1
|
Mu X, Xu Y, Ma Y, Gao Z, Feng J, Wang M, Cao W, Guo L. Functional expression of proton pumps in Rhodobacter sphaeroides enhanced energy supply and photo-fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2025; 432:132666. [PMID: 40368310 DOI: 10.1016/j.biortech.2025.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/10/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Photo-fermentative hydrogen production by Rhodobacter sphaeroides (R. sphaeroides) is an energy-consuming process. In this study, a proton-pumping channel (Proteorhodopsin (PR) or Gloeobacter rhodopsin (GR)) was introduced into R. sphaeroides HY01. The results indicated that PR could enhance the biomass of the strain during periods of resource scarcity. The cumulative hydrogen yield of mutant strains (HY01-PR and HY01-GR) increased by 66 % and 75 % compared with HY01 when glucose was fed, respectively. Notably, HY01-GR demonstrated tolerance to high acetate concentrations (93 mM). Moreover, the introduction of proton-pump resulted in a reduction of catabolism carbon flow and the accumulation of various metabolites. This study also confirmed that proton pump overexpression generated more ATP in the late stages of fermentation by coupling ATP synthase. Overall, these findings suggest that proton pumps could potentially be applied to photosynthetic organisms to regulate growth metabolism and enhance the production of valuable compounds.
Collapse
Affiliation(s)
- Xuefang Mu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China
| | - Yuntong Xu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China
| | - Yu Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China
| | - Zixuan Gao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China
| | - Jiali Feng
- College of Biology and Oceanography, Weifang University, Weifang 261061 Shandong, PR China
| | - Minmin Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China.
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Rood, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Govorunova EG, Sineshchekov OA, Li H, Gou Y, Chen H, Yang S, Wang Y, Mitchell S, Palmateer A, Brown LS, St-Pierre F, Xue M, Spudich JL. Blue-shifted ancyromonad channelrhodopsins for multiplex optogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639930. [PMID: 40060592 PMCID: PMC11888301 DOI: 10.1101/2025.02.24.639930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Light-gated ion channels from protists (channelrhodopsins or ChRs) are optogenetic tools widely used for controlling neurons and cardiomyocytes. Multiplex optogenetic applications require spectrally separated molecules that must be found in nature, as they are difficult to engineer without disrupting channel function. Scanning numerous sequence databases, we identified three robust naturally blue-shifted ChRs from ancyromonads. They form a separate branch on the phylogenetic tree and contain residue motifs characteristic of anion ChRs (ACRs). However, only two conduct chloride, whereas the close Nutomonas longa homolog (peak absorption at ~440 nm) generates inward cation currents in mammalian cells under physiological conditions, significantly exceeding those by previously known tools. Measurements of transient absorption changes and pH titration of purified Ancyromonas sigmoides ACR (AnsACR) combined with mutant analysis revealed the roles of the residues in the photoactive site. Both ancyromonad ACRs allowed optogenetic silencing of mouse cortical neurons in brain slices. AnsACR expression in the cholinergic neurons enabled photoinhibition of pharyngeal muscle contraction in live worms. AnsACR could be activated by near-infrared two-photon illumination, which is required to control specific neurons in thick tissue. Our results improved the mechanistic understanding of light-gated channel function and expanded the optogenetic toolkit. Impact statement Ancyromonad channelrhodopsins advance our understanding of ionic selectivity and wavelength regulation in light-gated ion channels and also expand the toolkit for all-optical electrophysiology.
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yueyang Gou
- Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston, TX 77030, USA
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston, TX 77030, USA
| | - Shuyuan Yang
- Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
| | - Yumei Wang
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Stephen Mitchell
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph; Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Palmateer
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph; Guelph, Ontario N1G 2W1, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph; Guelph, Ontario N1G 2W1, Canada
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 7705, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
3
|
Cooney EC, Jacobson DM, Wolfe GV, Bright KJ, Saldarriaga JF, Keeling PJ, Leander BS, Strom SL. Morphology, behavior, and phylogenomics of Oxytoxum lohmannii, Dinoflagellata. J Eukaryot Microbiol 2024; 71:e13050. [PMID: 39019843 PMCID: PMC11603288 DOI: 10.1111/jeu.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
Dinoflagellates are an abundant and diverse group of protists representing a wealth of unique biology and ecology. While many dinoflagellates are photosynthetic or mixotrophic, many taxa are heterotrophs, often with complex feeding strategies. Compared to their photosynthetic counterparts, heterotrophic dinoflagellates remain understudied, as they are difficult to culture. One exception, a long-cultured isolate originally classified as Amphidinium but recently reclassified as Oxytoxum, has been the subject of a number of feeding, growth, and chemosensory studies. This lineage was recently determined to be closely related to Prorocentrum using phylogenetics of ribosomal RNA gene sequences, but the exact nature of this relationship remains unresolved. Using transcriptomes sequenced from culture and three single cells from the environment, we produce a robust phylogeny of 242 genes, revealing Oxytoxum is likely sister to the Prorocentrum clade, rather than nested within it. Molecular investigations uncover evidence of a reduced, nonphotosynthetic plastid and proteorhodopsin, a photoactive proton pump acquired horizontally from bacteria. We describe the ultrastructure of O. lohmannii, including densely packed trichocysts, and a new type of mucocyst. We observe that O. lohmannii feeds preferentially on cryptophytes using myzocytosis, but can also feed on various phytoflagellates using conventional phagocytosis. O. lohmannii is amenable to culture, providing an opportunity to better study heterotrophic dinoflagellate biology and feeding ecology.
Collapse
Affiliation(s)
- Elizabeth C. Cooney
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Gordon V. Wolfe
- Department of Biological SciencesCalifornia State University, ChicoChicoCaliforniaUSA
| | - Kelley J. Bright
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| | - Juan F. Saldarriaga
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Patrick J. Keeling
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brian S. Leander
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Suzanne L. Strom
- Shannon Point Marine CenterWestern Washington UniversityAnacortesUSA
| |
Collapse
|
4
|
Billings KR, Faramarzi S, Mertz B. Long-Time Scale Simulations Reveal Key Dynamics That Drive the Onset of the N State in the Proteorhodopsin Photocycle. J Phys Chem B 2024; 128:10427-10433. [PMID: 39387601 PMCID: PMC11514016 DOI: 10.1021/acs.jpcb.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Proteorhodopsin (PR) is a microbial proton pump that plays a significant role in phototrophy of bacteria in marine environments. Fundamental understanding of the structure-function relationship that drives proton pumping in PR has largely been elusive due to a lack of high-resolution structures of the photointermediates in the PR photocycle. Extending upon previous work, we used long-time scale molecular dynamics (MD) simulations to characterize the M state of the blue variant of PR, which represents the first proton transfer that takes place in the photocycle. Several notable structural changes occur in the M state that are hallmarks of subsequent steps in the PR photocycle, indicating that although this protein is often compared to the canonical microbial rhodopsins, such as bacteriorhodopsin, PR possesses characteristics that make it distinct among the rapidly increasing and widely variable catalog of microbial rhodopsins.
Collapse
Affiliation(s)
- Kyle R. Billings
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Sadegh Faramarzi
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Blake Mertz
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Alivexis, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
5
|
Thomy J, Schvarcz CR, McBeain KA, Edwards KF, Steward GF. Eukaryotic viruses encode the ribosomal protein eL40. NPJ VIRUSES 2024; 2:51. [PMID: 39464202 PMCID: PMC11499249 DOI: 10.1038/s44298-024-00060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Viruses in the phylum Nucleocytoviricota are large, complex and have an exceptionally diverse metabolic repertoire. Some encode hundreds of products involved in the translation of mRNA into protein, but none was known to encode any of the proteins in ribosomes, the central engines of translation. With the discovery of the eL40 gene in FloV-SA2, we report the first example of a eukaryotic virus encoding a ribosomal protein and show that this gene is also present and expressed in other uncultivated marine giant viruses. FloV-SA2 also encodes a "group II" viral rhodopsin, a viral light-activated protein of unknown function previously only reported in metagenomes. FloV-SA2 is thus a valuable model system for investigating new mechanisms by which viruses manipulate eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Julie Thomy
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Christopher R. Schvarcz
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kelsey A. McBeain
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Kyle F. Edwards
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Grieg F. Steward
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
6
|
Li S, Yin L, Duan L, Li J, Wang P, Gao S, Xian W, Li W. Diversity, abundance, and expression of proteorhodopsin genes in the northern South China Sea. ENVIRONMENTAL RESEARCH 2024; 259:119514. [PMID: 38950812 DOI: 10.1016/j.envres.2024.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Proteorhodopsins have been suggested as an important strategy among phototrophs to capture solar energy in marine environments. The goals of this study was to investigate the diversity of proteorhodopsin genes and to explore their abundance, distribution, and expression in the coastal surface waters of the northern South China Sea, one of the largest marginal seas of the western North Pacific Ocean. Using 21 metagenomes, we recovered proteorhodopsin genes from a wide range of prokaryotic taxa, and chlorophyll a contributed significantly to the community composition of proteorhodopsin-containing microbes. Most proteorhodopsin sequences were predicted to encode green light-absorbing proton pumps and green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones. The variations in the conserved residues involved in ion pumping and several uncharacterized proteorhodopsins were observed. The gene abundance pattern of proteorhodopsin types were significantly influenced by the levels of total organic carbon and soluble reactive phosphorus. Gene expression analysis confirmed the importance of proteorhodopsin-based phototrophy and revealed different expressional patterns among major phyla. In tandem, we screened 2295 metagenome-assembled genomes to describe the taxonomic distribution of proteorhodopsins. Bacteroidota are the key lineages encoding proteorhodopsins, but proteorhodopsins were predicated from members of Proteobacteria, Marinisomatota, Myxococcota, Verrucomicrobiota and Thermoplasmatota. Our study expanded the diversity of proteorhodopsins and improve our understanding on the significance of proteorhodopsin-mediated phototrophy in the marine ecosystem.
Collapse
Affiliation(s)
- Shanhui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingzi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jialing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaoming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wendong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences & School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Kondo K, Ohtake R, Nakano S, Terashima M, Kojima H, Fukui M, Demura M, Kikukawa T, Tsukamoto T. Contribution of Proteorhodopsin to Light-Dependent Biological Responses in Hymenobacter nivis P3 T Isolated from Red Snow in Antarctica. Biochemistry 2024; 63:2257-2265. [PMID: 39196915 DOI: 10.1021/acs.biochem.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Proteorhodopsin (PR) is a major family of microbial rhodopsins that function as light-driven outward proton pumps. PR is now widely recognized for its ecological importance as a molecule responsible for solar energy flow in various ecosystems on the earth. However, few concrete examples of the actual use of light by natural microorganisms via PR have been demonstrated experimentally. This study reveals one example of that in a cryophilic bacterium Hymenobacter nivis P3T isolated from red snow in Antarctica. The results demonstrate light-dependent biochemical and biological responses in H. nivis cells, such as the proton pump activity of H. nivis PR (HnPR), which leads to the production of proton motive force, cellular ATP production, and cell growth. In addition, the results of this study demonstrate the photochemical properties of a PR, namely, HnPR, in the membrane of a natural host bacterium. The photocycle of HnPR was much faster than other PRs even at 5 °C, indicating that the proton pump function of HnPR has adapted to the low-temperature environment of Antarctica. Although it is well-known that PR helps natural host microorganisms to use light energy, this study provides another concrete example for understanding the biological role of PR by demonstrating the link between the molecular functions of PR and the light-dependent biochemical and biological responses of a PR-bearing host.
Collapse
Affiliation(s)
- Kaori Kondo
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryouhei Ohtake
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Nakano
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Nishikino T, Sugimoto T, Kandori H. Low-temperature FTIR spectroscopy of the L/Q switch of proteorhodopsin. Phys Chem Chem Phys 2024; 26:22959-22967. [PMID: 39171479 DOI: 10.1039/d4cp02248c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Rhodopsins are photoreceptive membrane proteins containing a retinal chromophore, and the color tuning mechanism in rhodopsins is one of the important topics. Color switch is a color-determining residue at the same position, where replacement of red- and blue-shifting amino acids in two wild-type rhodopsins causes spectral blue- and red-shifts, respectively. The first and most famous color switch in microbial rhodopsins is the L/Q switch in proteorhodopsins (PRs). Green- or blue-absorbing PR (GPR or BPR) contains Leu and Gln at position 105 of the C-helix (TM3), respectively, and their replacement converted absorbing colors. The L/Q switch enables bacteria to absorb green or blue light in shallow or deep ocean waters, respectively. Although Gln and Leu are hydrophilic and hydrophobic residues, respectively, a comprehensive mutation study of position 105 in GPR revealed that the λmax correlated with the volume of residues, not the hydropathy index. To gain structural insights into the mechanism, we applied low-temperature FTIR spectroscopy of L105Q GPR, and the obtained spectra were compared with those of GPR and BPR. The difference FTIR spectra of L105Q GPR were similar to those of BPR, not GPR, implying that the L/Q switch converts the GPR structure into a BPR structure in terms of the local environments of the retinal chromophore. It includes retinal skeletal vibration, hydrogen-bonding strength of the protonated Schiff base, amide-A vibration (peptide backbone), and protein-bound water molecules. Consequently color is switched accompanying such structural alterations, and known as the L/Q switch.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Mao J, Jin X, Shi M, Heidenreich D, Brown LJ, Brown RCD, Lelli M, He X, Glaubitz C. Molecular mechanisms and evolutionary robustness of a color switch in proteorhodopsins. SCIENCE ADVANCES 2024; 10:eadj0384. [PMID: 38266078 PMCID: PMC10807816 DOI: 10.1126/sciadv.adj0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Proteorhodopsins are widely distributed photoreceptors from marine bacteria. Their discovery revealed a high degree of evolutionary adaptation to ambient light, resulting in blue- and green-absorbing variants that correlate with a conserved glutamine/leucine at position 105. On the basis of an integrated approach combining sensitivity-enhanced solid-state nuclear magnetic resonance (ssNMR) spectroscopy and linear-scaling quantum mechanics/molecular mechanics (QM/MM) methods, this single residue is shown to be responsible for a variety of synergistically coupled structural and electrostatic changes along the retinal polyene chain, ionone ring, and within the binding pocket. They collectively explain the observed color shift. Furthermore, analysis of the differences in chemical shift between nuclei within the same residues in green and blue proteorhodopsins also reveals a correlation with the respective degree of conservation. Our data show that the highly conserved color change mainly affects other highly conserved residues, illustrating a high degree of robustness of the color phenotype to sequence variation.
Collapse
Affiliation(s)
- Jiafei Mao
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - David Heidenreich
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Lynda J. Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| | - Richard C. D. Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| | - Moreno Lelli
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- New York University–East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Hasegawa-Takano M, Hosaka T, Kojima K, Nishimura Y, Kurihara M, Nakajima Y, Ishizuka-Katsura Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria. THE ISME JOURNAL 2024; 18:wrae175. [PMID: 39485071 PMCID: PMC11528372 DOI: 10.1093/ismejo/wrae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
Collapse
Affiliation(s)
- Masumi Hasegawa-Takano
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Marie Kurihara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237–0061, Japan
| | - Yoshiko Ishizuka-Katsura
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa 230–0045, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700–8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277–8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277–8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
11
|
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, Fuchs BM. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre. THE ISME JOURNAL 2024; 18:wrae155. [PMID: 39096506 PMCID: PMC11366302 DOI: 10.1093/ismejo/wrae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024]
Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
Collapse
Affiliation(s)
- Monike Oggerin
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Jan Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Daniela Voß
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
| | - Marina García-Llorca
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Oliver Zielinski
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| |
Collapse
|
12
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
13
|
Andrew SM, Moreno CM, Plumb K, Hassanzadeh B, Gomez-Consarnau L, Smith SN, Schofield O, Yoshizawa S, Fujiwara T, Sunda WG, Hopkinson BM, Septer AN, Marchetti A. Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton. Proc Natl Acad Sci U S A 2023; 120:e2307638120. [PMID: 37722052 PMCID: PMC10523587 DOI: 10.1073/pnas.2307638120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/13/2023] [Indexed: 09/20/2023] Open
Abstract
Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.
Collapse
Affiliation(s)
- Sarah M. Andrew
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Carly M. Moreno
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kaylie Plumb
- Department of Marine Sciences, University of Georgia, Athens, GA30602
| | - Babak Hassanzadeh
- Department of Biological Sciences, University of Southern California, Log Angeles, CA90089
| | - Laura Gomez-Consarnau
- Department of Biological Sciences, University of Southern California, Log Angeles, CA90089
- Departamento de Oceanografía Biológica, Centro de Investigación Científca y de Educación Superior de Ensenada, Ensenada, Baja California22860, Mexico
| | - Stephanie N. Smith
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Oscar Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ08901
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
| | - Takayoshi Fujiwara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
| | - William G. Sunda
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | | | - Alecia N. Septer
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Adrian Marchetti
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
14
|
Ma M, Li H, Wang C, Li T, Wang J, Yuan H, Yu L, Wang J, Li L, Lin S. A comparative study reveals the relative importance of prokaryotic and eukaryotic proton pump rhodopsins in a subtropical marginal sea. ISME COMMUNICATIONS 2023; 3:79. [PMID: 37596487 PMCID: PMC10439184 DOI: 10.1038/s43705-023-00292-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Proton-pump rhodopsin (PPR) in marine microbes can convert solar energy to bioavailable chemical energy. Whereas bacterial PPR has been extensively studied, counterparts in microeukaryotes are less explored, and the relative importance of the two groups is poorly understood. Here, we sequenced whole-assemblage metatranscriptomes and investigated the diversity and expression dynamics of PPR in microbial eukaryotes and prokaryotes at a continental shelf and a slope site in the northern South China Sea. Data showed the whole PPRs transcript pool was dominated by Proteorhodopsins and Xanthorhodopsins, followed by Bacteriorhodopsin-like proteins, dominantly contributed by prokaryotes both in the number and expression levels of PPR unigenes, although at the continental slope station, microeukaryotes and prokaryotes contributed similarly in transcript abundance. Furthermore, eukaryotic PPRs are mainly contributed by dinoflagellates and showed significant correlation with nutrient concentrations. Green light-absorbing PPRs were mainly distributed in >3 μm organisms (including microeukaryotes and their associated bacteria), especially at surface layer at the shelf station, whereas blue light-absorbing PPRs dominated the <3 μm (mainly bacterial) communities at both study sites, especially at deeper layers at the slope station. Our study portrays a comparative PPR genotype and expression landscape for prokaryotes and eukaryotes in a subtropical marginal sea, suggesting PPR's role in niche differentiation and adaptation among marine microbes.
Collapse
Affiliation(s)
- Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
15
|
Chang CF, Konno M, Inoue K, Tahara T. Effects of the Unique Chromophore-Protein Interactions on the Primary Photoreaction of Schizorhodopsin. J Phys Chem Lett 2023; 14:7083-7091. [PMID: 37527812 PMCID: PMC10424672 DOI: 10.1021/acs.jpclett.3c01133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Schizorhodopsin (SzR) is a newly discovered microbial rhodopsin subfamily, functioning as an unusual inward-proton (H+) pump upon absorbing light. Two major protein structural differences around the chromophore have been found, resulting in unique chromophore-protein interactions that may be responsible for its unusual function. Therefore, it is important to elucidate how such a difference affects the primary photoreaction dynamics. We study the primary dynamics of SzR and its C75S mutant by femtosecond time-resolved absorption (TA) spectroscopy. The obtained TA data revealed that the photoisomerization in SzR proceeds more slowly and less efficiently than typical outward H+-pumping rhodopsins and that it further slows in the C75S mutant. We performed impulsive stimulated Raman measurements to clarify the effect of the cysteine residue on the retinal chromophore and found that interactions with Cys75 flatten the retinal chromophore of wild-type SzR. We discuss the effect of the unique chromophore-cysteine interaction on the retinal isomerization dynamics and structure of SzR.
Collapse
Affiliation(s)
- Chun-Fu Chang
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Masae Konno
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- PRESTO, Japan
Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
16
|
Meng X, Ganapathy S, van Roemburg L, Post M, Brinks D. Voltage Imaging with Engineered Proton-Pumping Rhodopsins: Insights from the Proton Transfer Pathway. ACS PHYSICAL CHEMISTRY AU 2023; 3:320-333. [PMID: 37520318 PMCID: PMC10375888 DOI: 10.1021/acsphyschemau.3c00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 08/01/2023]
Abstract
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage of the indicator used. Engineered microbial rhodopsins form a GEVI subclass known for their high voltage sensitivity and fast response kinetics. Here we review the essential aspects of microbial rhodopsin photocycles that are critical to understanding the mechanisms of voltage sensitivity in these proteins and link them to insights from efforts to create faster, brighter and more sensitive microbial rhodopsin-based GEVIs.
Collapse
Affiliation(s)
- Xin Meng
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Srividya Ganapathy
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Pediatrics & Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, United States
| | - Lars van Roemburg
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Marco Post
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
| | - Daan Brinks
- Department
of Imaging Physics, Delft University of
Technology, 2628 CJ Delft, The
Netherlands
- Department
of Molecular Genetics, Erasmus University
Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
17
|
Konrad KR, Gao S, Zurbriggen MD, Nagel G. Optogenetic Methods in Plant Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:313-339. [PMID: 37216203 DOI: 10.1146/annurev-arplant-071122-094840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optogenetics is a technique employing natural or genetically engineered photoreceptors in transgene organisms to manipulate biological activities with light. Light can be turned on or off, and adjusting its intensity and duration allows optogenetic fine-tuning of cellular processes in a noninvasive and spatiotemporally resolved manner. Since the introduction of Channelrhodopsin-2 and phytochrome-based switches nearly 20 years ago, optogenetic tools have been applied in a variety of model organisms with enormous success, but rarely in plants. For a long time, the dependence of plant growth on light and the absence of retinal, the rhodopsin chromophore, prevented the establishment of plant optogenetics until recent progress overcame these difficulties. We summarize the recent results of work in the field to control plant growth and cellular motion via green light-gated ion channels and present successful applications to light-control gene expression with single or combined photoswitches in plants. Furthermore, we highlight the technical requirements and options for future plant optogenetic research.
Collapse
Affiliation(s)
- Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Würzburg, Germany;
| | - Shiqiang Gao
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany;
| | - Georg Nagel
- Department of Neurophysiology, Institute of Physiology, Biocenter, University of Würzburg, Würzburg, Germany; ,
| |
Collapse
|
18
|
Chazan A, Das I, Fujiwara T, Murakoshi S, Rozenberg A, Molina-Márquez A, Sano FK, Tanaka T, Gómez-Villegas P, Larom S, Pushkarev A, Malakar P, Hasegawa M, Tsukamoto Y, Ishizuka T, Konno M, Nagata T, Mizuno Y, Katayama K, Abe-Yoshizumi R, Ruhman S, Inoue K, Kandori H, León R, Shihoya W, Yoshizawa S, Sheves M, Nureki O, Béjà O. Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature 2023; 615:535-540. [PMID: 36859551 DOI: 10.1038/s41586-023-05774-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.
Collapse
Affiliation(s)
- Ariel Chazan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Takayoshi Fujiwara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Shunya Murakoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ana Molina-Márquez
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, Huelva, Spain
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, Huelva, Spain
| | - Shirley Larom
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alina Pushkarev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masumi Hasegawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Yuya Tsukamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Tomohiro Ishizuka
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Yosuke Mizuno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Rosa León
- Laboratory of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, Huelva, Spain
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
19
|
Westermann M, Hoischen C, Wöhlbrand L, Rabus R, Rhiel E. Light and prey influence the abundances of two rhodopsins in the dinoflagellate Oxyrrhis marina. PROTOPLASMA 2023; 260:529-544. [PMID: 35871098 PMCID: PMC9931815 DOI: 10.1007/s00709-022-01795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Antisera were raised against the C-terminal amino acid sequences of the two rhodopsins ADY17806 and AEA49880 of Oxyrrhis marina. The antisera and affinity-purified antibodies thereof were used in western immunoblotting experiments of total cell protein fractions from cultures grown either in darkness or in white, red, green, or blue light. Furthermore, the rhodopsin abundances were profiled in cultures fed with yeast or the prasinophyte Pyramimonas grossii. The immunosignals of ADY17806 and AEA49880 were similar when O. marina was grown in white, green, or blue light. Signal intensities were lower under conditions of red light and lowest in darkness. Higher amounts were registered for both rhodopsins when O. marina was fed with yeast compared to P. grossii. Furthermore, total cell protein of cultures of O. marina grown under all cultivation conditions was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, followed by tryptic in-gel digestion and mass spectrometric analysis of the 25-kDa protein bands. The rhodopsin ADY17809 was detected in all samples of the light quality experiments and in 14 of the 16 samples of the prey quality experiments. The rhodopsin ABV22427 was not detected in one sample of the light quality experiments. It was detected in 15 of the 16 samples of the prey quality experiments. Peptide fragments of the other rhodopsins were detected less often, and no clear distribution pattern was evident with respect to the applied light quality or offered prey, indicating that none of them was exclusively formed under a distinct light regime or when feeding on yeast or the prasinophyte. Fluorescence light microscopy using the affinity-purified antibodies revealed significant labeling of the cell periphery and cell internal structures, which resembled vacuoles, tiny vesicles, and rather compact structures. Immunolabeling electron microscopy strengthened these results and showed that the cytoplasmic membrane, putative lysosome membranes, membranes encircling the food vacuole, and birefringent bodies became labeled.
Collapse
Affiliation(s)
- Martin Westermann
- Electron Microscopy Center of the Jena University Hospital, Friedrich-Schiller-University Jena, Ziegelmühlenweg 1, 07743, Jena, Germany
| | - Christian Hoischen
- CF Imaging, Leibniz Institute On Aging, Fritz-Lipmann-Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, P.O.B. 2503, 26129, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, P.O.B. 2503, 26129, Oldenburg, Germany
| | - Erhard Rhiel
- Plankton Ecology, Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, P.O.B. 2503, 26129, Oldenburg, Germany.
| |
Collapse
|
20
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Roda-Garcia JJ, Haro-Moreno JM, Rodriguez-Valera F, Almagro-Moreno S, López-Pérez M. Single-amplified genomes reveal most streamlined free-living marine bacteria. Environ Microbiol 2023. [PMID: 36755376 DOI: 10.1111/1462-2920.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.
Collapse
Affiliation(s)
- Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, USA
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
22
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
23
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Mechanism of the Irreversible Transition from Pentamer to Monomer at pH 2 in a Blue Proteorhodopsin. Biochemistry 2022; 61:1936-1944. [PMID: 36007110 DOI: 10.1021/acs.biochem.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
24
|
Carotenoid binding in Gloeobacteria rhodopsin provides insights into divergent evolution of xanthorhodopsin types. Commun Biol 2022; 5:512. [PMID: 35637261 PMCID: PMC9151804 DOI: 10.1038/s42003-022-03429-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022] Open
Abstract
The position of carotenoid in xanthorhodopsin has been elucidated. However, a challenging expression of this opsin and a complex biosynthesis carotenoid in the laboratory hold back the insightful study of this rhodopsin. Here, we demonstrated co-expression of the xanthorhodopsin type isolated from Gloeobacter violaceus PCC 7421-Gloeobacter rhodopsin (GR) with a biosynthesized keto-carotenoid (canthaxanthin) targeting the carotenoid binding site. Direct mutation-induced changes in carotenoid-rhodopsin interaction revealed three crucial features: (1) carotenoid locked motif (CLM), (2) carotenoid aligned motif (CAM), and color tuning serines (CTS). Our single mutation results at 178 position (G178W) confirmed inhibition of carotenoid binding; however, the mutants showed better stability and proton pumping, which was also observed in the case of carotenoid binding characteristics. These effects demonstrated an adaptation of microbial rhodopsin that diverges from carotenoid harboring, along with expression in the dinoflagellate Pyrocystis lunula rhodopsin and the evolutionary substitution model. The study highlights a critical position of the carotenoid binding site, which significantly allows another protein engineering approach in the microbial rhodopsin family.
Collapse
|
25
|
Church JR, Amoyal GS, Borin VA, Adam S, Olsen JMH, Schapiro I. Deciphering the Spectral Tuning Mechanism in Proteorhodopsin: The Dominant Role of Electrostatics Instead of Chromophore Geometry. Chemistry 2022; 28:e202200139. [PMID: 35307890 PMCID: PMC9325082 DOI: 10.1002/chem.202200139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue‐absorbing proteorhodopsin (BPR) and green‐absorbing proteorhodopsin (GPR). This blue/green color‐shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14−C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.
Collapse
Affiliation(s)
- Jonathan R Church
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Gil S Amoyal
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Veniamin A Borin
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Suliman Adam
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | | | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
26
|
Sephus CD, Fer E, Garcia AK, Adam ZR, Schwieterman EW, Kaçar B. Earliest photic zone niches probed by ancestral microbial rhodopsins. Mol Biol Evol 2022; 39:6582242. [PMID: 35524714 PMCID: PMC9117797 DOI: 10.1093/molbev/msac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For billions of years, life has continuously adapted to dynamic physical conditions near the Earth’s surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth’s earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as “paleosensors” for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.
Collapse
Affiliation(s)
- Cathryn D Sephus
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Evrim Fer
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary R Adam
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Edward W Schwieterman
- Blue Marble Space Institute of Science, Seattle, WA, USA.,Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | - Betül Kaçar
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Shim JG, Kang NR, Chuon K, Cho SG, Meas S, Jung KH. Mutational analyses identify a single amino acid critical for color tuning in proteorhodopsins. FEBS Lett 2022; 596:784-795. [PMID: 35090057 DOI: 10.1002/1873-3468.14297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Microbial rhodopsins are light-activated proteins that contain seven transmembrane alpha-helices. Spectral tuning in microbial rhodopsins is a useful optogenetic tool. In this study, we report a new site that controls spectral tuning. In the proteorhodopsins ISR34 and ISR36, a single amino-acid substitution at Cys189 caused an absorption maximum shift of 44 nm, indicating spectral tuning at a specific site. Comparison of single amino acid substitutions was conducted using photochemical and photobiological approaches. The maximum absorption for red-shift was measured for mutations at positions 189 and 105 in ISR34, both residues being equally important. Structural changes resulting from amino acid substitutions are related to pKa values, pumping activity, and spectral tuning.
Collapse
Affiliation(s)
- Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Na-Rae Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Korea
| |
Collapse
|
28
|
Abstract
A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean.
Collapse
Affiliation(s)
- David A Hutchins
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
| | - Sergio A Sañudo-Wilhelmy
- Marine and Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA;
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, USA;
| |
Collapse
|
29
|
Sumikawa M, Abe-Yoshizumi R, Uchihashi T, Kandori H. Molecular Origin of the Anomalous pH Effect in Blue Proteorhodopsin. J Phys Chem Lett 2021; 12:12225-12229. [PMID: 34928158 DOI: 10.1021/acs.jpclett.1c03355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified into blue-absorbing PR (BPR; λmax ∼ 490 nm) and green-absorbing PR (GPR; λmax ∼ 525 nm). We previously presented conversion of BPR into GPR using the anomalous pH effect. When we lowered the pH of a BPR to pH 2 and returned to pH 7, the protein absorbs green light. This suggests the existence of the critical point of the irreversible process at around pH 2, but the mechanism of anomalous pH effect was fully unknown. The present size exclusion chromatography (SEC) and atomic force microscope (AFM) analysis of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect because of the conversion from pentamer to monomer. The different pKa of the Schiff base counterion between pentamer and monomer leads to different colors at the same pH.
Collapse
Affiliation(s)
- Mizuki Sumikawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
30
|
Kindler GS, Wong HL, Larkum AWD, Johnson M, MacLeod FI, Burns BP. Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiol Ecol 2021; 98:6448473. [PMID: 34865013 DOI: 10.1093/femsec/fiab158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The present study describes for the first time the community composition and functional potential of the microbial mats found in the supratidal, gypsum-rich, and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput metagenomic sequencing of total mat community DNA and complementary analyses using hyperspectral confocal microscopy. Mat communities were dominated by Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group (11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of potentially novel microorganisms including members from the DPANN, Asgard archaea, and Candidate Phyla Radiation, with highest diversity found in the lower regions (∼14-20 mm depth) of the mat. In addition to pathways for major metabolic cycles, a range of putative rhodopsins with previously uncharacterized motifs and functions were identified along with heliorhodopsins and putative schizorhodopsins. Critical microbial interactions were also inferred, and from 117 medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms (CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV resistance were also detected. These analyses have provided a greater understanding of these distinct mat systems in Shark Bay, including key insights into adaptive responses and proposing that photoheterotrophy may be an important lifestyle in Blue Holes.
Collapse
Affiliation(s)
- Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Abstract
Rhodopsins are photoreceptive membrane proteins consisting of a common heptahelical transmembrane architecture that contains a retinal chromophore. Rhodopsin was first discovered in the animal retina in 1876, but a different type of rhodopsin, bacteriorhodopsin, was reported to be present in the cell membrane of an extreme halophilic archaeon, Halobacterium salinarum, 95 years later. Although these findings were made by physiological observation of pigmented tissue and cell bodies, recent progress in genomic and metagenomic analyses has revealed that there are more than 10,000 microbial rhodopsins and 9000 animal rhodopsins with large diversity and tremendous new functionality. In this Cell Science at a Glance article and accompanying poster, we provide an overview of the diversity of functions, structures, color discrimination mechanisms and optogenetic applications of these two rhodopsin families, and will also highlight the third distinctive rhodopsin family, heliorhodopsin.
Collapse
Affiliation(s)
- Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
32
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|
33
|
Pro219 is an electrostatic color determinant in the light-driven sodium pump KR2. Commun Biol 2021; 4:1185. [PMID: 34645937 PMCID: PMC8514524 DOI: 10.1038/s42003-021-02684-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/19/2021] [Indexed: 11/13/2022] Open
Abstract
Color tuning in animal and microbial rhodopsins has attracted the interest of many researchers, as the color of their common retinal chromophores is modulated by the amino acid residues forming the chromophore cavity. Critical cavity amino acid residues are often called “color switches”, as the rhodopsin color is effectively tuned through their substitution. Well-known color switches are the L/Q and A/TS switches located in the C and G helices of the microbial rhodopsin structure respectively. Recently, we reported on a third G/P switch located in the F helix of the light-driven sodium pumps of KR2 and JsNaR causing substantial spectral red-shifts in the latter with respect to the former. In order to investigate the molecular-level mechanism driving such switching function, here we present an exhaustive mutation, spectroscopic and computational investigation of the P219X mutant set of KR2. To do so, we study the changes in the absorption band of the 19 possible mutants and construct, semi-automatically, the corresponding hybrid quantum mechanics/molecular mechanics models. We found that the P219X feature a red-shifted light absorption with the only exception of P219R. The analysis of the corresponding models indicate that the G/P switch induces red-shifting variations via electrostatic interactions, while replacement-induced chromophore geometrical (steric) distortions play a minor role. However, the same analysis indicates that the P219R blue-shifted variant has a more complex origin involving both electrostatic and steric changes accompanied by protonation state and hydrogen bond networks modifications. These results make it difficult to extract simple rules or formulate theories for predicting how a switch operates without considering the atomistic details and environmental consequences of the side chain replacement. Nakajima, Pedraza-González et al. provide a comprehensive investigation of amino acid mutations at position 219 of the sodium pump rhodopsin, KR2, and their role in the color tuning of the retinal chromophore. They prepared P219X (X= A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y) mutants of KR2, and find that all mutants are red-shifted, except for P219R, highlighting its role as a color determinant in the light-driven pump KR2.
Collapse
|
34
|
|
35
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
36
|
Shen C, Jin X, Glover WJ, He X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules 2021; 26:4486. [PMID: 34361639 PMCID: PMC8347797 DOI: 10.3390/molecules26154486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.
Collapse
Affiliation(s)
- Chenfei Shen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
| | - William J. Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China;
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (C.S.); (X.J.)
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
37
|
Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, Fotiadis D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat Commun 2021; 12:4107. [PMID: 34226545 PMCID: PMC8257665 DOI: 10.1038/s41467-021-24429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Thomas Lemmin
- DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, Zürich, Switzerland.
- Trkola Group, Institute of Medical Virology, University of Zurich, Zürich, Switzerland.
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
38
|
Abstract
Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor. Zabelskii et al. present a structural and functional analysis of the lightdriven proton pump LR (Mac) from the fungus Leptosphaeria maculans. Their findings indicate that the archaeal ancestry of eukaryotic type 1 rhodopsins, and that the archaeal host of the proto-mitochondrial endosymbiont was capable of light-driven proton pumping.
Collapse
|
39
|
Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc Natl Acad Sci U S A 2021; 118:2011038118. [PMID: 33547239 PMCID: PMC8017926 DOI: 10.1073/pnas.2011038118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most organisms coordinate key biological events to coincide with the day/night cycle. These diel oscillations are entrained through the activity of light-sensitive photoreceptors that allow organisms to respond rapidly to changes in light exposure. In the ocean, the plankton community must additionally contend with dramatic changes in the quantity and quality of light over depth. Here, we show that the predominantly blue-light field in the open-ocean environment may have driven expansion of blue light-sensitive regulatory elements in open-ocean eukaryotic plankton derived from secondary and tertiary endosymbiosis. The diel transcription of genes encoding light-sensitive elements indicate that photosynthetic and heterotrophic marine protists respond to and anticipate fluctuating light conditions in the dynamic marine environment. The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
Collapse
|
40
|
Graham ED, Tully BJ. Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning. THE ISME JOURNAL 2021; 15:1248-1256. [PMID: 33230264 PMCID: PMC8115339 DOI: 10.1038/s41396-020-00834-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
The remineralization of organic material via heterotrophy in the marine environment is performed by a diverse and varied group of microorganisms that can specialize in the type of organic material degraded and the niche they occupy. The marine Dadabacteria are cosmopolitan in the marine environment and belong to a candidate phylum for which there has not been a comprehensive assessment of the available genomic data to date. Here in, we assess the functional potential of the marine pelagic Dadabacteria in comparison to members of the phylum that originate from terrestrial, hydrothermal, and subsurface environments. Our analysis reveals that the marine pelagic Dadabacteria have streamlined genomes, corresponding to smaller genome sizes and lower nitrogen content of their DNA and predicted proteome, relative to their phylogenetic counterparts. Collectively, the Dadabacteria have the potential to degrade microbial dissolved organic matter, specifically peptidoglycan and phospholipids. The marine Dadabacteria belong to two clades with apparent distinct ecological niches in global metagenomic data: a clade with the potential for photoheterotrophy through the use of proteorhodopsin, present predominantly in surface waters up to 100 m depth; and a clade lacking the potential for photoheterotrophy that is more abundant in the deep photic zone.
Collapse
Affiliation(s)
- Elaina D Graham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin J Tully
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Damashek J, Okotie-Oyekan AO, Gifford SM, Vorobev A, Moran MA, Hollibaugh JT. Transcriptional activity differentiates families of Marine Group II Euryarchaeota in the coastal ocean. ISME COMMUNICATIONS 2021; 1:5. [PMID: 37938231 PMCID: PMC9723583 DOI: 10.1038/s43705-021-00002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/09/2023]
Abstract
Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
- Department of Biology, Utica College, Utica, NY, USA.
| | - Aimee Oyinlade Okotie-Oyekan
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Alexey Vorobev
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
42
|
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design. Commun Biol 2021; 4:362. [PMID: 33742139 PMCID: PMC7979833 DOI: 10.1038/s42003-021-01878-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were suggested by a protein BLAST search in several protein databases, the ML-based method selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experimentally determined by expressing proteins with the Escherichia coli system, and 32 (82%, p = 7.025 × 10-5) actually showed red-shift gains. In addition, four showed red-shift gains >20 nm, and two were found to have desirable ion-transporting properties, indicating that they would be potentially useful in optogenetics. These findings suggest that data-driven ML-based approaches play effective roles in the experimental design of rhodopsin and other photobiological studies. (141/150 words).
Collapse
|
43
|
Shtyrov AA, Nikolaev DM, Mironov VN, Vasin AV, Panov MS, Tveryanovich YS, Ryazantsev MN. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Int J Mol Sci 2021; 22:ijms22063029. [PMID: 33809708 PMCID: PMC8002287 DOI: 10.3390/ijms22063029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
A typical feature of proteins from the rhodopsin family is the sensitivity of their absorption band maximum to protein amino acid composition. For this reason, studies of these proteins often require methodologies that determine spectral shift caused by amino acid substitutions. Generally, quantum mechanics/molecular mechanics models allow for the calculation of a substitution-induced spectral shift with high accuracy, but their application is not always easy and requires special knowledge. In the present study, we propose simple models that allow us to estimate the direct effect of a charged or polar residue substitution without extensive calculations using only rhodopsin three-dimensional structure and plots or tables that are provided in this article. The models are based on absorption maximum values calculated at the SORCI+Q level of theory for cis- and trans-forms of retinal protonated Schiff base in an external electrostatic field of charges and dipoles. Each value corresponds to a certain position of a charged or polar residue relative to the retinal chromophore. The proposed approach was evaluated against an example set consisting of twelve bovine rhodopsin and sodium pumping rhodopsin mutants. The limits of the applicability of the models are also discussed. The results of our study can be useful for the interpretation of experimental data and for the rational design of rhodopsins with required spectral properties.
Collapse
Affiliation(s)
- Andrey A. Shtyrov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Dmitrii M. Nikolaev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
| | - Vladimir N. Mironov
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Street, 195251 St. Petersburg, Russia;
| | - Maxim S. Panov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Yuri S. Tveryanovich
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
| | - Mikhail N. Ryazantsev
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia; (A.A.S.); (D.M.N.); (V.N.M.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (M.S.P.); (Y.S.T.)
- Correspondence:
| |
Collapse
|
44
|
Abstract
Microbial rhodopsins are distributed through many microorganisms. Heliorhodopsins are newly discovered but have an unclear function. They have seven transmembrane helices similar to type-I and type-II rhodopsins, but they are different in that the N-terminal region of heliorhodopsin is cytoplasmic. We chose 13 representative heliorhodopsins from various microorganisms, expressed and purified with an N-terminal His tag, and measured the absorption spectra. The 13 natural variants had an absorption maximum (λmax) in the range 530–556 nm similar to proteorhodopsin (λmax = 490–525 nm). We selected several candidate residues that influence rhodopsin color-tuning based on sequence alignment and constructed mutants via site-directed mutagenesis to confirm the spectral changes. We found two important residues located near retinal chromophore that influence λmax. We also predict the 3D structure via homology-modeling of Thermoplasmatales heliorhodopsin. The results indicate that the color-tuning mechanism of type-I rhodopsin can be applied to understand the color-tuning of heliorhodopsin.
Collapse
|
45
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
46
|
Kopejtka K, Tomasch J, Zeng Y, Selyanin V, Dachev M, Piwosz K, Tichý M, Bína D, Gardian Z, Bunk B, Brinkmann H, Geffers R, Sommaruga R, Koblížek M. Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium. mSystems 2020; 5:e01044-20. [PMID: 33361324 PMCID: PMC7762795 DOI: 10.1128/msystems.01044-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Photoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.
Collapse
Affiliation(s)
- Karel Kopejtka
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| | - Jürgen Tomasch
- Research Group Microbial Communication, Technical University of Braunschweig, Braunschweig, Germany
| | - Yonghui Zeng
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | - Vadim Selyanin
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| | - Marko Dachev
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| | - Kasia Piwosz
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| | - Martin Tichý
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| | - David Bína
- Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, České Budějovice, Czechia
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Zdenko Gardian
- Institute of Plant Molecular Biology, Biology Center of the Czech Academy of Sciences, České Budějovice, Czechia
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Henner Brinkmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ruben Sommaruga
- Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology of the Czech Academy of Science, Třeboň, Czechia
| |
Collapse
|
47
|
Tanaka T, Singh M, Shihoya W, Yamashita K, Kandori H, Nureki O. Structural basis for unique color tuning mechanism in heliorhodopsin. Biochem Biophys Res Commun 2020; 533:262-267. [PMID: 32951839 DOI: 10.1016/j.bbrc.2020.06.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Microbial rhodopsins comprise an opsin protein with seven transmembrane helices and a retinal as the chromophore. An all-trans retinal is covalently bonded to a lysine residue through the retinal Schiff base (RSB) and stabilized by a negatively charged counterion. The distance between the RSB and counterion is closely related to the light energy absorption. However, in heliorhodopsin-48C12 (HeR-48C12), while E107 acts as the counterion, E107D mutation exhibits an identical absorption spectrum to the wild-type, suggesting that the distance does not affect its absorption spectra. Here we present the 2.6 Å resolution crystal structure of the Thermoplasmatales archaeon HeR E108D mutant, which also has an identical absorption spectrum to the wild-type. The structure revealed that D108 does not form a hydrogen bond with the RSB, and its counterion interaction becomes weaker. Alternatively, the serine cluster, S78, S112, and S238 form a distinct interaction network around the RSB. The absorption spectra of the E to D and S to A double mutants suggested that S112 influences the spectral shift by compensating for the weaker counterion interaction. Our structural and spectral studies have revealed the unique spectral shift mechanism of HeR and clarified the physicochemical properties of HeRs.
Collapse
Affiliation(s)
- Tatsuki Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa, Nagoya, 466-8555, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa, Nagoya, 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa, Nagoya, 466-8555, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
48
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|
49
|
Novel Modular Rhodopsins from Green Algae Hold Great Potential for Cellular Optogenetic Modulation Across the Biological Model Systems. Life (Basel) 2020; 10:life10110259. [PMID: 33126644 PMCID: PMC7693036 DOI: 10.3390/life10110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Light-gated ion channel and ion pump rhodopsins are widely used as optogenetic tools and these can control the electrically excitable cells as (1) they are a single-component system i.e., their light sensing and ion-conducting functions are encoded by the 7-transmembrane domains and, (2) they show fast kinetics with small dark-thermal recovery time. In cellular signaling, a signal receptor, modulator, and the effector components are involved in attaining synchronous regulation of signaling. Optical modulation of the multicomponent network requires either receptor to effector encoded in a single ORF or direct modulation of the effector domain through bypassing all upstream players. Recently discovered modular rhodopsins like rhodopsin guanylate cyclase (RhoGC) and rhodopsin phosphodiesterase (RhoPDE) paves the way to establish a proof of concept for utilization of complex rhodopsin (modular rhodopsin) for optogenetic applications. Light sensor coupled modular system could be expressed in any cell type and hence holds great potential in the advancement of optogenetics 2.0 which would enable manipulating the entire relevant cell signaling system. Here, we had identified 50 novel modular rhodopsins with variant domains and their diverse cognate signaling cascades encoded in a single ORF, which are associated with specialized functions in the cells. These novel modular algal rhodopsins have been characterized based on their sequence and structural homology with previously reported rhodopsins. The presented novel modular rhodopsins with various effector domains leverage the potential to expand the optogenetic tool kit to regulate various cellular signaling pathways across the diverse biological model systems.
Collapse
|
50
|
El‐Tahawy MMT, Conti I, Bonfanti M, Nenov A, Garavelli M. Tailoring Spectral and Photochemical Properties of Bioinspired Retinal Mimics by in Silico Engineering. Angew Chem Int Ed Engl 2020; 59:20619-20627. [DOI: 10.1002/anie.202008644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Irene Conti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica industriale “Toso Montanari” Università di Bologna Viale del Risorigmento 4 40136 Bologna Italy
| |
Collapse
|