA genes differ from protein-coding genes in several key respects and some of the mechanisms involved in expression are gene-type-specific. For example, snRNA gene promoters contain an essential PSE (proximal sequence element) unique to these genes, the RNA-encoding regions contain no introns, elongation of transcription is P-TEFb (positive transcription elongation factor b)-independent and RNA 3'-end formation is directed by a 3'-box rather than a cleavage and polyadenylation signal. However, the CTD (C-terminal domain) of pol II closely couples transcription with RNA 5' and 3' processing in expression of both gene types. Recently, it was shown that snRNA promoter-specific recognition of the 3'-box RNA processing signal requires a novel phosphorylation mark on the pol II CTD. This new mark plays a critical role in the recruitment of the snRNA gene-specific RNA-processing complex, Integrator. These new findings provide the first example of a phosphorylation mark on the CTD heptapeptide that can be read in a gene-type-specific manner, reinforcing the notion of a CTD code. Here, we review the control of expression of snRNA genes from initiation to termination of transcription.
Collapse
|
44
|
Abstract
How transcription affects the way specific genes are arranged within the nucleus remains to be fully understood. We examine here whether transcription occurs in discrete sites (factories) containing the required machinery and whether these sites specialize in transcribing different genes. We cotransfected plasmids encoding a common origin of replication but different transcription units into cells, where they are assembled into minichromosomes that the cellular machinery replicates and transcribes. In cells containing thousands of minichromosomes, we found (using fluorescence in situ hybridization) active templates concentrated in only a few factories that transcribe particular units depending on the promoter type and the presence of an intron. Close proximity between similar transcription units, whether on two different minichromosomes or on host chromosomes and minichromosomes, is confirmed using chromosome conformation capture. We conclude that factories specialize in producing a particular type of transcript depending on promoter type and whether or not the gene contains an intron.
Collapse
Affiliation(s)
- Meng Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK
| | | |
Collapse
|
45
|
Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes. Biochem Soc Trans 2008; 36:537-9. [DOI: 10.1042/bst0360537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pol II (RNA polymerase II) transcribes the genes encoding proteins and non-coding snRNAs (small nuclear RNAs). The largest subunit of Pol II contains a distinctive CTD (C-terminal domain) comprising a repetitive heptad amino acid sequence, Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This domain is now known to play a major role in the processes of transcription and co-transcriptional RNA processing in expression of both snRNA and protein-coding genes. The heptapeptide repeat unit can be extensively modified in vivo and covalent modifications of the CTD during the transcription cycle result in the ordered recruitment of RNA-processing factors. The most studied modifications are the phosphorylation of the serine residues in position 2 and 5 (Ser2 and Ser5), which play an important role in the co-transcriptional processing of both mRNA and snRNA. An additional, recently identified CTD modification, phosphorylation of the serine residue in position 7 (Ser7) of the heptapeptide, is however specifically required for expression of snRNA genes. These findings provide interesting insights into the control of gene-specific Pol II function.
Collapse
|
46
|
Egloff S, Murphy S. Cracking the RNA polymerase II CTD code. Trends Genet 2008; 24:280-8. [PMID: 18457900 DOI: 10.1016/j.tig.2008.03.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/20/2008] [Accepted: 03/20/2008] [Indexed: 01/24/2023]
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II comprises multiple tandem conserved heptapeptide repeats, unique to this eukaryotic RNA polymerase. This unusual structure provides a docking platform for factors involved in various co-transcriptional events. Recruitment of the appropriate factors at different stages of the transcription cycle is achieved through changing patterns of post-translational modification of the CTD repeats, which create a readable 'code'. A new phosphorylation mark both expands the CTD code and provides the first example of a CTD signal read in a gene type-specific manner. How and when is the code written and read? How does it contribute to transcription and coordinate RNA processing?
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
47
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
48
|
Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 2007; 318:1777-9. [PMID: 18079403 DOI: 10.1126/science.1145989] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|