1
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
2
|
Zhao X, Lanz J, Steinberg D, Pease T, Ahearn JM, Bezsonov EE, Staguhn ED, Eisenberg E, Masison DC, Greene LE. Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. J Biol Chem 2018; 293:3104-3117. [PMID: 29330300 DOI: 10.1074/jbc.m117.809079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 μm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.
Collapse
Affiliation(s)
| | - Jenna Lanz
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Tyler Pease
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Evgeny E Bezsonov
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | | | | - Daniel C Masison
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | |
Collapse
|
3
|
Oliver EE, Troisi EM, Hines JK. Prion-specific Hsp40 function: The role of the auxilin homolog Swa2. Prion 2017; 11:174-185. [PMID: 28574745 PMCID: PMC5480384 DOI: 10.1080/19336896.2017.1331810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/14/2023] Open
Abstract
Yeast prions are protein-based genetic elements that propagate through cell populations via cytosolic transfer from mother to daughter cell. Molecular chaperone proteins including Hsp70, the Hsp40/J-protein Sis1, and Hsp104 are required for continued prion propagation, however the specific requirements of chaperone proteins differ for various prions. We recently reported that Swa2, the yeast homolog of the mammalian protein auxilin, is specifically required for the propagation of the prion [URE3]. 1 [URE3] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain of Swa2, but does not require Swa2 clathrin binding. We concluded that the TPR domain determines the specificity of the genetic interaction between Swa2 and [URE3], and that this domain likely interacts with one or more proteins with a C-terminal EEVD motif. Here we extend that analysis to incorporate additional data that supports this hypothesis. We also present new data eliminating Hsp104 as the relevant Swa2 binding partner and discuss our findings in the context of other recent work involving Hsp90. Based on these findings, we propose a new model for Swa2's involvement in [URE3] propagation in which Swa2 and Hsp90 mediate the formation of a multi-protein complex that increases the number of sites available for Hsp104 disaggregation.
Collapse
|
4
|
Tessier SN, Audas TE, Wu CW, Lee S, Storey KB. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation. Cell Stress Chaperones 2014; 19:813-25. [PMID: 24590458 PMCID: PMC4389841 DOI: 10.1007/s12192-014-0505-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/10/2023] Open
Abstract
Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Shannon N. Tessier
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Timothy E. Audas
- />Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Cheng-Wei Wu
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Stephen Lee
- />Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Kenneth B. Storey
- />Institute of Biochemistry, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
5
|
Crapeau M, Maillet L, Cullin C. Ploidy controls [URE3] prion propagation in yeast. FEMS Yeast Res 2013; 14:324-36. [PMID: 24205798 DOI: 10.1111/1567-1364.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022] Open
Abstract
Previous genetic approaches have enabled the identification of key partners for prion propagation in yeast, such as HSP104. All the experiments performed thus far have been conducted in a haploid context. In this study, we used a diploid yeast strain to identify genes that interfere with [URE3] stability. Our screen, based on a multi-copy library, revealed an unsuspected role for centromeric sequences that appear to decrease the mitotic stability of this prion. Because an increase in centromeric sequences interferes with [URE3] transmission, we analyzed this property in tetraploid yeast cells. We found that in such strains, [URE3] is quite unstable, with the concentration of Hsp104p being a key factor for the stabilization of [URE3] in 4n yeast cells. We also showed that HSP104 stabilization can occur independently of its 'disaggregate' activity. These results may explain the discrepancy between wild strains bearing or not bearing prions because they differ in their ploidy. These results provide new insight into prion biology by linking the control of ploidy to protein misfolding and demonstrate that [URE3] is also a gain-of-function phenotype.
Collapse
Affiliation(s)
- Myriam Crapeau
- IBMM CP300, Université Libre de Bruxelles (ULB), Gosselies, Belgique
| | | | | |
Collapse
|
6
|
Derkatch IL, Liebman SW. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions. Prion 2013; 7:294-300. [PMID: 23924684 PMCID: PMC3904315 DOI: 10.4161/pri.26021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.
Collapse
Affiliation(s)
- Irina L Derkatch
- Department of Neuroscience; Columbia University; New York, NY USA
| | | |
Collapse
|
7
|
Yang Z, Hong JY, Derkatch IL, Liebman SW. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability. PLoS Genet 2013; 9:e1003236. [PMID: 23358669 PMCID: PMC3554615 DOI: 10.1371/journal.pgen.1003236] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022] Open
Abstract
Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q)/asparagine (N)-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller “seeds.” We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI+] or [URE3] prions. We explore in detail the events leading to the loss (curing) of [PSI+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI+]. Certain proteins can occasionally misfold into infectious aggregates called prions. Once formed, these aggregates grow by attracting the soluble form of that protein to join them. The presence of these aggregates can cause profound effects on cells and, in humans, can cause diseases such as transmissible spongiform encephalopathies (TSEs). In yeast, the aggregates are efficiently transmitted to daughter cells because they are cut into small pieces by molecular scissors (chaperones). Here we show that heritable prion aggregates are frequently lost when we overproduce certain other proteins with curing activity. We analyzed one such protein in detail and found that when it is overproduced it forms aggregates that sequester chaperones. This sequestration appears to block the ability of the chaperones to cut the prion aggregates. The result is that the prions get too large to be transmitted to daughter cells. Such sequestration of molecular scissors provides a potential approach to thwart the propagation of disease-causing infectious protein aggregates.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joo Y. Hong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Irina L. Derkatch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Prions are infectious, self-propagating protein conformations. [PSI+], [RNQ+] and [URE3] are well characterized prions in Saccharomyces cerevisiae and represent the aggregated states of the translation termination factor Sup35, a functionally unknown protein Rnq1, and a regulator of nitrogen metabolism Ure2, respectively. Overproduction of Sup35 induces the de novo appearance of the [PSI+] prion in [RNQ+] or [URE3] strain, but not in non-prion strain. However, [RNQ+] and [URE3] prions themselves, as well as overexpression of a mutant Rnq1 protein, Rnq1Δ100, and Lsm4, hamper the maintenance of [PSI+]. These findings point to a bipolar activity of [RNQ+], [URE3], Rnq1Δ100, and Lsm4, and probably other yeast prion proteins as well, for the fate of [PSI+] prion. Possible mechanisms underlying the apparent bipolar activity of yeast prions will be discussed.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Sideri TC, Koloteva-Levine N, Tuite MF, Grant CM. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 2011; 286:38924-31. [PMID: 21832086 PMCID: PMC3234717 DOI: 10.1074/jbc.m111.272419] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The frequency with which the yeast [PSI+] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI+] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN+] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN+] and [PSI+], it does not overcome the requirement of cells being [PIN+] to form the [PSI+] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI+] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN+] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI+] prion formation.
Collapse
Affiliation(s)
- Theodora C Sideri
- Faculty of Life Sciences, University of Manchester, the Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
10
|
Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS Genet 2011; 7:e1001309. [PMID: 21379326 PMCID: PMC3040656 DOI: 10.1371/journal.pgen.1001309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/12/2011] [Indexed: 11/24/2022] Open
Abstract
The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments. Yeast prions are heritable genetic elements, formed spontaneously by aggregation of a single protein. Prions can thus generate diverse phenotypes in a dominant, non-Mendelian fashion, without a corresponding change in chromosomal gene structure. Since the phenotypes caused by the presence of a prion are thought to affect the ability of cells to survive under different environmental conditions, those that have global effects on cell physiology are of particular interest. Here we report the results of a study of one such prion, [SWI+], formed by a component of the SWI/SNF chromatin-remodeling complex, which is required for the regulation of a diverse set of genes. We found that, compared to previously well-studied prions, [SWI+] is highly sensitive to changes in the activities of molecular chaperones, particularly components of the Hsp70 machinery. Both under- and over-expression of components of this system initiated rapid loss of the prion from the cell population. Since expression of molecular chaperones, often known as heat shock proteins, are known to vary under diverse environmental conditions, such “chaperone sensitivity” may allow alteration of traits that under particular environmental conditions convey a selective advantage and may be a common characteristic of prions formed from proteins involved in global gene regulation.
Collapse
Affiliation(s)
- Justin K. Hines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Xiaomo Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Takashi Higurashi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (EAC); (LL)
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail: (EAC); (LL)
| |
Collapse
|
11
|
Abstract
Prions are infectious, self-propagating protein conformations. [PSI+], [RNQ+] and [URE3] are well characterized prions in Saccharomyces cerevisiae and represent the aggregated states of the translation termination factor Sup35, a functionally unknown protein Rnq1, and a regulator of nitrogen metabolism Ure2, respectively. Overproduction of Sup35 induces the de novo appearance of the [PSI+] prion in [RNQ+] or [URE3] strain, but not in non-prion strain. However, [RNQ+] and [URE3] prions themselves, as well as overexpression of a mutant Rnq1 protein, Rnq1Δ100, and Lsm4, hamper the maintenance of [PSI+]. These findings point to a bipolar activity of [RNQ+], [URE3], Rnq1Δ100, and Lsm4, and probably other yeast prion proteins as well, for the fate of [PSI+] prion. Possible mechanisms underlying the apparent bipolar activity of yeast prions will be discussed.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Basic Medical Sciences; Institute of Medical Science; University of Tokyo; Tokyo, Japan,Department of Neurochemistry; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Keita Oishi
- Department of Basic Medical Sciences; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences; Institute of Medical Science; University of Tokyo; Tokyo, Japan
| |
Collapse
|
12
|
Sindi SS, Serio TR. Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr Opin Microbiol 2009; 12:623-30. [PMID: 19864176 DOI: 10.1016/j.mib.2009.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 01/24/2023]
Abstract
According to the prion hypothesis, proteins may act in atypical roles as genetic elements of infectivity and inheritance by undergoing self-replicating changes in physical state. While the preponderance of evidence strongly supports this concept particularly in fungi, the detailed mechanisms by which distinct protein forms specify unique phenotypes are emerging concepts. A particularly active area of investigation is the molecular nature of the heritable species, which has been probed through genetic, biochemical, and cell biological experimentation as well as by mathematical modeling. Here, we suggest that these studies are converging to implicate small aggregates composed of prion-state conformers as the transmissible genetic determinants of protein-based phenotypes.
Collapse
Affiliation(s)
- Suzanne S Sindi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting St., Box G-L2, Providence, RI 02912, USA
| | | |
Collapse
|
13
|
Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:968-76. [PMID: 19411620 DOI: 10.1128/ec.00353-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During propagation, yeast prions show a strict sequence preference that confers the specificity of prion assembly. Although propagations of [PSI(+)] and [RNQ(+)] are independent of each other, the appearance of [PSI(+)] is facilitated by the presence of [RNQ(+)]. To explain the [RNQ(+)] effect on the appearance of [PSI(+)], the cross-seeding model was suggested, in which Rnq1 aggregates act as imperfect templates for Sup35 aggregation. If cross-seeding events take place in the cytoplasm of yeast cells, the collision frequency between Rnq1 aggregates and Sup35 will affect the appearance of [PSI(+)]. In this study, to address whether cross-seeding occurs in vivo, a new [PSI(+)] induction method was developed that exploits a protein fusion between the prion domain of Sup35 (NM) and Rnq1. This fusion protein successfully joins preexisting Rnq1 aggregates, which should result in the localization of NM around the Rnq1 aggregates and hence in an increased collision frequency between NM and Rnq1 aggregates. The appearance of [PSI(+)] could be induced very efficiently, even with a low expression level of the fusion protein. This study supports the occurrence of in vivo cross-seeding between Sup35 and Rnq1 and provides a new tool that can be used to dissect the mechanism of the de novo appearance of prions.
Collapse
|
14
|
Crapeau M, Marchal C, Cullin C, Maillet L. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Mol Biol Cell 2009; 20:2286-96. [PMID: 19225154 DOI: 10.1091/mbc.e08-11-1097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2p(Sp)) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2p(Sp) overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2p(Sp) and of S. cerevisiae Ure2p (Ure2p(Sc)) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2p(Sp) aggregates faster than Ure2p(Sc). Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2p(Sc) than with Ure2p(Sp). Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2p(Sc). Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2p(Sp) might be more sensitive to such effects than Ure2p(Sc).
Collapse
Affiliation(s)
- Myriam Crapeau
- Centre National de la Recherche Scientifique, Institut de Biochimie et de Génétique Cellulaires, Bordeaux, France
| | | | | | | |
Collapse
|
15
|
Abstract
Fluorescent live cell imaging has recently been used in numerous studies to examine prions in yeast. These fluorescence studies take advantage of the fact that unlike the normally folded form, the misfolded amyloid form of the prion protein is aggregated. The studies have used fluorescence to identify new prions, to study the transmission of prion from mother to daughter, and to understand the role of molecular chaperones in this transmission. The use of fluorescence imaging complements the more standard methods used to study prion propagation. This review discusses the various studies that have taken advantage of fluorescence imaging technique particularly in regard to understanding the transmission and curing of the [PSI(+)], the prion form of the translation termination factor Sup35p.
Collapse
Affiliation(s)
- Lois E Greene
- Laboratory of Cell Biology, NHLBI, NIH, Bethesda, MD 20892-0301, USA.
| | | | | | | |
Collapse
|
16
|
Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci U S A 2008; 105:16596-601. [PMID: 18955697 DOI: 10.1073/pnas.0808934105] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast prions, such as [PSI(+)], [RNQ(+)], and [URE3], are heritable elements formed by proteins capable of acquiring self-perpetuating conformations. Their propagation is dependent on fragmentation of the amyloid protein complexes formed to generate the additional seeds necessary for conversion of nascent soluble protein to the prion conformation. We report that, in addition to its known role in [RNQ(+)] propagation, Sis1, a J-protein cochaperone of Hsp70 Ssa, is also specifically required for propagation of [PSI(+)] and [URE3]. Whereas both [RNQ(+)] and [URE3] are cured rapidly upon SIS1 repression, [PSI(+)] loss is markedly slower. This disparity cannot be explained simply by differences in seed number, as [RNQ(+)] and [PSI(+)] are lost with similar kinetics upon inhibition of Hsp104, a remodeling protein required for propagation of all yeast prions. Rather, in the case of [PSI(+)], our results are consistent with the partial impairment, rather than the complete abolition, of fragmentation of prion complexes upon Sis1 depletion. We suggest that a common set of molecular chaperones, the J-protein Sis1, the Hsp70 Ssa, and the AAA+ ATPase Hsp104, act sequentially in the fragmentation of all yeast prions, but that the threshold of Sis1 activity required for each prion varies.
Collapse
|
17
|
Abstract
Many of the fatal neurodegenerative disorders that plague humankind, including Alzheimer's and Parkinson's disease, are connected with the misfolding of specific proteins into a surprisingly generic fibrous conformation termed amyloid. Prior to amyloid fiber assembly, many proteins populate a common oligomeric conformation, which may be severely cytotoxic. Therapeutic innovations are desperately sought to safely reverse this aberrant protein aggregation and return proteins to normal function. Whether mammalian cells possess any such endogenous activity remains unclear. By contrast, fungi, plants and bacteria all express Hsp104, a protein-remodeling factor, which synergizes with the Hsp70 chaperone system to resolve aggregated proteins and restore their functionality. Surprisingly, amyloids can also be adaptive. In yeast, Hsp104 directly regulates the amyloidogenesis of several prion proteins, which can confer selective advantages. Here, I review the modus operandi of Hsp104 and showcase efforts to unleash Hsp104 on the protein-misfolding events connected to disparate neurodegenerative amyloidoses.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
18
|
Malato L, Dos Reis S, Benkemoun L, Sabaté R, Saupe SJ. Role of Hsp104 in the propagation and inheritance of the [Het-s] prion. Mol Biol Cell 2007; 18:4803-12. [PMID: 17881723 PMCID: PMC2096600 DOI: 10.1091/mbc.e07-07-0657] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 11/11/2022] Open
Abstract
The chaperones of the ClpB/HSP100 family play a central role in thermotolerance in bacteria, plants, and fungi by ensuring solubilization of heat-induced protein aggregates. In addition in yeast, Hsp104 was found to be required for prion propagation. Herein, we analyze the role of Podospora anserina Hsp104 (PaHsp104) in the formation and propagation of the [Het-s] prion. We show that DeltaPaHsp104 strains propagate [Het-s], making [Het-s] the first native fungal prion to be propagated in the absence of Hsp104. Nevertheless, we found that [Het-s]-propagon numbers, propagation rate, and spontaneous emergence are reduced in a DeltaPaHsp104 background. In addition, inactivation of PaHsp104 leads to severe meiotic instability of [Het-s] and abolishes its meiotic drive activity. Finally, we show that DeltaPaHSP104 strains are less susceptible than wild type to infection by exogenous recombinant HET-s(218-289) prion amyloids. Like [URE3] and [PIN(+)] in yeast but unlike [PSI(+)], [Het-s] is not cured by constitutive PaHsp104 overexpression. The observed effects of PaHsp104 inactivation are consistent with the described role of Hsp104 in prion aggregate shearing in yeast. However, Hsp104-dependency appears less stringent in P. anserina than in yeast; presumably because in Podospora prion propagation occurs in a syncitium.
Collapse
Affiliation(s)
- Laurent Malato
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, Unité Mixte de Recherche 5095 Centre National de la Recherche Scientifique/Université de Bordeaux 2, 33077 Bordeaux Cedex, France
| | - Suzana Dos Reis
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, Unité Mixte de Recherche 5095 Centre National de la Recherche Scientifique/Université de Bordeaux 2, 33077 Bordeaux Cedex, France
| | - Laura Benkemoun
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, Unité Mixte de Recherche 5095 Centre National de la Recherche Scientifique/Université de Bordeaux 2, 33077 Bordeaux Cedex, France
| | - Raimon Sabaté
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, Unité Mixte de Recherche 5095 Centre National de la Recherche Scientifique/Université de Bordeaux 2, 33077 Bordeaux Cedex, France
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, Unité Mixte de Recherche 5095 Centre National de la Recherche Scientifique/Université de Bordeaux 2, 33077 Bordeaux Cedex, France
| |
Collapse
|
19
|
Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJT, Tuite MF. Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proc Natl Acad Sci U S A 2007; 104:11688-93. [PMID: 17606924 PMCID: PMC1913874 DOI: 10.1073/pnas.0701392104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanidine hydrochloride (Gdn.HCl) blocks the propagation of yeast prions by inhibiting Hsp104, a molecular chaperone that is absolutely required for yeast prion propagation. We had previously proposed that ongoing cell division is required for Gdn.HCl-induced loss of the [PSI+] prion. Subsequently, Wu et al.[Wu Y, Greene LE, Masison DC, Eisenberg E (2005) Proc Natl Acad Sci USA 102:12789-12794] claimed to show that Gdn.HCl can eliminate the [PSI+] prion from alpha-factor-arrested cells leading them to propose that in Gdn.HCl-treated cells the prion aggregates are degraded by an Hsp104-independent mechanism. Here we demonstrate that the results of Wu et al. can be explained by an unusually high rate of alpha-factor-induced cell death in the [PSI+] strain (780-1D) used in their studies. What appeared to be no growth in their experiments was actually no increase in total cell number in a dividing culture through a counterbalancing level of cell death. Using media-exchange experiments, we provide further support for our original proposal that elimination of the [PSI+] prion by Gdn.HCl requires ongoing cell division and that prions are not destroyed during or after the evident curing phase.
Collapse
Affiliation(s)
- Lee J. Byrne
- *Protein Science Group, Department of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom; and
| | - Brian S. Cox
- *Protein Science Group, Department of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom; and
| | - Diana J. Cole
- Institute of Mathematics, Statistics, and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
| | - Martin S. Ridout
- Institute of Mathematics, Statistics, and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
| | - Byron J. T. Morgan
- Institute of Mathematics, Statistics, and Actuarial Science, University of Kent, Canterbury CT2 7NF, United Kingdom
| | - Mick F. Tuite
- *Protein Science Group, Department of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Abstract
The rate of spontaneous change from psi(-) to the psi(+) condition, determined in yeast by states of the Sup35p protein, is briefly discussed together with the conditions necessary for such change to occur. Conditions that promote and which affect the rate of induction of psi(+) in Sup35p and of other prion-forming proteins to their respective prion forms are also discussed. These include the influence of the amount of non-prion protein, the presence of other prions, the activity of chaperones, and brief descriptions of the role of native sequences in the proteins and how alteration of sequences in prion-forming proteins influences the rate of induction of [prion(+)] and amyloid forms. The second part of this article discusses the conditions which affect the reversion of psi(+) to psi-, including factors which affect the copy-number of prion "seeds" or propagons and their partition. The principal factor discussed is the activity of the chaperone Hsp104, but the existence of other factors, such protein sequence and of other, less well-studied agents is touched upon and comparisons are made, as appropriate, with studies with other yeast prions. We conclude with a discussion of models of maintenance, in particular that of Tanaka et al. published in Nature (2006), which provides much insight into the phenotypic and genetic parameters of the numerous "variants" of prions increasingly being described in the literature.
Collapse
Affiliation(s)
- Brian S Cox
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | |
Collapse
|
21
|
Immel F, Jiang Y, Wang YQ, Marchal C, Maillet L, Perrett S, Cullin C. In Vitro Analysis of SpUre2p, a Prion-related Protein, Exemplifies the Relationship between Amyloid and Prion. J Biol Chem 2007; 282:7912-20. [PMID: 17234629 DOI: 10.1074/jbc.m608652200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.
Collapse
Affiliation(s)
- Francoise Immel
- IBGC, UMR5095 CNRS-Université Bordeaux2, 1, rue Camille Saint Saens, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Shorter J, Lindquist S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 2006; 23:425-38. [PMID: 16885031 PMCID: PMC1540446 DOI: 10.1016/j.molcel.2006.05.042] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/01/2006] [Accepted: 05/30/2006] [Indexed: 11/24/2022]
Abstract
Yeast prions are protein-based genetic elements that self-perpetuate changes in protein conformation and function. A protein-remodeling factor, Hsp104, controls the inheritance of several yeast prions, including those formed by Sup35 and Ure2. Perplexingly, deletion of Hsp104 eliminates Sup35 and Ure2 prions, whereas overexpression of Hsp104 purges cells of Sup35 prions, but not Ure2 prions. Here, we used pure components to dissect how Hsp104 regulates prion formation, growth, and division. For both Sup35 and Ure2, Hsp104 catalyzes de novo prion nucleation from soluble, native protein. Using a distinct mechanism, Hsp104 fragments both prions to generate new prion assembly surfaces. For Sup35, the fragmentation endpoint is an ensemble of noninfectious, amyloid-like aggregates and soluble protein that cannot replicate conformation. In vivid distinction, the endpoint of Ure2 fragmentation is short prion fibers with enhanced infectivity and self-replicating ability. These advances explain the distinct effects of Hsp104 on the inheritance of the two prions.
Collapse
|
23
|
Wu YX, Greene LE, Masison DC, Eisenberg E. Curing of yeast [PSI+] prion by guanidine inactivation of Hsp104 does not require cell division. Proc Natl Acad Sci U S A 2005; 102:12789-94. [PMID: 16123122 PMCID: PMC1192827 DOI: 10.1073/pnas.0506384102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Propagation of the yeast prion [PSI+], a self-replicating aggregated form of Sup35p, requires Hsp104. One model to explain this phenomenon proposes that, in the absence of Hsp104, Sup35p aggregates enlarge but fail to replicate thus becoming diluted out as the yeast divide. To test this model, we used live imaging of Sup35p-GFP to follow the changes that occur in [PSI+] cells after the addition of guanidine to inactivate Hsp104. After guanidine addition there was initially an increase in aggregation of Sup35p-GFP; but then, before the yeast divided, the aggregates began to dissolve, and after approximately 6 h the Sup35-GFP looked identical to the Sup35-GFP in [psi+] cells. Although plating studies showed that the yeast were still [PSI+], this reduction in aggregation suggested that curing of [PSI+] by inactivation of Hsp104 might be independent of cell division. This was tested by measuring the rate of curing of [PSI+] cells in both dividing and nondividing cells. Cell division was inhibited by adding either alpha factor or farnesol. Remarkably, with both of these methods, we found that the rate of curing was not significantly affected by cell division. Thus, cell division is not a determining factor for curing [PSI+] by inactivating Hsp104 with guanidine. Rather, curing apparently occurs because Sup35-GFP polymers slowly depolymerize in the absence of Hsp104 activity. Hsp104 then counteracts this curing possibly by catalyzing formation of new polymers.
Collapse
Affiliation(s)
- Yue-Xuan Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8017, USA
| | | | | | | |
Collapse
|
24
|
Talarek N, Maillet L, Cullin C, Aigle M. The [URE3] prion is not conserved among Saccharomyces species. Genetics 2005; 171:23-34. [PMID: 15956663 PMCID: PMC1456514 DOI: 10.1534/genetics.105.043489] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive form of the nitrogen catabolism regulator Ure2p. To determine whether the [URE3] prion is conserved in S. cerevisiae-related yeast species, we have developed genetic tools allowing the detection of [URE3] in Saccharomyces paradoxus and Saccharomyces uvarum. We found that [URE3] is conserved in S. uvarum. In contrast, [URE3] was not detected in S. paradoxus. The inability of S. paradoxus Ure2p to switch to a prion isoform results from the primary sequence of the protein and not from the lack of cellular cofactors as heterologous Ure2p can propagate [URE3] in this species. Our data therefore demonstrate that [URE3] is conserved only in a subset of Saccharomyces species. Implications of our finding on the physiological and evolutionary meaning of the yeast [URE3] prion are discussed.
Collapse
Affiliation(s)
- Nicolas Talarek
- IBGC-CNRS/Université Victor Segalen Bordeaux2, UMR 5095, 33077 Bordeaux, France.
| | | | | | | |
Collapse
|
25
|
Abstract
Changes in protein conformation drive most biological processes, but none have seized the imagination of scientists and the public alike as have the self-replicating conformations of prions. Prions transmit lethal neurodegenerative diseases by means of the food chain. However, self-replicating protein conformations can also constitute molecular memories that transmit genetic information. Here, we showcase definitive evidence for the prion hypothesis and discuss examples in which prion-encoded heritable information has been harnessed during evolution to confer selective advantages. We then describe situations in which prion-enciphered events might have essential roles in long-term memory formation, transcriptional memory and genome-wide expression patterns.
Collapse
Affiliation(s)
- James Shorter
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
26
|
Song Y, Wu YX, Jung G, Tutar Y, Eisenberg E, Greene LE, Masison DC. Role for Hsp70 chaperone in Saccharomyces cerevisiae prion seed replication. EUKARYOTIC CELL 2005; 4:289-297. [PMID: 15701791 PMCID: PMC549339 DOI: 10.1128/ec.4.2.289-297.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 12/14/2004] [Indexed: 02/07/2023]
Abstract
The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.
Collapse
Affiliation(s)
- Youtao Song
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ripaud L, Maillet L, Immel-Torterotot F, Durand F, Cullin C. The [URE3] yeast prion results from protein aggregates that differ from amyloid filaments formed in vitro. J Biol Chem 2004; 279:50962-8. [PMID: 15456789 DOI: 10.1074/jbc.m408792200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro.
Collapse
Affiliation(s)
- Leslie Ripaud
- Institut de Biochimie et Génétique Cellulaires, 1, rue Camille Saint Saëns, UMR 5095, CNRSI Université Bordeaux 2 Victor Segalen, 33077 Bordeaux, France
| | | | | | | | | |
Collapse
|
28
|
Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 2004; 101:12934-9. [PMID: 15326312 PMCID: PMC516497 DOI: 10.1073/pnas.0404968101] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are infectious protein conformations that are generally ordered protein aggregates. In the absence of prions, newly synthesized molecules of these same proteins usually maintain a conventional soluble conformation. However, prions occasionally arise even without a homologous prion template. The conformational switch that results in the de novo appearance of yeast prions with glutamine/aspargine (Q/N)-rich prion domains (e.g., [PSI+]), is promoted by heterologous prions with a similar domain (e.g., [RNQ+], also known as [PIN+]), or by overexpression of proteins with prion-like Q-, N-, or Q/N-rich domains. This finding led to the hypothesis that aggregates of heterologous proteins provide an imperfect template on which the new prion is seeded. Indeed, we show that newly forming Sup35 and preexisting Rnq1 aggregates always colocalize when [PSI+] appearance is facilitated by the [RNQ+] prion, and that Rnq1 fibers enhance the in vitro formation of fibers by the prion domain of Sup35 (NM). The proteins do not however form mixed, interdigitated aggregates. We also demonstrate that aggregating variants of the polyQ-containing domain of huntingtin promote the de novo conversion of Sup35 into [PSI+]; whereas nonaggregating variants of huntingtin and aggregates of non-polyQ amyloidogenic proteins, transthyretin, alpha-synuclein, and synphilin do not. Furthermore, transthyretin and alpha-synuclein amyloids do not facilitate NM aggregation in vitro, even though in [PSI+] cells NM and transthyretin aggregates also occasionally colocalize. Our data, especially the in vitro reproduction of the highly specific heterologous seeding effect, provide strong support for the hypothesis of cross-seeding in the spontaneous initiation of prion states.
Collapse
Affiliation(s)
- Irina L Derkatch
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.
Collapse
|
30
|
Ross ED, Baxa U, Wickner RB. Scrambled prion domains form prions and amyloid. Mol Cell Biol 2004; 24:7206-13. [PMID: 15282319 PMCID: PMC479727 DOI: 10.1128/mcb.24.16.7206-7213.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/26/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.
Collapse
Affiliation(s)
- Eric D Ross
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
31
|
Abstract
Prions constitute a rare class of protein, which can switch to a robust amyloid form and then propagate that form in the absence of a nucleic acid determinant, thereby creating a unique, protein-only infectious agent. Details of the mechanism that drives conversion to the prion form and then subsequent propagation of that form are beginning to emerge using a range of in vivo and in vitro approaches. Recent studies on both mammalian and fungal prions are providing a greater understanding of the structural features that distinguish prions from non-transmissible amyloids.
Collapse
Affiliation(s)
- Mick F Tuite
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
32
|
Abstract
The prion hypothesis proposes that proteins can act as infectious agents. Originally formulated to explain transmissible spongiform encephalopathies (TSEs), the prion hypothesis has been extended with the finding that several non-Mendelian traits in fungi are due to heritable changes in protein conformation, which may in some cases be beneficial. Although much remains to be learned about the specific role of cellular cofactors, mechanistic parallels between the mammalian and yeast prion phenomena point to universal features of conformation-based infection and inheritance involving propagation of ordered beta-sheet-rich protein aggregates commonly referred to as amyloid. Here we focus on two such features and discuss recent efforts to explain them in terms of the physical properties of amyloid-like aggregates. The first is prion strains, wherein chemically identical infectious particles cause distinct phenotypes. The second is barriers that often prohibit prion transmission between different species. There is increasing evidence suggesting that both of these can be manifestations of the same phenomenon: the ability of a protein to misfold into multiple self-propagating conformations. Even single mutations can change the spectrum of favored misfolded conformations. In turn, changes in amyloid conformation can shift the specificity of propagation and alter strain phenotypes. This model helps explain many common and otherwise puzzling features of prion inheritance as well as aspects of noninfectious diseases involving toxic misfolded proteins.
Collapse
Affiliation(s)
- Peter Chien
- Graduate Group in Biophysics, Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94107-2240, USA.
| | | | | |
Collapse
|