1
|
Kim S, Darcy IK. A topological analysis of difference topology experiments of condensin with topoisomerase II. Biol Open 2020; 9:bio048603. [PMID: 32184229 PMCID: PMC7132813 DOI: 10.1242/bio.048603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022] Open
Abstract
An experimental technique called difference topology combined with the mathematics of tangle analysis has been used to unveil the structure of DNA bound by the Mu transpososome. However, difference topology experiments can be difficult and time consuming. We discuss a modification that greatly simplifies this experimental technique. This simple experiment involves using a topoisomerase to trap DNA crossings bound by a protein complex and then running a gel to determine the crossing number of the knotted product(s). We develop the mathematics needed to analyze the results and apply these results to model the topology of DNA bound by 13S condensin and by the condensin MukB.
Collapse
Affiliation(s)
- Soojeong Kim
- Yonsei University, University College, Incheon 21983, South Korea
| | - Isabel K Darcy
- Department of Mathematics, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
2
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
3
|
Choi W, Saha RP, Jang S, Harshey RM. Controlling DNA degradation from a distance: a new role for the Mu transposition enhancer. Mol Microbiol 2014; 94:595-608. [PMID: 25256747 DOI: 10.1111/mmi.12781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Phage Mu is unique among transposable elements in employing a transposition enhancer. The enhancer DNA segment is the site where the transposase MuA binds and makes bridging interactions with the two Mu ends, interwrapping the ends with the enhancer in a complex topology essential for assembling a catalytically active transpososome. The enhancer is also the site at which regulatory proteins control divergent transcription of genes that determine the phage lysis-lysogeny decision. Here we report a third function for the enhancer - that of regulating degradation of extraneous DNA attached to both ends of infecting Mu. This DNA is protected from nucleases by a phage protein until Mu integrates into the host chromosome, after which it is rapidly degraded. We find that leftward transcription at the enhancer, expected to disrupt its topology within the transpososome, blocks degradation of this DNA. Disruption of the enhancer would lead to the loss or dislocation of two non-catalytic MuA subunits positioned in the transpososome by the enhancer. We provide several lines of support for this inference, and conclude that these subunits are important for activating degradation of the flanking DNA. This work also reveals a role for enhancer topology in phage development.
Collapse
Affiliation(s)
- Wonyoung Choi
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | |
Collapse
|
4
|
Saha RP, Lou Z, Meng L, Harshey RM. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli. PLoS Genet 2013; 9:e1003902. [PMID: 24244182 PMCID: PMC3820752 DOI: 10.1371/journal.pgen.1003902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/06/2013] [Indexed: 11/19/2022] Open
Abstract
The E. coli chromosome is compacted by segregation into 400–500 supercoiled domains by both active and passive mechanisms, for example, transcription and DNA-protein association. We find that prophage Mu is organized as a stable domain bounded by the proximal location of Mu termini L and R, which are 37 kbp apart on the Mu genome. Formation/maintenance of the Mu ‘domain’ configuration, reported by Cre-loxP recombination and 3C (chromosome conformation capture), is dependent on a strong gyrase site (SGS) at the center of Mu, the Mu L end and MuB protein, and the E. coli nucleoid proteins IHF, Fis and HU. The Mu domain was observed at two different chromosomal locations tested. By contrast, prophage λ does not form an independent domain. The establishment/maintenance of the Mu domain was promoted by low-level transcription from two phage promoters, one of which was domain dependent. We propose that the domain confers transposition readiness to Mu by fostering topological requirements of the reaction and the proximity of Mu ends. The potential benefits to the host cell from a subset of proteins expressed by the prophage may in turn help its long-term stability. A majority of sequenced bacterial genomes harbor prophage sequences. Some prophages are viable, while others have decayed from accumulating mutations and genome rearrangements. Prophages, including defective ones, can contribute important biological properties such as antibiotic resistance, toxins, and serum resistance that increase the survival and ecological range of their hosts. We show in this study that the 37 kbp transposable prophage Mu exists in a unique configuration we call the ‘Mu domain’, where its two ends are paired, segregating the Mu sequences from those of the host chromosome. This is the largest stable chromosomal domain in E. coli mapped to date. The Mu domain configuration promotes low-level transcription from an early prophage promoter, which controls the expression of several genes, not all essential for phage growth. Some non-essential genes include DNA repair functions. We suggest that the Mu domain provides long-term survival benefits to both the prophage and the host: to the prophage in bestowing transposition-ready topological properties unique to the Mu reaction, and to the host in contributing extraneous DNA housekeeping functions.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Zheng Lou
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Luke Meng
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Difference topology is an experimental technique that can be used to unveil the topological structure adopted by two or more DNA segments in a stable protein–DNA complex. Difference topology has also been used to detect intermediates in a reaction pathway and to investigate the role of DNA supercoiling. In the present article, we review difference topology as applied to the Mu transpososome. The tools discussed can be applied to any stable nucleoprotein complex.
Collapse
|
6
|
Harshey RM. The Mu story: how a maverick phage moved the field forward. Mob DNA 2012; 3:21. [PMID: 23217166 PMCID: PMC3562280 DOI: 10.1186/1759-8753-3-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
This article traces the pioneering contributions of phage Mu to our current knowledge of how movable elements move/transpose. Mu provided the first molecular evidence of insertion elements in E. coli, postulated by McClintock to control gene activity in maize in the pre-DNA era. An early Mu-based model successfully explained all the DNA rearrangements associated with transposition, providing a blueprint for navigating the deluge of accumulating reports on transposable element activity. Amplification of the Mu genome via transposition meant that its transposition frequencies were orders of magnitude greater than any rival, so it was only natural that the first in vitro system for transposition was established for Mu. These experiments unraveled the chemistry of the phosphoryl transfer reaction of transposition, and shed light on the nucleoprotein complexes within which they occur. They hastened a similar analysis of other transposons and ushered in the structural era where many transpososomes were crystallized. While it was a lucky break that the mechanism of HIV DNA integration turned out to be similar to that of Mu, it is no accident that current drugs for HIV integrase inhibitors owe their discovery to trailblazing experiments done with Mu. Shining the light on how movable elements restructure genomes, Mu has also given of itself generously to understanding the genome.
Collapse
Affiliation(s)
- Rasika M Harshey
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review. Appl Microbiol Biotechnol 2011; 91:857-71. [PMID: 21698377 PMCID: PMC3145075 DOI: 10.1007/s00253-011-3416-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/04/2022]
Abstract
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.
Collapse
|
8
|
Abstract
Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA from a previous host that is still attached to the ends of the incoming Mu genome. We have discovered that the cryptic endonuclease activity reported for the isolated C-terminal domain of the transposase MuA [Wu Z, Chaconas G (1995) A novel DNA binding and nuclease activity in domain III of Mu transposase: Evidence for a catalytic region involved in donor cleavage. EMBO J 14:3835-3843], which is not observed in the full-length protein or in the assembled transpososome in vitro, is required in vivo for removal of the attached host DNA or "5'flap" after the infecting Mu genome has integrated into the E. coli chromosome. Efficient flap removal also requires the host protein ClpX, which is known to interact with the C-terminus of MuA to remodel the transpososome for replication. We hypothesize that ClpX constitutes part of a highly regulated mechanism that unmasks the cryptic nuclease activity of MuA specifically in the repair pathway.
Collapse
|
9
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Bias between the left and right inverted repeats during IS911 targeted insertion. J Bacteriol 2008; 190:6111-8. [PMID: 18586933 DOI: 10.1128/jb.00452-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3'-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.
Collapse
|
13
|
Yin Z, Suzuki A, Lou Z, Jayaram M, Harshey RM. Interactions of phage Mu enhancer and termini that specify the assembly of a topologically unique interwrapped transpososome. J Mol Biol 2007; 372:382-96. [PMID: 17669422 DOI: 10.1016/j.jmb.2007.06.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 11/26/2022]
Abstract
The higher-order DNA-protein complex that carries out the chemical steps of phage Mu transposition is organized by bridging interactions among three DNA sites, the left (L) and right (R) ends of Mu, and an enhancer element (E), mediated by the transposase protein MuA. A subset of the six subunits of MuA associated with their cognate sub-sites at L and R communicate with the enhancer to trigger the stepwise assembly of the functional transpososome. The DNA follows a well-defined path within the transpososome, trapping five supercoil nodes comprising two E-R crossings, one E-L crossing and two L-R crossings. The enhancer is a critical DNA element in specifying the unique interwrapped topology of the three-site LER synapse. In this study, we used multiple strategies to characterize Mu end-enhancer interactions to extend, modify and refine those inferred from earlier analyses. Directed placement of transposase subunits at their cognate sub-sites at L and R, analysis of the protein composition of transpososomes thus obtained, and their characterization using topological methods define the following interactions. R1-E interaction is essential to promote transpososome assembly, R3-E interaction contributes to the native topology of the transpososome, and L1-E and R2-E interactions are not required for assembly. The data on L2-E and L3-E interactions are not unequivocal. If they do occur, either one is sufficient to support the assembly process. Our results are consistent with two R-E and perhaps one L-E, being responsible for the three DNA crossings between the enhancer and the left and right ends of Mu. A 3D representation of the interwrapped complex (IW) obtained by modeling is consistent with these results. The model reveals straightforward geometric and topological relationships between the IW complex and a more relaxed enhancer-independent V-form of the transpososome assembled under altered reaction conditions.
Collapse
Affiliation(s)
- Zhiqi Yin
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Phage Mu is the most efficient transposable element known, its high efficiency being conferred by an enhancer DNA element. Transposition is the end result of a series of well choreographed steps that juxtapose the enhancer and the two Mu ends within a nucleoprotein complex called the 'transpososome.' The particular arrangement of DNA and protein components lends extraordinary stability to the transpososome and regulates the frequency, precision, directionality, and mechanism of transposition. The structure of the transpososome, therefore, holds the key to understanding all of these attributes, and ultimately to explaining the runaway genetic success of transposable elements throughout the biological world. This review focuses on the path of the DNA within the Mu transpososome, as uncovered by recent topological analyses. It discusses why Mu topology cannot be analyzed by standard methods, and how knowledge of the geometry of site alignment during Flp and Cre site-specific recombination was harnessed to design a new methodology called 'difference topology.' This methodology has also revealed the order and dynamics of association of the three interacting DNA sites, as well as the role of the enhancer in assembly of the Mu transpososome.
Collapse
Affiliation(s)
- Rasika M Harshey
- Section of Molecular Genetics and Microbiology & Institute of Cellular and Molecular Biology, University of Texas at Austin, TX, USA.
| | | |
Collapse
|
15
|
Darcy IK, Chang J, Druivenga N, McKinney C, Medikonduri RK, Mills S, Navarra-Madsen J, Ponnusamy A, Sweet J, Thompson T. Coloring the Mu transpososome. BMC Bioinformatics 2006; 7:435. [PMID: 17022825 PMCID: PMC1636074 DOI: 10.1186/1471-2105-7-435] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 10/05/2006] [Indexed: 11/15/2022] Open
Abstract
Background Tangle analysis has been applied successfully to study proteins which bind two segments of DNA and can knot and link circular DNA. We show how tangle analysis can be extended to model any stable protein-DNA complex. Results We discuss a computational method for finding the topological conformation of DNA bound within a protein complex. We use an elementary invariant from knot theory called colorability to encode and search for possible DNA conformations. We apply this method to analyze the experimental results of Pathania, Jayaram, and Harshey (Cell 2002). We show that the only topological DNA conformation bound by Mu transposase which is biologically likely is the five crossing solution found by Pathania et al (although other possibilities are discussed). Conclusion Our algorithm can be used to analyze the results of the experimental technique described in Pathania et al in order to determine the topological conformation of DNA bound within a stable protein-DNA complex.
Collapse
Affiliation(s)
- Isabel K Darcy
- Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
| | - Jeff Chang
- Mathematics Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathan Druivenga
- Mathematics Department, Indiana University, Bloomington, IN 47405, USA
| | - Colin McKinney
- Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
| | - Ram K Medikonduri
- Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
| | - Stacy Mills
- Mathematics Department, Florida State University, Tallahassee, FL 32306, USA
| | | | | | - Jesse Sweet
- Mathematics Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Travis Thompson
- Mathematics Department, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Yin Z, Harshey RM. Enhancer-independent Mu transposition from two topologically distinct synapses. Proc Natl Acad Sci U S A 2006; 102:18884-9. [PMID: 16380426 PMCID: PMC1323169 DOI: 10.1073/pnas.0506873102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposition of Mu is strictly dependent on a specific orientation of the left (L) and right (R) ends of Mu and a distant enhancer site (E) located on supercoiled DNA. Five DNA crossings are trapped in the three-site synapse, two of which are contributed by the interwrapping of L and R. To determine the contribution of E to the interwrapping of Mu ends, we examined the topology of the LR synapse under two different enhancer-independent reaction conditions. One of these conditions, which also alleviates the requirement for a specific orientation of Mu ends, revealed two topologically distinct arrangements of the ends. In their normal relative orientation, L and R were either plectonemically interwrapped or aligned by random collision. Addition of the enhancer to this system channeled synapsis toward the interwrapped pathway. When the ends were in the wrong relative orientation, synapsis occurred exclusively by random collision. In the second enhancer-independent condition, which retains the requirement for a specific orientation of Mu ends, synapsis of L and R was entirely by interwrapping. The two distinct kinds of synapses also were identified by gel electrophoresis. We discuss these results in the context of the "topological filter" model and consider the many contributions the enhancer makes to the biologically relevant interwrapped synapse.
Collapse
Affiliation(s)
- Zhiqi Yin
- Section of Molecular Genetics and Microbiology, and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Kilbride EA, Burke ME, Boocock MR, Stark WM. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol 2005; 355:185-95. [PMID: 16303133 DOI: 10.1016/j.jmb.2005.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 10/16/2005] [Accepted: 10/18/2005] [Indexed: 11/29/2022]
Abstract
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.
Collapse
Affiliation(s)
- Elizabeth A Kilbride
- Institute of Biomedical & Life Sciences, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
18
|
Gueguen E, Rousseau P, Duval-Valentin G, Chandler M. The transpososome: control of transposition at the level of catalysis. Trends Microbiol 2005; 13:543-9. [PMID: 16181782 DOI: 10.1016/j.tim.2005.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/12/2005] [Accepted: 09/12/2005] [Indexed: 11/17/2022]
Abstract
Studies of several transposable genetic elements have pinpointed the importance of the transpososome, a nucleoprotein complex involving the transposon ends and a transposon-encoded enzyme--the transposase--as a key in regulating transposition. Transpososomes provide a precise architecture within which the chemical reactions involved in transposon displacement occur. Data are accumulating that suggest they are dynamic and undergo staged conformational changes to accommodate different steps in the transposition pathway. This has been underpinned by recent results obtained particularly with Tn5, Tn10 and bacteriophage Mu.
Collapse
Affiliation(s)
- E Gueguen
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
19
|
Yuan JF, Beniac DR, Chaconas G, Ottensmeyer FP. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition. Genes Dev 2005; 19:840-52. [PMID: 15774720 PMCID: PMC1074321 DOI: 10.1101/gad.1291405] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mu DNA transposition proceeds through a series of higher-order nucleoprotein complexes called transpososomes. The structural core of the transpososome is a tetramer of the transposase, Mu A, bound to the two transposon ends. High-resolution structural analysis of the intact transposase and the transpososome has not been successful to date. Here we report the structure of Mu A at 16-angstroms and the Type 1 transpososome at 34-angstroms resolution, by 3D reconstruction of images obtained by scanning transmission electron microscopy (STEM) at cryo-temperatures. Electron spectroscopic imaging (ESI) of the DNA-phosphorus was performed in conjunction with the structural investigation to derive the path of the DNA through the transpososome and to define the DNA-binding surface in the transposase. Our model of the transpososome fits well with the accumulated biochemical literature for this intricate transposition system, and lays a structural foundation for biochemical function, including catalysis in trans and the complex circuit of macromolecular interactions underlying Mu DNA transposition.
Collapse
Affiliation(s)
- Joy F Yuan
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
20
|
Yin Z, Jayaram M, Pathania S, Harshey RM. The Mu Transposase Interwraps Distant DNA Sites within a Functional Transpososome in the Absence of DNA Supercoiling. J Biol Chem 2005; 280:6149-56. [PMID: 15563455 DOI: 10.1074/jbc.m411679200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Mu transpososome assembled on negatively supercoiled DNA traps five supercoils by intertwining the left (L) and right (R) ends of Mu with an enhancer element (E). To investigate the contribution of DNA supercoiling to this elaborate synapse in which E and L cross once, E and R twice, and L and R twice, we have analyzed DNA crossings in a transpososome assembled on nicked substrates under conditions that bypass the supercoiling requirement for transposition. We find that the transposase MuA can recreate an essentially similar topology on nicked substrates, interwrapping both E-R and L-R twice but being unable to generate the single E-L crossing. In addition, we deduce that the functional MuA tetramer must contribute to three of the four observed crossings and, thus, to restraining the enhancer within the complex. We discuss the contribution of both MuA and DNA supercoiling to the 5-noded Mu synapse built at the 3-way junction.
Collapse
Affiliation(s)
- Zhiqi Yin
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|