1
|
Wang J, Wu S, Ye K. Complicated target recognition by archaeal box C/D guide RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:631-644. [PMID: 38041781 DOI: 10.1007/s11427-022-2412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 12/03/2023]
Abstract
Box C/D RNAs guide the site-specific formation of 2'-O-methylated nucleotides (Nm) of RNAs in eukaryotes and archaea. Although C/D RNAs have been profiled in several archaea, their targets have not been experimentally determined. Here, we mapped Nm in rRNAs, tRNAs, and abundant small RNAs (sRNAs) and profiled C/D RNAs in the crenarchaeon Sulfolobus islandicus. The targets of C/D RNAs were assigned by analysis of base-pairing interactions, in vitro modification assays, and gene deletion experiments, revealing a complicated landscape of C/D RNA-target interactions. C/D RNAs widely use dual antisense elements to target adjacent sites in rRNAs, enhancing modification at weakly bound sites. Two consecutive sites can be guided with the same antisense element upstream of box D or D', a phenomenon known as double-specificity that is exclusive to internal box D' in eukaryotic C/D RNAs. Several C/D RNAs guide modification at a single non-canonical site. This study reveals the global landscape of RNA-guided 2'-O-methylation in an archaeon and unexpected targeting rules employed by C/D RNA.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Benrezkallah D. Molecular dynamics simulations at high temperatures of the Aeropyrum pernix L7Ae thermostable protein: Insight into the unfolding pathway. J Mol Graph Model 2024; 127:108700. [PMID: 38183846 DOI: 10.1016/j.jmgm.2023.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Most life forms on earth live at temperatures below 50 °C. Within these organisms are proteins that form the three-dimensional structures essential to their biological activity and function. However, some thermophilic life forms can resist higher temperatures and have corresponding adaptations to preserve protein function at these high temperatures. Among the structural factors responsible for this resistance of thermophilic proteins to high temperatures is the presence of additional hydrogen bonds in the thermophilic proteins, which means that the structure of the protein is more resistant to unfolding. Similarly, thermostable proteins are rich in structure-stabilizing salt bridges and/or disulfide bridges. In this context, we perform multiple replica molecular dynamics simulations at different temperatures on the Aeropyrum pernix (L7Ae) protein (from the crenarchaeal species A. pernix), known for its high melting temperature, and this in the aim to elucidate the structural factors responsible for its high thermostability. The results reveal that between the most sensitive regions of the protein to the increase of temperature are the loops L1, and L5, which surround the hydrophobic core region of the protein, besides the loop L9, and the C-terminal α5 region. This latter is the longer alpha helix of the protein secondary structure motifs and it is the first to be denaturated at 450 K, while the rest of the protein secondary structure motifs at this temperature were intact. The mechanism of unfolding that follows this protein at 550 K is similar to other thermophile proteins found in literature, with the opening of the loops that surround the hydrophobic core of the protein. So, the latter is completely exposed to the solvent, and partially denatured. The total denaturation process of the protein takes an average time of 40 ns to be achieved. Our investigation also shows that all the calculated salt bridges, with distances less than or equal to 6 A°, are on the periphery part of the protein, exposed to the solvent. However, the hydrophobic core of the protein is not involved in the formation of salt bridges, but rather with formation of some important hydrogen bondings that still persist even at 450 K. So, optimizing hydrogen bonding, near or within the core region, at high temperatures is a strategy that follows this thermostable protein to protect its hydrophobic core from denaturation, and ensure the thermal stability of the protein.
Collapse
Affiliation(s)
- Djamila Benrezkallah
- Department of Basic Teachings in Sciences and Technologies (EBST), Faculty of Technology, Djillali Liabes University, Ben M'Hidi BP 89, Sidi Bel Abbes 22000, Algeria; LCPM Laboratory, Chemistry Department, Faculty of Exact and Applied Sciences, University Oran 1 Ahmed Ben Bella, El Mnaouer BP 1524, Oran 31000, Algeria.
| |
Collapse
|
3
|
Zhao Y, Zha M, Xu C, Hou F, Wang Y. Proteomic Analysis Revealed the Antagonistic Effect of Decapitation and Strigolactones on the Tillering Control in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 13:91. [PMID: 38202400 PMCID: PMC10780617 DOI: 10.3390/plants13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Removing the panicle encourages the growth of buds on the elongated node by getting rid of apical dominance. Strigolactones (SLs) are plant hormones that suppress tillering in rice. The present study employed panicle removal (RP) and external application of synthesized strigolactones (GR) to modulate rice bud growth at node 2. We focused on the full-heading stage to investigate proteomic changes related to bud germination (RP-Co) and suppression (GR-RP). A total of 434 represented differentially abundant proteins (DAPs) were detected, with 272 DAPs explicitly specified in the bud germination process, 106 in the bud suppression process, and 28 in both. DAPs in the germination process were most associated with protein processing in the endoplasmic reticulum and ribosome biogenesis. DAPs were most associated with metabolic pathways and glycolysis/gluconeogenesis in the bud suppression process. Sucrose content and two enzymes of sucrose degradation in buds were also determined. Comparisons of DAPs between the two reversed processes revealed that sucrose metabolism might be a key to modulating rice bud growth. Moreover, sucrose or its metabolites should be a signal downstream of the SLs signal transduction that modulates rice bud outgrowth. Contemplating the result so far, it is possible to open new vistas of research to reveal the interaction between SLs and sucrose signaling in the control of tillering in rice.
Collapse
Affiliation(s)
- Yanhui Zhao
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Manrong Zha
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| | - Congshan Xu
- Anhui Science and Technology Achievement Transformation Promotion Center, Anhui Provincial Institute of Science and Technology, Hefei 230002, China;
| | - Fangxu Hou
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
| | - Yan Wang
- College of Biology Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Y.Z.); (M.Z.); (F.H.)
- Key Laboratory of Plant Resources Conservation and Utilization, College of Hunan Province, Jishou 416000, China
| |
Collapse
|
4
|
Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res 2023; 29:1610884. [PMID: 36741964 PMCID: PMC9892063 DOI: 10.3389/pore.2023.1610884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
NOP56 is a highly conserved nucleolar protein. Amplification of the intron GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is significantly abnormally expressed in a number of malignant tumors, and its mechanism is different in different tumors, but its regulatory mechanism in most tumors has not been fully explored. NOP56 promotes tumorigenesis in some cancers and inhibits tumorigenesis in others. In addition, NOP56 is associated with methylation in some tumors, suggesting that NOP56 has the potential to become a tumor-specific marker. This review focuses on the structure, function, related signaling pathways, and role of NOP56 in the progression of various malignancies, and discusses the progression of NOP56 in neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Shimin Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongdong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Jun Huang,
| |
Collapse
|
5
|
Wang J, Yang Z, Ye K. Methylation guide RNAs without box C/D motifs. RNA (NEW YORK, N.Y.) 2022; 28:1597-1605. [PMID: 36127125 PMCID: PMC9670817 DOI: 10.1261/rna.079379.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Box C/D RNAs guide site-specific 2'-O-methylation of RNAs in archaea and eukaryotes. The defining feature of methylation guide RNAs is two sets of box C and D motifs that form kink-turn structures specifically recognized by L7Ae family proteins. Here, we engineered a new type of methylation guide that lacks C/D motifs and requires no L7Ae for assembly and function. We determined a crystal structure of a bipartite C/D-free guide RNA in complex with Nop5, fibrillarin and substrate in the active form at 2.2 Å resolution. The stems of new guide RNAs functionally replace C/D motifs in Nop5 binding, precisely placing the substrate for site-specific modification. We also found that the bipartite architecture and association of L7Ae with C/D motifs enhance modification when association of guide RNAs or substrates is weak. Our study provides insights into the variations, robustness and possible evolutionary path of methylation guide RNAs.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Thalalla Gamage S, Bortolin-Cavaillé ML, Link C, Bryson K, Sas-Chen A, Schwartz S, Cavaillé J, Meier JL. Antisense pairing and SNORD13 structure guide RNA cytidine acetylation. RNA (NEW YORK, N.Y.) 2022; 28:1582-1596. [PMID: 36127124 PMCID: PMC9670809 DOI: 10.1261/rna.079254.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.
Collapse
Affiliation(s)
| | - Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Courtney Link
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Keri Bryson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Aldema Sas-Chen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
7
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
8
|
Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int J Mol Sci 2021; 22:ijms222313095. [PMID: 34884901 PMCID: PMC8657925 DOI: 10.3390/ijms222313095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
The process of phase separation allows for the establishment and formation of subcompartmentalized structures, thus enabling cells to perform simultaneous processes with precise organization and low energy requirements. Chemical modifications of proteins, RNA, and lipids alter the molecular environment facilitating enzymatic reactions at higher concentrations in particular regions of the cell. In this review, we discuss the nucleolus as an example of the establishment, dynamics, and maintenance of a membraneless organelle with a high level of organization.
Collapse
|
9
|
Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain. RNA (NEW YORK, N.Y.) 2021; 27:496-512. [PMID: 33483369 PMCID: PMC7962484 DOI: 10.1261/rna.077396.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Crystallography, X-Ray
- Gene Expression
- Methylation
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Pyrococcus furiosus/genetics
- Pyrococcus furiosus/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Alignment
- Structural Homology, Protein
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Simone Höfler
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, D-38124 Braunschweig, Germany
| | - Teresa Carlomagno
- Leibniz University Hannover, Institute for Organic Chemistry and Centre for Biomolecular Drug Research (BMWZ), D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Group of NMR-based Structural Chemistry, D-38124 Braunschweig, Germany
| |
Collapse
|
10
|
Yang Z, Wang J, Huang L, Lilley DMJ, Ye K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res 2020; 48:5094-5105. [PMID: 32297938 PMCID: PMC7229835 DOI: 10.1093/nar/gkaa247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/14/2022] Open
Abstract
Box C/D RNA protein complexes (RNPs) catalyze site-specific 2'-O-methylation of RNA with specificity determined by guide RNAs. In eukaryotic C/D RNP, the paralogous Nop58 and Nop56 proteins specifically associate with terminal C/D and internal C'/D' motifs of guide RNAs, respectively. We have reconstituted active C/D RNPs with recombinant proteins of the thermophilic yeast Chaetomium thermophilum. Nop58 and Nop56 could not distinguish between the two C/D motifs in the reconstituted enzyme, suggesting that the assembly specificity is imposed by trans-acting factors in vivo. The two C/D motifs are functionally independent and halfmer C/D RNAs can also guide site-specific methylation. Extensive pairing between C/D RNA and substrate is inhibitory to modification for both yeast and archaeal C/D RNPs. N6-methylated adenine at box D/D' interferes with the function of the coupled guide. Our data show that all C/D RNPs share the same functional organization and mechanism of action and provide insight into the assembly specificity of eukaryotic C/D RNPs.
Collapse
Affiliation(s)
- Zuxiao Yang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiayin Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Guillen-Chable F, Rodríguez Corona U, Pereira-Santana A, Bayona A, Rodríguez-Zapata LC, Aquino C, Šebestová L, Vitale N, Hozak P, Castano E. Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids. Cells 2020; 9:cells9051143. [PMID: 32384686 PMCID: PMC7290794 DOI: 10.3390/cells9051143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fibrillarin is a highly conserved nucleolar methyltransferase responsible for ribosomal RNA methylation across evolution from Archaea to humans. It has been reported that fibrillarin is involved in the methylation of histone H2A in nucleoli and other processes, including viral progression, cellular stress, nuclear shape, and cell cycle progression. We show that fibrillarin has an additional activity as a ribonuclease. The activity is affected by phosphoinositides and phosphatidic acid and insensitive to ribonuclease inhibitors. Furthermore, the presence of phosphatidic acid releases the fibrillarin-U3 snoRNA complex. We show that the ribonuclease activity localizes to the GAR (glycine/arginine-rich) domain conserved in a small group of RNA interacting proteins. The introduction of the GAR domain occurred in evolution in the transition from archaea to eukaryotic cells. The interaction of this domain with phospholipids may allow a phase separation of this protein in nucleoli.
Collapse
Affiliation(s)
- Francisco Guillen-Chable
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Ulises Rodríguez Corona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Alejandro Pereira-Santana
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Camino Arenero 1227, el Bajio, Zapopan C.P. 45019, Jalisco, Mexico;
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Alcaldia Benito Juarez C.P. 03940, Ciudad de Mexico, Mexico
| | - Andrea Bayona
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Luis Carlos Rodríguez-Zapata
- Biotechnology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatan, Mexico;
| | - Cecilia Aquino
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
| | - Lenka Šebestová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Nicolas Vitale
- Institute of Celullar and Integrative Neuroscience (INCI), UPR-3212 The French National Centre for Scientific Research & University of Strasbourg, 67000 Strasbourg, France;
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the CAS, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic; (L.Š.); (P.H.)
| | - Enrique Castano
- Biochemistry and Molecular Plant Biology Department, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97200, Yucatán, Mexico; (F.G.-C.); (U.R.C.); (A.B.); (C.A.)
- Correspondence:
| |
Collapse
|
12
|
Majumder M, Mukhopadhyay S, Kharel P, Gupta R. The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA (NEW YORK, N.Y.) 2020; 26:396-418. [PMID: 31919243 PMCID: PMC7075261 DOI: 10.1261/rna.073734.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Parinati Kharel
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
13
|
Khoshnevis S, Dreggors RE, Hoffmann TFR, Ghalei H. A conserved Bcd1 interaction essential for box C/D snoRNP biogenesis. J Biol Chem 2019; 294:18360-18371. [PMID: 31537647 DOI: 10.1074/jbc.ra119.010222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Precise modification and processing of rRNAs are required for the production of ribosomes and accurate translation of proteins. Small nucleolar ribonucleoproteins (snoRNPs) guide the folding, modification, and processing of rRNAs and are thus critical for all eukaryotic cells. Bcd1, an essential zinc finger HIT protein functionally conserved in eukaryotes, has been implicated as an early regulator for biogenesis of box C/D snoRNPs and controls steady-state levels of box C/D snoRNAs through an unknown mechanism. Using a combination of genetic and biochemical approaches, here we found a conserved N-terminal motif in Bcd1 from Saccharomyces cerevisiae that is required for interactions with box C/D snoRNAs and the core snoRNP protein, Snu13. We show that both the Bcd1-snoRNA and Bcd1-Snu13 interactions are critical for snoRNP assembly and ribosome biogenesis. Our results provide mechanistic insight into Bcd1 interactions that likely control the early steps of snoRNP maturation and contribute to the essential role of this protein in maintaining the steady-state levels of snoRNAs in the cell.
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Biology, Emory University, Atlanta, Georgia 30322; Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - R Elizabeth Dreggors
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322
| | - Tobias F R Hoffmann
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Homa Ghalei
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322; Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
14
|
Deryusheva S, Gall JG. Small, Smaller, Smallest: Minimal Structural Requirements for a Fully Functional Box C/D Modification Guide RNA. Biomolecules 2019; 9:E457. [PMID: 31500270 PMCID: PMC6770171 DOI: 10.3390/biom9090457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/08/2023] Open
Abstract
Site-specific 2'-O-ribose methylation is an abundant post-transcriptional modification mediated by small non-coding nuclear RNAs known as box C/D modification guide RNAs. The minimal structural requirements for these guide RNAs to function in higher eukaryotes are still unclear. To address this question, we generated a series of mutant variants of Drosophila box C/D scaRNA:MeU2-C28 and tested their modification guide activities in the Xenopus oocyte system. Our data suggest that box C/D guide RNA function requires either a terminal or an internal consensus kink-turn structure. We identified the minimal functional box C/D guide RNA. It consists of a single-domain molecule with (i) a terminal stem with a consensus kink-turn domain, (ii) one box C and box D connected by a 14-nucleotide antisense element and (iii) a one-nucleotide spacer between the box C and the antisense element. In this single domain RNA, the sequence of the spacer is more important than its length. We suggest that the secondary structure of box C/D RNAs, essential for guide RNA function, is more complex than generally supposed. At the same time, the expression of functional extremely short single-domain box C/D RNAs is possible in higher eukaryotes.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Abstract
The kink-turn (k-turn) is a widespread structural motif found in functional RNA species. It typically comprises a three-nucleotide bulge followed by tandem trans sugar edge-Hoogsteen G:A base pairs. It introduces a sharp kink into the axis of duplex RNA, juxtaposing the minor grooves. Cross-strand H-bonds form at the interface, accepted by the conserved adenine nucleobases of the G:A basepairs. Alternative acceptors for one of these divides the k-turns into two conformational classes N3 and N1. The base pair that follows the G:A pairs (3b:3n) determines which conformation is adopted by a given k-turn. k-turns often mediate tertiary contacts in folded RNA species and frequently bind proteins. Common k-turn binding proteins include members of the L7Ae family, such as the human 15·5k protein. A recognition helix within these proteins binds in the widened major groove on the outside of the k-turn, that makes specific H-bonds with the conserved guanine nucleobases of the G:A pairs. L7Ae binds with extremely high affinity, and single-molecule data are consistent with folding by conformational selection. The standard, simple k-turn can be elaborated in a variety of ways, that include the complex k-turns and the k-junctions. In free solution in the absence of added metal ions or protein k-turns do not adopt the tightly-kinked conformation. They undergo folding by the binding of proteins, by the formation of tertiary contacts, and some (but not all) will fold on the addition of metal ions. Whether or not folding occurs in the presence of metal ions depends on local sequence, including the 3b:3n position, and the -1b:-1n position (5' to the bulge). In most cases -1b:-1n = C:G, so that the 3b:3n position is critical since it determines both folding properties and conformation. In general, the selection of these sequence matches a given k-turn to its biological requirements. The k-turn structure is now very well understood, to the point at which they can be used as a building block for the formation of RNA nano-objects, including triangles and squares.
Collapse
|
16
|
Abstract
Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Michael Daume
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
- LOEWE Center for Synthetic Microbiology (Synmikro), 35032 Marburg, Germany
| |
Collapse
|
17
|
Ashraf S, Huang L, Lilley DMJ. Sequence determinants of the folding properties of box C/D kink-turns in RNA. RNA (NEW YORK, N.Y.) 2017; 23:1927-1935. [PMID: 28956757 PMCID: PMC5689011 DOI: 10.1261/rna.063453.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 05/20/2023]
Abstract
Folding properties differ markedly between kink-turns (k-turns) that have different biological functions. While ribosomal and riboswitch k-turns generally fold into their kinked conformation on addition of metal ions, box C/D snoRNP k-turns remain completely unfolded under these conditions, although they fold on addition of L7Ae protein. Sequence elements have been systematically exchanged between a standard ribosomal k-turn (Kt-7) that folds on addition of metal ions, and a box C/D k-turn. Folding was studied using fluorescence resonance energy transfer and gel electrophoresis. Three sequence elements each contribute in an approximately additive manner to the different folding properties of Kt-7 and box C/D k-turns from archaea. Bioinformatic analysis indicates that k-turn sequences evolve sequences that suit their folding properties to their biological function. The majority of ribosomal and riboswitch k-turns have sequences allowing unassisted folding in response to the presence of metal ions. In contrast, box C/D k-turns have sequences that require the binding of proteins to drive folding into the kinked conformation, consistent with their role in the assembly of the box C/D snoRNP apparatus. The rules governing the influence of sequence on folding properties can be applied to other standard k-turns to predict their folding characteristics.
Collapse
Affiliation(s)
- Saira Ashraf
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
18
|
Huang L, Ashraf S, Wang J, Lilley DM. Control of box C/D snoRNP assembly by N 6-methylation of adenine. EMBO Rep 2017; 18:1631-1645. [PMID: 28623187 PMCID: PMC5579392 DOI: 10.15252/embr.201743967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
N6-methyladenine is the most widespread mRNA modification. A subset of human box C/D snoRNA species have target GAC sequences that lead to formation of N6-methyladenine at a key trans Hoogsteen-sugar A·G base pair, of which half are methylated in vivo The GAC target is conserved only in those that are methylated. Methylation prevents binding of the 15.5-kDa protein and the induced folding of the RNA Thus, the assembly of the box C/D snoRNP could in principle be regulated by RNA methylation at its critical first stage. Crystallography reveals that N6-methylation of adenine prevents the formation of trans Hoogsteen-sugar A·G base pairs, explaining why the box C/D RNA cannot adopt its kinked conformation. More generally, our data indicate that sheared A·G base pairs (but not Watson-Crick base pairs) are more susceptible to disruption by N6mA methylation and are therefore possible regulatory sites. The human signal recognition particle RNA and many related Alu retrotransposon RNA species are also methylated at N6 of an adenine that forms a sheared base pair with guanine and mediates a key tertiary interaction.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Saira Ashraf
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| | - David Mj Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Tomkuvienė M, Ličytė J, Olendraitė I, Liutkevičiūtė Z, Clouet-d'Orval B, Klimašauskas S. Archaeal fibrillarin-Nop5 heterodimer 2'- O-methylates RNA independently of the C/D guide RNP particle. RNA (NEW YORK, N.Y.) 2017; 23:1329-1337. [PMID: 28576826 PMCID: PMC5558902 DOI: 10.1261/rna.059832.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/19/2017] [Indexed: 06/01/2023]
Abstract
Archaeal fibrillarin (aFib) is a well-characterized S-adenosyl methionine (SAM)-dependent RNA 2'-O-methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'-O-methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'-O-methylated positions in the 16S rRNA of P. abyssi, positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Methylation
- Nucleic Acid Conformation
- Protein Binding
- Protein Multimerization
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Ingrida Olendraitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Zita Liutkevičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaires UMR 5100, CNRS, Université de Toulouse, F-31062 Toulouse, France
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
20
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
21
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
22
|
Yip WSV, Shigematsu H, Taylor DW, Baserga SJ. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Res 2016; 44:8976-8989. [PMID: 27342279 PMCID: PMC5062973 DOI: 10.1093/nar/gkw576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture.
Collapse
Affiliation(s)
- W S Vincent Yip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Hideki Shigematsu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA RIKEN Center for Life Science Technology, Yokohama, Kanagawa 230-0045, Japan
| | - David W Taylor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Genetics, Yale University, New Haven, CT 06520, USA Department of Therapeutic Radiology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. Illumina-based RiboMethSeq approach for mapping of 2'-O-Me residues in RNA. Nucleic Acids Res 2016; 44:e135. [PMID: 27302133 PMCID: PMC5027498 DOI: 10.1093/nar/gkw547] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
RNA 2′-O-methylation is one of the ubiquitous nucleotide modifications found in many RNA types from Bacteria, Archaea and Eukarya. RNAs bearing 2′-O-methylations show increased resistance to degradation and enhanced stability in helices. While the exact role of each 2′-O-Me residue remained elusive, the catalytic protein Fibrillarin (Nop1 in yeast) responsible for 2′-O-methylation in eukaryotes, is associated with human pathologies. Therefore, there is an urgent need to precisely map and quantify hundreds of 2′-O-Me residues in RNA using high-throughput technologies. Here, we develop a reliable protocol using alkaline fragmentation of total RNA coupled to a commonly used ligation approach, and Illumina sequencing. We describe a methodology to detect 2′-O-methylations with high sensitivity and reproducibility even with limited amount of starting material (1 ng of total RNA). The method provides a quantification of the 2′-O-methylation occupancy of a given site, allowing to detect relatively small changes (>10%) in 2′-O-methylation profiles. Altogether this technique unlocks a technological barrier since it will be applicable for routine parallel treatment of biological and clinical samples to decipher the functions of 2′-O-methylations in pathologies.
Collapse
Affiliation(s)
- Virginie Marchand
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florence Blanloeil-Oillo
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
24
|
Loza-Muller L, Rodríguez-Corona U, Sobol M, Rodríguez-Zapata LC, Hozak P, Castano E. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2015; 6:976. [PMID: 26594224 PMCID: PMC4635213 DOI: 10.3389/fpls.2015.00976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/26/2015] [Indexed: 05/24/2023]
Abstract
Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.
Collapse
Affiliation(s)
- Lloyd Loza-Muller
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| | - Ulises Rodríguez-Corona
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i.Prague, Czech Republic
| | | | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i.Prague, Czech Republic
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| |
Collapse
|
25
|
Rothé B, Saliou JM, Quinternet M, Back R, Tiotiu D, Jacquemin C, Loegler C, Schlotter F, Peña V, Eckert K, Moréra S, Dorsselaer AV, Branlant C, Massenet S, Sanglier-Cianférani S, Manival X, Charpentier B. Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction. Nucleic Acids Res 2014; 42:10731-47. [PMID: 25170085 PMCID: PMC4176330 DOI: 10.1093/nar/gku612] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Marc Quinternet
- FR CNRS-3209 Bioingénierie Moléculaire, Cellulaire et Thérapeutique (BMCT), CNRS, Université de Lorraine, Biopôle, Campus Biologie Santé, CS 50184, 54505 Vandœuvre-lès-Nancy Cedex, France
| | - Régis Back
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Decebal Tiotiu
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Clémence Jacquemin
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Vlad Peña
- Max-Planck-Institut für biophysikalische Chemie, Abtl. Röntgenkristallographie, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kelvin Eckert
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg. CNRS, UMR 7178, 25 rue Becquerel, 67087 Strasbourg, France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle, Campus Biologie Santé, 9 avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
26
|
|
27
|
Ye W, Yang J, Yu Q, Wang W, Hancy J, Luo R, Chen HF. Kink turn sRNA folding upon L7Ae binding using molecular dynamics simulations. Phys Chem Chem Phys 2014; 15:18510-22. [PMID: 24072031 DOI: 10.1039/c3cp53145g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kink-turn sRNA motif in archaea, whose combination with protein L7Ae initializes the assembly of small ribonucleoprotein particles (sRNPs), plays a key role in ribosome maturation and the translation process. Although many studies have been reported on this motif, the mechanism of sRNA folding coupled with protein binding is still poorly understood. Here, room and high temperature molecular dynamics (MD) simulations were performed on the complex of 25-nt kink-turn sRNA and L7Ae. The average RMSD values between the bound and corresponding apo structures and Kolmogorov-Smirnov P test analysis indicate that sRNA may follow an induced fit mechanism upon binding with L7Ae, both locally and globally. These conclusions are further supported by high-temperature unfolding kinetic analysis. Principal component analysis (PCA) found both closing and opening motions of the kink-turn sRNA. This might play a key role in the sRNP assembly and methylation catalysis. These combined computational methods can be used to study the specific recognition of other sRNAs and proteins.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Daldrop P, Huang L, Lilley DMJ. The k-junction motif in RNA structure. Nucleic Acids Res 2014; 42:5322-31. [PMID: 24531930 PMCID: PMC4005666 DOI: 10.1093/nar/gku144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The k-junction is a structural motif in RNA comprising a three-way helical junction based upon kink turn (k-turn) architecture. A computer program written to examine relative helical orientation identified the three-way junction of the Arabidopsis TPP riboswitch as an elaborated k-turn. The Escherichia coli TPP riboswitch contains a related k-junction, and analysis of >11 000 sequences shows that the structure is common to these riboswitches. The k-junction exhibits all the key features of an N1-class k-turn, including the standard cross-strand hydrogen bonds. The third helix of the junction is coaxially aligned with the C (canonical) helix, while the k-turn loop forms the turn into the NC (non-canonical) helix. Analysis of ligand binding by ITC and global folding by gel electrophoresis demonstrates the importance of the k-turn nucleotides. Clearly the basic elements of k-turn structure are structurally well suited to generate a three-way helical junction, retaining all the key features and interactions of the k-turn.
Collapse
Affiliation(s)
- Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
29
|
Rothé B, Back R, Quinternet M, Bizarro J, Robert MC, Blaud M, Romier C, Manival X, Charpentier B, Bertrand E, Branlant C. Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. Nucleic Acids Res 2013; 42:2015-36. [PMID: 24234454 PMCID: PMC3919607 DOI: 10.1093/nar/gkt1091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K–Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K–Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p–Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 9 avenue de la forêt de Haye, BP 184, 54505 Vandœuvre-lès-Nancy, France, FR CNRS-3209 (Ingénierie Moléculaire et Thérapeutique), CNRS, Université de Lorraine, Faculté de Médecine, Bâtiment Biopôle, BP 184, 54505 Vandœuvre-lès-Nancy Cedex, France, Equipe labellisée Ligue contre le Cancer, IGMM (Institut de Génétique Moléculaire de Montpellier), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Montpellier Cedex 5, France and IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), Département de Biologie et Génomique Structurales, Université de Strasbourg, CNRS, INSERM, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhuiya MW, Suryadi J, Zhou Z, Brown BA. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:979-88. [PMID: 23989144 PMCID: PMC3758144 DOI: 10.1107/s1744309113021799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.
Collapse
Affiliation(s)
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Zholi Zhou
- Bristol-Myers Squibb, Syracuse, NY 13221, USA
| | - Bernard Andrew Brown
- Womble Carlyle Sandridge and Rice LLP, One West Fourth Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
31
|
Burger K, Mühl B, Rohrmoser M, Coordes B, Heidemann M, Kellner M, Gruber-Eber A, Heissmeyer V, Strässer K, Eick D. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA. J Biol Chem 2013; 288:21173-21183. [PMID: 23744076 DOI: 10.1074/jbc.m113.483719] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.
Collapse
Affiliation(s)
- Kaspar Burger
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Bastian Mühl
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Michaela Rohrmoser
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Britta Coordes
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Martin Heidemann
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Markus Kellner
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Anita Gruber-Eber
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katja Strässer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany, and
| | - Dirk Eick
- From the Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany,.
| |
Collapse
|
32
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
33
|
Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA (NEW YORK, N.Y.) 2012; 18:1527-1540. [PMID: 22753779 PMCID: PMC3404373 DOI: 10.1261/rna.033134.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.
Collapse
Affiliation(s)
| | | | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry
- Department of Genetics
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
34
|
Gagnon KT, Biswas S, Zhang X, Brown BA, Wollenzien P, Mattos C, Maxwell ES. Structurally conserved Nop56/58 N-terminal domain facilitates archaeal box C/D ribonucleoprotein-guided methyltransferase activity. J Biol Chem 2012; 287:19418-28. [PMID: 22496443 DOI: 10.1074/jbc.m111.323253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Box C/D RNA-protein complexes (RNPs) guide the 2'-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C'/D' RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity.
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol 2011; 31:4482-99. [PMID: 21930789 DOI: 10.1128/mcb.05804-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein syntheses mediated by cellular and viral internal ribosome entry sites (IRESs) are believed to have many features in common. Distinct mechanisms for ribosome recruitment and preinitiation complex assembly between the two processes have not been identified thus far. Here we show that the methylation status of rRNA differentially influenced the mechanism of 80S complex formation on IRES elements from the cellular sodium-coupled neutral amino acid transporter 2 (SNAT2) versus the hepatitis C virus mRNA. Translation initiation involves the assembly of the 48S preinitiation complex, followed by joining of the 60S ribosomal subunit and formation of the 80S complex. Abrogation of rRNA methylation did not affect the 48S complex but resulted in impairment of 80S complex assembly on the cellular, but not the viral, IRESs tested. Impairment of 80S complex assembly on the amino acid transporter SNAT2 IRES was rescued by purified 60S subunits containing fully methylated rRNA. We found that rRNA methylation did not affect the activity of any of the viral IRESs tested but affected the activity of numerous cellular IRESs. This work reveals a novel mechanism operating on a cohort of cellular IRESs that involves rRNA methylation for proper 80S complex assembly and efficient translation initiation.
Collapse
|
36
|
Joardar A, Malliahgari SR, Skariah G, Gupta R. 2'-O-methylation of the wobble residue of elongator pre-tRNA(Met) in Haloferax volcanii is guided by a box C/D RNA containing unique features. RNA Biol 2011; 8:782-91. [PMID: 21654217 PMCID: PMC3256356 DOI: 10.4161/rna.8.5.16015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
The wobble residue C34 of Haloferax volcanii elongator tRNA(Met) is 2'-O-methylated. Neither a protein enzyme nor a guide RNA for this modification has been described. In this study, we show that this methylation is guided by a box C/D RNA targeting the intron-containing precursor of the tRNA. This guide RNA is starkly different from its homologs. This unique RNA of approximately 75 bases, named sR-tMet, is encoded in the genomes of H. volcanii and several other haloarchaea. A unique feature of sR-tMet is that the mature RNA in H. volcanii is substantially larger than its predicted size, whereas those in other haloarchaea are as predicted. While the 5'-ends of all tested haloarchaeal sR-tMets are equivalent, H. volcanii sR-tMet possesses an additional 51-base extension at its 3' end. This extension is present in the precursor but not in the mature sR-tMet of Halobacterium sp., suggesting differential 3'-end processing of sR-tMet in these two closely related organisms. Archaeal box C/D RNAs mostly contain a K-loop at the C'/D' motif. Another unique feature of sR-tMet is that its C'/D' motif lacks either a conventional K-turn or a K-loop. Instead, it contains two tandem, sheared G•A base pairs and a pyrimidine-pyrimidine pair in the non-canonical stem; the latter may form an alternative K-turn. Gel shift assays indicate that the L7Ae protein can form a stable complex with this unusual C'/D' motif, suggesting a novel RNA structure for L7Ae interaction.
Collapse
Affiliation(s)
- Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL, USA
| | | | | | | |
Collapse
|
37
|
Rakitina DV, Taliansky M, Brown JWS, Kalinina NO. Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 2011; 39:8869-80. [PMID: 21785141 PMCID: PMC3203579 DOI: 10.1093/nar/gkr594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibrillarin, one of the major proteins of the nucleolus, plays several essential roles in ribosome biogenesis including pre-rRNA processing and 2′-O-ribose methylation of rRNA and snRNAs. Recently, it has been shown that fibrillarin plays a role in virus infections and is associated with viral RNPs. Here, we demonstrate the ability of recombinant fibrillarin 2 from Arabidopsis thaliana (AtFib2) to interact with RNAs of different lengths and types including rRNA, snoRNA, snRNA, siRNA and viral RNAs in vitro. Our data also indicate that AtFib2 possesses two RNA-binding sites in the central (138–179 amino acids) and C-terminal (225–281 amino acids) parts of the protein, respectively. The conserved GCVYAVEF octamer does not bind RNA directly as suggested earlier, but may assist with the proper folding of the central RNA-binding site.
Collapse
Affiliation(s)
- D. V. Rakitina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - Michael Taliansky
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
- *To whom correspondence should be addressed. Tel: +44(0)1382562731; Fax: +44 (0)1382 562426;
| | - J. W. S. Brown
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| | - N. O. Kalinina
- Department of Virology and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK and Plant Sciences Division, University of Dundee, DD2 5DA, UK
| |
Collapse
|
38
|
van Nues RW, Granneman S, Kudla G, Sloan KE, Chicken M, Tollervey D, Watkins NJ. Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. EMBO J 2011; 30:2420-30. [PMID: 21556049 PMCID: PMC3116282 DOI: 10.1038/emboj.2011.148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/07/2011] [Indexed: 11/09/2022] Open
Abstract
2'-O-methylation of eukaryotic ribosomal RNA (r)RNA, essential for ribosome function, is catalysed by box C/D small nucleolar (sno)RNPs. The RNA components of these complexes (snoRNAs) contain one or two guide sequences, which, through base-pairing, select the rRNA modification site. Adjacent to the guide sequences are protein-binding sites (the C/D or C'/D' motifs). Analysis of >2000 yeast box C/D snoRNAs identified additional conserved sequences in many snoRNAs that are complementary to regions adjacent to the rRNA methylation site. This 'extra base-pairing' was also found in many human box C/D snoRNAs and can stimulate methylation by up to five-fold. Sequence analysis, combined with RNA-protein crosslinking in Saccharomyces cerevisiae, identified highly divergent box C'/D' motifs that are bound by snoRNP proteins. In vivo rRNA methylation assays showed these to be active. Our data suggest roles for non-catalytic subunits (Nop56 and Nop58) in rRNA binding and support an asymmetric model for box C/D snoRNP organization. The study provides novel insights into the extent of the snoRNA-rRNA interactions required for efficient methylation and the structural organization of the snoRNPs.
Collapse
Affiliation(s)
- Robert Willem van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Biswas S, Buhrman G, Gagnon K, Mattos C, Brown BA, Maxwell ES. Comparative analysis of the 15.5kD box C/D snoRNP core protein in the primitive eukaryote Giardia lamblia reveals unique structural and functional features. Biochemistry 2011; 50:2907-18. [PMID: 21366326 DOI: 10.1021/bi1020474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 Å. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.
Collapse
Affiliation(s)
- Shyamasri Biswas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
40
|
Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature 2011; 469:559-63. [PMID: 21270896 DOI: 10.1038/nature09688] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 11/09/2022]
Abstract
Box C/D RNA protein complexes (RNPs) direct site-specific 2'-O-methylation of RNA and ribosome assembly. The guide RNA in C/D RNP forms base pairs with complementary substrates and selects the modification site using a molecular ruler. Despite many studies of C/D RNP structure, the fundamental questions of how C/D RNAs assemble into RNPs and how they guide modification remain unresolved. Here we report the crystal structure of an entire catalytically active archaeal C/D RNP consisting of a bipartite C/D RNA associated with two substrates and two copies each of Nop5, L7Ae and fibrillarin at 3.15-Å resolution. The substrate pairs with the second through the eleventh nucleotide of the 12-nucleotide guide, and the resultant duplex is bracketed in a channel with flexible ends. The methyltransferase fibrillarin binds to an undistorted A-form structure of the guide-substrate duplex and specifically loads the target ribose into the active site. Because interaction with the RNA duplex alone does not determine the site specificity, fibrillarin is further positioned by non-specific and specific protein interactions. Compared with the structure of the inactive C/D RNP, extensive domain movements are induced by substrate loading. Our results reveal the organization of a monomeric C/D RNP and the mechanism underlying its site-specific methylation activity.
Collapse
Affiliation(s)
- Jinzhong Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
42
|
Abstract
Electrophoretic mobility shift assay, or EMSA, is a well-established technique for separating macromolecules under native conditions based on a combination of shape, size, and charge. The use of EMSA can provide both general and specific information concerning the interaction between two macromolecules such as RNA and protein. Here we present a protocol for the practical use of EMSA to assess protein-RNA interactions and ribonucleoprotein (RNP) assembly. The conceptual framework of the assay is discussed along with a step-by-step procedure for the binding of archaeal ribosomal protein L7Ae to a box C/D sRNA. Potential pitfalls and common mistakes to avoid are emphasized with technical tips and a notes section. This protocol provides a starting point for the design and implementation of EMSA in studying a wide variety of RNP complexes.
Collapse
|
43
|
Qu G, van Nues RW, Watkins NJ, Maxwell ES. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex. Mol Cell Biol 2011; 31:365-74. [PMID: 21041475 PMCID: PMC3019978 DOI: 10.1128/mcb.00918-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022] Open
Abstract
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | | | |
Collapse
|
44
|
Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ. A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. RNA (NEW YORK, N.Y.) 2010; 16:2341-8. [PMID: 20962039 PMCID: PMC2995396 DOI: 10.1261/rna.2380410] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.
Collapse
Affiliation(s)
- Homa Ghalei
- Abteilung Zelluläre Biochemie, Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|
46
|
Barygina VV, Veiko VP, Zatsepina OV. Analysis of nucleolar protein fibrillarin mobility and functional state in living HeLa cells. BIOCHEMISTRY (MOSCOW) 2010; 75:979-88. [PMID: 21073418 DOI: 10.1134/s0006297910080055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrillarin is an evolutionarily-conserved and obligatory protein component of eukaryotic cell nucleoli involved in pre-rRNA processing and methylation. In vertebrates the fibrillarin molecule contains two cysteine residues (Cys99 and Cys268) whose sulfhydryl groups are able to establish intramolecular -S-S- bridges. However, the functional state of fibrillarin with reduced or oxidized thiol groups is still practically unstudied. Besides, there are no data in the literature concerning existence of the -S-S- fibrillarin form in human cells. To answer these questions, we used plasmids encoding native human fibrillarin and its mutant form devoid of cysteine residues (fibrillarinC99/268S) fused with EGFP for temporary transfection of HeLa cells. The mobile fraction localizing the enzymatically active protein molecules and the fluorescence half-recovery time characterizing the rate of enzymatic reactions were determined by the FRAP technique using a confocal laser scanning microscope. Measurements were carried out at 37 and 27°C. The results show that the fibrillarin pool in HeLa cells includes two protein forms, with reduced SH groups and with oxidized SH groups forming intramolecular -S-S- bridges between Cys99 and Cys268. However, the absence of Cys99 and Cys268 has no effect on intracellular localization of fibrillarin and its main dynamic parameters. The human fibrillarin form without disulfide bridges is included into the mobile protein fraction and is consistent with its functionally active state.
Collapse
Affiliation(s)
- V V Barygina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
47
|
Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Mol Cell 2010; 39:939-49. [PMID: 20864039 PMCID: PMC3572848 DOI: 10.1016/j.molcel.2010.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/20/2010] [Accepted: 07/16/2010] [Indexed: 01/07/2023]
Abstract
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs.
Collapse
Affiliation(s)
- Song Xue
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Ruiying Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Fangping Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Rebecca M. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Michael P. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinxin Zhang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - E. Stuart Maxwell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
48
|
Bleichert F, Baserga SJ. Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function. Nucleic Acids Res 2010; 38:8295-305. [PMID: 20693534 PMCID: PMC3001065 DOI: 10.1093/nar/gkq690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In all three kingdoms of life, nucleotides in ribosomal RNA (rRNA) are post-transcriptionally modified. One type of chemical modification is 2'-O-ribose methylation, which is, in eukaryotes and archaea, performed by box C/D small ribonucleoproteins (box C/D sRNPs in archaea) and box C/D small nucleolar ribonucleoproteins (box C/D snoRNPs in eukaryotes), respectively. Recently, the first structure of any catalytically active box C/D s(no)RNP determined by electron microscopy and single particle analysis surprisingly demonstrated that they are dimeric RNPs. Mutational analyses of the Nop5 protein interface suggested that di-sRNP formation is also required for the in vitro catalytic activity. We have now analyzed the functional relevance of the second interface, the sRNA interface, within the box C/D di-sRNP. Mutations in conserved sequence elements of the sRNA, which allow sRNP assembly but which severely interfere with the catalytic activity of box C/D sRNPs, prevent formation of the di-sRNP. In addition, we can observe the dimeric box C/D sRNP architecture with a different box C/D sRNP, suggesting that this architecture is conserved. Together, these results provide further support for the functional relevance of the di-sRNP architecture and also provide a structural explanation for the observed defects in catalysis of 2'-O-ribose methylation.
Collapse
|
49
|
Abstract
To the mounting evidence of nonribosomal functions for ribosomal proteins, we now add L7Ae as a subunit of archaeal RNase P, a ribonucleoprotein (RNP) that catalyzes 5'-maturation of precursor tRNAs (pre-tRNAs). We first demonstrate that L7Ae coelutes with partially purified Methanococcus maripaludis (Mma) RNase P activity. After establishing in vitro reconstitution of the single RNA with four previously known protein subunits (POP5, RPP21, RPP29, and RPP30), we show that addition of L7Ae to this RNase P complex increases the optimal reaction temperature and k(cat)/K(m) (by approximately 360-fold) for pre-tRNA cleavage to those observed with partially purified native Mma RNase P. We identify in the Mma RNase P RNA a putative kink-turn (K-turn), the structural motif recognized by L7Ae. The large stimulatory effect of Mma L7Ae on RNase P activity decreases to <or= 4% of wild type upon mutating either the conserved nucleotides in this K-turn or amino acids in L7Ae shown to be essential for K-turn binding. The critical, multifunctional role of archaeal L7Ae in RNPs acting in tRNA processing (RNase P), RNA modification (H/ACA, C/D snoRNPs), and translation (ribosomes), especially by employing the same RNA-recognition surface, suggests coevolution of various translation-related functions, presumably to facilitate their coordinate regulation.
Collapse
|
50
|
Weisel J, Wagner S, Klug G. The Nop5-L7A-fibrillarin RNP complex and a novel box C/D containing sRNA of Halobacterium salinarum NRC-1. Biochem Biophys Res Commun 2010; 394:542-7. [PMID: 20206603 DOI: 10.1016/j.bbrc.2010.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022]
Abstract
RNA 2'O-methylation is a frequent modification of rRNA and tRNA and supposed to influence RNA folding and stability. Ribonucleoprotein (RNP) complexes, containing the proteins Nop5, L7A, fibrillarin, and a box C/D sRNA, are guided for 2'O-methylation by interactions of their RNA component with their target RNA. In vitro complex assembly was analyzed for several thermophilic Archaea but in vivo studies are rare, even unavailable for halophilic Archaea. To analyze the putative box C/D RNP complex in the extremely halophilic Halobacterium salinarum NRC-1 we performed pull-down analysis and identified the proteins Nop5, L7A, and fibrillarin and the tRNA(Trp) intron, as a typical box C/D sRNA of this RNP complex in vivo. We show for the first time a ribonucleolytic activity of the purified RNP complex proteins, as well as for the RNP complex containing pull-down fractions. Furthermore, we identified a novel RNA (OE4630R-3'sRNA) as part of the complex, containing the typical boxes C/D and C'/D' sequence motifs and being twice as abundant as the tRNA(Trp) intron.
Collapse
Affiliation(s)
- Jasmin Weisel
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|