1
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. Nat Commun 2025; 16:2350. [PMID: 40064876 PMCID: PMC11894091 DOI: 10.1038/s41467-025-57415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of >1 million variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
2
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway early paused state intermediates as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. Nucleic Acids Res 2025; 53:gkae1135. [PMID: 39656915 PMCID: PMC11724273 DOI: 10.1093/nar/gkae1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes (ECs) of RNAP in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway early paused state intermediates of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the Stl-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Georgii Pobegalov
- Department of Physics and Astronomy, University College London, Gower street, London, WC1E 6BT, UK
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| |
Collapse
|
3
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
4
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
5
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release. J Mol Biol 2024; 436:168606. [PMID: 38729258 PMCID: PMC11162919 DOI: 10.1016/j.jmb.2024.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
7
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. mBio 2024; 15:e0273723. [PMID: 38095872 PMCID: PMC10790778 DOI: 10.1128/mbio.02737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Gaviria-Cantin T, Fernández-Coll L, Vargas AF, Jiménez CJ, Madrid C, Balsalobre C. Expression of accessory genes in Salmonella requires the presence of the Gre factors. Genomics 2024; 116:110777. [PMID: 38163572 DOI: 10.1016/j.ygeno.2023.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Genomic studies with Salmonella enterica serovar Typhimurium reveal a crucial role of horizontal gene transfer (HGT) in the acquisition of accessory cellular functions involved in host-interaction. Many virulence genes are located in genomic islands, plasmids and prophages. GreA and GreB proteins, Gre factors, interact transiently with the RNA polymerase alleviating backtracked complexes during transcription elongation. The overall effect of Gre factors depletion in Salmonella expression profile was studied. Both proteins are functionally redundant since only when both Gre factors were depleted a major effect in gene expression was detected. Remarkably, the accessory gene pool is particularly sensitive to the lack of Gre factors, with 18.6% of accessory genes stimulated by the Gre factors versus 4.4% of core genome genes. Gre factors involvement is particularly relevant for the expression of genes located in genomic islands. Our data reveal that Gre factors are required for the expression of accessory genes.
Collapse
Affiliation(s)
- Tania Gaviria-Cantin
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Andrés Felipe Vargas
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Jonay Jiménez
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.
| |
Collapse
|
9
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573115. [PMID: 38187752 PMCID: PMC10769408 DOI: 10.1101/2023.12.22.573115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of 32,768 variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
10
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway elemental pause state as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542125. [PMID: 37333075 PMCID: PMC10274647 DOI: 10.1101/2023.06.05.542125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | |
Collapse
|
11
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540596. [PMID: 37215019 PMCID: PMC10197661 DOI: 10.1101/2023.05.12.540596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
13
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
14
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
15
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
16
|
Mishra S, Maraia RJ. Evolution of the RNA Cleavage Subunit C11/RPC10, and Recycling by RNA Polymerase III. JOURNAL OF CELLULAR IMMUNOLOGY 2022; 4:65-71. [PMID: 35813003 PMCID: PMC9262308 DOI: 10.33696/immunology.4.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nuclear RNA polymerase (Pol) III synthesizes large amounts of tRNAs and other short non-coding (nc)RNAs by a unique process that involves a termination-associated reinitiation-recycling mechanism. In addition to its two largest of 17 subunits, which contribute to active center RNA-DNA binding and catalytic site, a smaller subunit of ~110 aa (yeast C11, human RPC10) monitors this site, can modify its activity, and is essential for reinitiation-recycling. Distinct, but relevant to human immunity is cytoplasmic (cyto-)Pol III that is a direct sensor of AT-rich viral DNA from which it synthesizes 5'-ppp-RNA signaling molecules that activate interferon (IFN) production. Mutations in genes encoding Pol III subunits cause severe anti-viral immunodeficiency although the mechanisms responsible for cyto-Pol III initiation on this AT-rich DNA are unknown. Cyto-Pol III has also been implicated in inducing IFN in response to cytosolic mitochondrial DNA in autoimmune dysfunction. A focus of this commentary is recent biochemical and genetics research that examined the roles of the individual domains of C11 in the Pol III termination-associated reinitiation-recycling process as well as more recent cryo-EM structural and accompanying analyses, that are considered in evolutionary and other biological contexts. The N-terminal domain (NTD) of C11/RPC10 anchors at the periphery of Pol III from which a highly conserved linker extends to the mobile C-terminal RNA cleavage domain that can reach into the active center and rescue arrested complexes. Biochemical data indicate separable activities for the NTD and CTD in the transcription cycle, whereas the NTD-Linker can confer the evolutionary unique Pol III termination-reinitiation-recycling activity. A model produced from single particle cryo-EM conformations indicates that the C11-Linker-CTD swings in and out of the active center coordinated with allosteric movements of the DNA-binding clamp by the largest subunit, coupling termination to reinitiation-recycling. These may be relevant to DNA loading by cyto-Pol III during immune signaling.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
17
|
Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Structural basis of RNA polymerase inhibition by viral and host factors. Nat Commun 2021; 12:5523. [PMID: 34535646 PMCID: PMC8448823 DOI: 10.1038/s41467-021-25666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.
Collapse
Affiliation(s)
- Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Thomas Fouqueau
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Natalya Lukoyanova
- Institute for Structural and Molecular Biology, Birkbeck College, London, UK
| | - Carol Sheppard
- Section of Virology, Department of Infectious disease, Imperial College London, London, UK
| | | | | | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | | | | | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
18
|
Kilic Z, Sgouralis I, Pressé S. Residence time analysis of RNA polymerase transcription dynamics: A Bayesian sticky HMM approach. Biophys J 2021; 120:1665-1679. [PMID: 33705761 DOI: 10.1016/j.bpj.2021.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The time spent by a single RNA polymerase (RNAP) at specific locations along the DNA, termed "residence time," reports on the initiation, elongation, and termination stages of transcription. At the single-molecule level, this information can be obtained from dual ultrastable optical trapping experiments, revealing a transcriptional elongation of RNAP interspersed with residence times of variable duration. Successfully discriminating between long and short residence times was used by previous approaches to learn about RNAP's transcription elongation dynamics. Here, we propose an approach based on the Bayesian sticky hidden Markov model that treats all residence times for an Escherichia coli RNAP on an equal footing without a priori discriminating between long and short residence times. Furthermore, our method has two additional advantages: we provide full distributions around key point statistics and directly treat the sequence dependence of RNAP's elongation rate. By applying our approach to experimental data, we find assigned relative probabilities on long versus short residence times, force-dependent average residence time transcription elongation dynamics, ∼10% drop in the average backtracking durations in the presence of GreB, and ∼20% drop in the average residence time as a function of applied force in the presence of RNaseA.
Collapse
Affiliation(s)
- Zeliha Kilic
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, Arizona. spresse@%20asu.edu
| |
Collapse
|
19
|
Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun 2020; 11:6419. [PMID: 33339823 PMCID: PMC7749160 DOI: 10.1038/s41467-020-20158-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.
Collapse
|
20
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
21
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
22
|
Agapov A, Ignatov A, Turtola M, Belogurov G, Esyunina D, Kulbachinskiy A. Role of the trigger loop in translesion RNA synthesis by bacterial RNA polymerase. J Biol Chem 2020; 295:9583-9595. [PMID: 32439804 DOI: 10.1074/jbc.ra119.011844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Artem Ignatov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku, Finland
| | | | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
23
|
Krishna A, Liu B, Peacock SJ, Wigneshweraraj S. The prevalence and implications of single nucleotide polymorphisms in genes encoding the RNA polymerase of clinical isolates of Staphylococcus aureus. Microbiologyopen 2020; 9:e1058. [PMID: 32419302 PMCID: PMC7349150 DOI: 10.1002/mbo3.1058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 01/22/2023] Open
Abstract
Central to the regulation of bacterial gene expression is the multisubunit enzyme RNA polymerase (RNAP), which is responsible for catalyzing transcription. As all adaptive processes are underpinned by changes in gene expression, the RNAP can be considered the major mediator of any adaptive response in the bacterial cell. In bacterial pathogens, theoretically, single nucleotide polymorphisms (SNPs) in genes that encode subunits of the RNAP and associated factors could mediate adaptation and confer a selective advantage to cope with biotic and abiotic stresses. We investigated this possibility by undertaking a systematic survey of SNPs in genes encoding the RNAP and associated factors in a collection of 1,429 methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. We present evidence for the existence of several, hitherto unreported, nonsynonymous SNPs in genes encoding the RNAP and associated factors of MRSA ST22 clinical isolates and propose that the acquisition of amino acid substitutions in the RNAP could represent an adaptive strategy that contributes to the pathogenic success of MRSA.
Collapse
Affiliation(s)
- Aishwarya Krishna
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Bing Liu
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonUK
| | - Sharon J. Peacock
- Department of MedicineAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
- Cambridge University Hospitals NHS Foundation TrustCambridgeUK
- Wellcome Trust Sanger InstituteCambridgeUK
- London School of Hygiene and Tropical MedicineLondonUK
| | | |
Collapse
|
24
|
Conditional down-regulation of GreA impacts expression of rRNA and transcription factors, affecting Mycobacterium smegmatis survival. Sci Rep 2020; 10:5802. [PMID: 32242064 PMCID: PMC7118132 DOI: 10.1038/s41598-020-62703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Gre, one of the conserved transcription factors in bacteria, modulates RNA polymerase (RNAP) activity to ensure processivity and fidelity of RNA synthesis. Gre factors regulate transcription by inducing the intrinsic-endonucleolytic activity of RNAP, allowing the enzyme to resume transcription from the paused and arrested sites. While Escherichia coli and a number of eubacteria harbor GreA and GreB, genus mycobacteria has a single Gre (GreA). To address the importance of the GreA in growth, physiology and gene expression of Mycobacterium smegmatis, we have constructed a conditional knock-down strain of GreA. The GreA depleted strain exhibited slow growth, drastic changes in cell surface phenotype, cell death, and increased susceptibility to front-line anti-tubercular drugs. Transcripts and 2D-gel electrophoresis (2D-PAGE) analysis of the GreA conditional knock-down strain showed altered expression of the genes involved in transcription regulation. Among the genes analysed, expression of RNAP subunits (β, β’ and ω), carD, hupB, lsr2, and nusA were affected to a large extent. Severe reduction in the expression of genes of rRNA operon in the knock-down strain reveal a role for GreA in regulating the core components of the translation process.
Collapse
|
25
|
Miropolskaya N, Kulbachinskiy A, Esyunina D. Factor-specific effects of mutations in the active site of RNA polymerase on RNA cleavage. Biochem Biophys Res Commun 2020; 523:165-170. [PMID: 31837805 DOI: 10.1016/j.bbrc.2019.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Bacterial RNA polymerase (RNAP) relies on the same active site for RNA synthesis and co-transcriptional RNA proofreading. The intrinsic RNA proofreading activity of RNAP can be greatly stimulated by Gre factors, which bind within the secondary channel and directly participate in the RNA cleavage reaction in the active site of RNAP. Here, we characterize mutations in Escherichia coli RNAP that differentially affect intrinsic and Gre-stimulated RNA cleavage. Substitution of a highly conserved arginine residue that contacts nascent RNA upstream of the active site strongly impairs intrinsic and GreA-dependent cleavage, without reducing GreA affinity or catalytic Mg2+ binding. In contrast, substitutions of several nonconserved residues at the Gre-interacting interface in the secondary channel primarily affect GreB-dependent cleavage, by decreasing both the catalytic rate and GreB affinity. The results suggest that RNAP residues not directly involved in contacts with the reacting RNA groups or catalytic ions play essential roles in RNA cleavage and can modulate its regulation by transcription factors.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
26
|
Riaz-Bradley A, James K, Yuzenkova Y. High intrinsic hydrolytic activity of cyanobacterial RNA polymerase compensates for the absence of transcription proofreading factors. Nucleic Acids Res 2020; 48:1341-1352. [PMID: 31840183 PMCID: PMC7026648 DOI: 10.1093/nar/gkz1130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The vast majority of organisms possess transcription elongation factors, the functionally similar bacterial Gre and eukaryotic/archaeal TFIIS/TFS. Their main cellular functions are to proofread errors of transcription and to restart elongation via stimulation of RNA hydrolysis by the active centre of RNA polymerase (RNAP). However, a number of taxons lack these factors, including one of the largest and most ubiquitous groups of bacteria, cyanobacteria. Using cyanobacterial RNAP as a model, we investigated alternative mechanisms for maintaining a high fidelity of transcription and for RNAP arrest prevention. We found that this RNAP has very high intrinsic proofreading activity, resulting in nearly as low a level of in vivo mistakes in RNA as Escherichia coli. Features of the cyanobacterial RNAP hydrolysis are reminiscent of the Gre-assisted reaction—the energetic barrier is similarly low, and the reaction involves water activation by a general base. This RNAP is resistant to ubiquitous and most regulatory pausing signals, decreasing the probability to go off-pathway and thus fall into arrest. We suggest that cyanobacterial RNAP has a specific Trigger Loop domain conformation, and isomerises easier into a hydrolytically proficient state, possibly aided by the RNA 3′-end. Cyanobacteria likely passed these features of transcription to their evolutionary descendants, chloroplasts.
Collapse
Affiliation(s)
- Amber Riaz-Bradley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Katherine James
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
27
|
Agapov A, Kulbachinskiy A. Four paralogous Gfh factors in the extremophilic bacterium Deinococcus peraridilitoris have distinct effects on various steps of transcription. Biochimie 2019; 170:21-25. [PMID: 31843578 DOI: 10.1016/j.biochi.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Gre factors are ubiquitous transcription regulators that stimulate co-transcriptional RNA cleavage by bacterial RNA polymerase (RNAP). Here, we show that the stress-resistant bacterium Deinococcus peraridilitoris encodes four Gre factor homologs, Gfh proteins, that have distinct effects on transcription by RNAP. Two of the factors, Gfh1α and Gfh2β inhibit transcription initiation, and one of them, Gfh1α can also regulate transcription elongation. We show that this factor strongly stimulates transcriptional pausing and intrinsic termination in the presence of manganese ions but has no effect on RNA cleavage. Thus, some Gfh factors encoded by Deinococci serve as lineage-specific transcription inhibitors that may play a role in stress resistance, while the functions of others remain to be discovered.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
28
|
Prajapati RK, Rosenqvist P, Palmu K, Mäkinen JJ, Malinen AM, Virta P, Metsä-Ketelä M, Belogurov GA. Oxazinomycin arrests RNA polymerase at the polythymidine sequences. Nucleic Acids Res 2019; 47:10296-10312. [PMID: 31495891 PMCID: PMC6821320 DOI: 10.1093/nar/gkz782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023] Open
Abstract
Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.
Collapse
Affiliation(s)
- Ranjit K Prajapati
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Kaisa Palmu
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Anssi M Malinen
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | | |
Collapse
|
29
|
Dylewski M, Fernández-Coll L, Bruhn-Olszewska B, Balsalobre C, Potrykus K. Autoregulation of greA Expression Relies on GraL Rather than on greA Promoter Region. Int J Mol Sci 2019; 20:ijms20205224. [PMID: 31652493 PMCID: PMC6829880 DOI: 10.3390/ijms20205224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
GreA is a well-characterized transcriptional factor that acts primarily by rescuing stalled RNA polymerase complexes, but has also been shown to be the major transcriptional fidelity and proofreading factor, while it inhibits DNA break repair. Regulation of greA gene expression itself is still not well understood. So far, it has been shown that its expression is driven by two overlapping promoters and that greA leader encodes a small RNA (GraL) that is acting in trans on nudE mRNA. It has been also shown that GreA autoinhibits its own expression in vivo. Here, we decided to investigate the inner workings of this autoregulatory loop. Transcriptional fusions with lacZ reporter carrying different modifications (made both to the greA promoter and leader regions) were made to pinpoint the sequences responsible for this autoregulation, while GraL levels were also monitored. Our data indicate that GreA mediated regulation of its own gene expression is dependent on GraL acting in cis (a rare example of dual-action sRNA), rather than on the promoter region. However, a yet unidentified, additional factor seems to participate in this regulation as well. Overall, the GreA/GraL regulatory loop seems to have unique but hard to classify properties.
Collapse
Affiliation(s)
- Maciej Dylewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, W. Stwosza 59, 80-299 Gdańsk, Poland.
| |
Collapse
|
30
|
Sanders TJ, Marshall CJ, Santangelo TJ. The Role of Archaeal Chromatin in Transcription. J Mol Biol 2019; 431:4103-4115. [PMID: 31082442 PMCID: PMC6842674 DOI: 10.1016/j.jmb.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 02/08/2023]
Abstract
Genomic organization impacts accessibility and movement of information processing systems along DNA. DNA-bound proteins dynamically dictate gene expression and provide regulatory potential to tune transcription rates to match ever-changing environmental conditions. Archaeal genomes are typically small, circular, gene dense, and organized either by histone proteins that are homologous to their eukaryotic counterparts, or small basic proteins that function analogously to bacterial nucleoid proteins. We review here how archaeal genomes are organized and how such organization impacts archaeal gene expression, focusing on conserved DNA-binding proteins within the clade and the factors that are known to impact transcription initiation and elongation within protein-bound genomes.
Collapse
Affiliation(s)
- Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig J Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
31
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
32
|
Abdelkareem M, Saint-André C, Takacs M, Papai G, Crucifix C, Guo X, Ortiz J, Weixlbaumer A. Structural Basis of Transcription: RNA Polymerase Backtracking and Its Reactivation. Mol Cell 2019; 75:298-309.e4. [PMID: 31103420 PMCID: PMC7611809 DOI: 10.1016/j.molcel.2019.04.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022]
Abstract
Regulatory sequences or erroneous incorporations during DNA transcription cause RNA polymerase backtracking and inactivation in all kingdoms of life. Reactivation requires RNA transcript cleavage. Essential transcription factors (GreA and GreB, or TFIIS) accelerate this reaction. We report four cryo-EM reconstructions of Escherichia coli RNA polymerase representing the entire reaction pathway: (1) a backtracked complex; a backtracked complex with GreB (2) before and (3) after RNA cleavage; and (4) a reactivated, substrate-bound complex with GreB before RNA extension. Compared with eukaryotes, the backtracked RNA adopts a different conformation. RNA polymerase conformational changes cause distinct GreB states: a fully engaged GreB before cleavage; a disengaged GreB after cleavage; and a dislodged, loosely bound GreB removed from the active site to allow RNA extension. These reconstructions provide insight into the catalytic mechanism and dynamics of RNA cleavage and extension and suggest how GreB targets backtracked complexes without interfering with canonical transcription.
Collapse
Affiliation(s)
- Mo'men Abdelkareem
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Xieyang Guo
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Julio Ortiz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Strasbourg, France; Université de Strasbourg, Strasbourg, France; CNRS UMR7104, Strasbourg, France; INSERM U1258, 67404 Illkirch Cedex, France.
| |
Collapse
|
33
|
The A12.2 Subunit Is an Intrinsic Destabilizer of the RNA Polymerase I Elongation Complex. Biophys J 2019; 114:2507-2515. [PMID: 29874602 DOI: 10.1016/j.bpj.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.
Collapse
|
34
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Shikalov AB, Esyunina DM, Pupov DV, Kulbachinskiy AV, Petushkov IV. The σ24 Subunit of Escherichia coli RNA Polymerase Can Induce Transcriptional Pausing in vitro. BIOCHEMISTRY (MOSCOW) 2019; 84:426-434. [DOI: 10.1134/s0006297919040102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Transcription in cyanobacteria: a distinctive machinery and putative mechanisms. Biochem Soc Trans 2019; 47:679-689. [DOI: 10.1042/bst20180508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
Abstract
Abstract
Transcription in cyanobacteria involves several fascinating features. Cyanobacteria comprise one of the very few groups in which no proofreading factors (Gre homologues) have been identified. Gre factors increase the efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA transcript and assist in the resolution of stalled RNAPs to prevent genome damage. The vast majority of bacterial species encode at least one of these highly conserved factors and so their absence in cyanobacteria is intriguing. Additionally, the largest subunit of bacterial RNAP has undergone a split in cyanobacteria to form two subunits and the SI3 insertion within the integral trigger loop element is roughly 3.5 times larger than in Escherichia coli. The Rho termination factor also appears to be absent, leaving cyanobacteria to rely solely on an intrinsic termination mechanism. Furthermore, cyanobacteria must be able to respond to environment signals such as light intensity and tightly synchronise gene expression and other cell activities to a circadian rhythm.
Collapse
|
37
|
Sanders TJ, Lammers M, Marshall CJ, Walker JE, Lynch ER, Santangelo TJ. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin. Mol Microbiol 2019; 111:784-797. [PMID: 30592095 PMCID: PMC6417941 DOI: 10.1111/mmi.14191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.
Collapse
Affiliation(s)
- Travis J. Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Marshall Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Current address: Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Erin R. Lynch
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
38
|
Stumper SK, Ravi H, Friedman LJ, Mooney RA, Corrêa IR, Gershenson A, Landick R, Gelles J. Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife 2019; 8:40576. [PMID: 30720429 PMCID: PMC7028371 DOI: 10.7554/elife.40576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
RNA polymerases (RNAPs) contain a conserved ‘secondary channel’ which binds regulatory factors that modulate transcription initiation. In Escherichia coli, the secondary channel factors (SCFs) GreB and DksA both repress ribosomal RNA (rRNA) transcription, but SCF loading and repression mechanisms are unclear. We observed in vitro fluorescently labeled GreB molecules binding to single RNAPs and initiation of individual transcripts from an rRNA promoter. GreB arrived and departed from promoters only in complex with RNAP. GreB did not alter initial RNAP-promoter binding but instead blocked a step after conformational rearrangement of the initial RNAP-promoter complex. Strikingly, GreB-RNAP complexes never initiated at an rRNA promoter; only RNAP molecules arriving at the promoter without bound GreB produced transcript. The data reveal that a model SCF functions by a ‘delayed inhibition’ mechanism and suggest that rRNA promoters are inhibited by GreB/DksA because their short-lived RNAP complexes do not allow sufficient time for SCFs to dissociate.
Collapse
Affiliation(s)
- Sarah K Stumper
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Harini Ravi
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin, Madison, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, United States.,Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| |
Collapse
|
39
|
Esyunina D, Kulbachinskiy A. Interactions in the active site of Deinococcus radiodurans RNA polymerase during RNA proofreading. Biochem Biophys Res Commun 2018; 509:161-166. [PMID: 30579600 DOI: 10.1016/j.bbrc.2018.12.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
Co-transcriptional RNA proofreading by RNA polymerase (RNAP) is essential for accurate mRNA synthesis and reactivation of stalled transcription complexes, which can otherwise compromise genome integrity. RNAP from the stress-resistant bacterium Deinococcus radiodurans exhibits high levels of RNA cleavage in comparison with RNAP from Escherichia coli, which allows it to remove misincorporated nucleotides with high efficiency. Here, we show that the rate of RNA cleavage by D. radiodurans RNAP depends on the structure of the (mis)matched RNA 3'-nucleotide and its contacts with the active site. These interactions likely position the reactive phosphodiester bond in the cleavage-competent conformation, thus facilitating its hydrolysis catalyzed by metal ions in the active center. The universal RNA cleavage factor GreA largely alleviates defects in RNA cleavage caused by modifications in the RNA 3'-nucleotide or in its binding pocket in RNAP, suggesting that GreA functionally substitutes for these contacts. The results demonstrate that various RNAPs rely on a conserved mechanism for RNA proofreading, which can be modulated by changes in accessory parts of the active center.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
40
|
Puzzling conformational changes affecting proteins binding to the RNA polymerase. Proc Natl Acad Sci U S A 2018; 115:12550-12552. [PMID: 30498028 DOI: 10.1073/pnas.1818361115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
41
|
Turtola M, Mäkinen JJ, Belogurov GA. Active site closure stabilizes the backtracked state of RNA polymerase. Nucleic Acids Res 2018; 46:10870-10887. [PMID: 30256972 PMCID: PMC6237748 DOI: 10.1093/nar/gky883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.
Collapse
Affiliation(s)
- Matti Turtola
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | - Janne J Mäkinen
- University of Turku, Department of Biochemistry, FIN-20014 Turku, Finland
| | | |
Collapse
|
42
|
Traverse CC, Ochman H. A Genome-Wide Assay Specifies Only GreA as a Transcription Fidelity Factor in Escherichia coli. G3 (BETHESDA, MD.) 2018; 8:2257-2264. [PMID: 29769292 PMCID: PMC6027873 DOI: 10.1534/g3.118.200209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023]
Abstract
Although mutations are the basis for adaptation and heritable genetic change, transient errors occur during transcription at rates that are orders of magnitude higher than the mutation rate. High rates of transcription errors can be detrimental by causing the production of erroneous proteins that need to be degraded. Two transcription fidelity factors, GreA and GreB, have previously been reported to stimulate the removal of errors that occur during transcription, and a third fidelity factor, DksA, is thought to decrease the error rate through an unknown mechanism. Because the majority of transcription-error assays of these fidelity factors were performed in vitro and on individual genes, we measured the in vivo transcriptome-wide error rates in all possible combinations of mutants of the three fidelity factors. This method expands measurements of these fidelity factors to the full spectrum of errors across the entire genome. Our assay shows that GreB and DksA have no significant effect on transcription error rates, and that GreA only influences the transcription error rate by reducing G-to-A errors.
Collapse
Affiliation(s)
- Charles C Traverse
- Department of Integrative Biology, University of Texas, Austin, Texas 78712
| | - Howard Ochman
- Department of Integrative Biology, University of Texas, Austin, Texas 78712
| |
Collapse
|
43
|
The E. coli Global Regulator DksA Reduces Transcription during T4 Infection. Viruses 2018; 10:v10060308. [PMID: 29882792 PMCID: PMC6024815 DOI: 10.3390/v10060308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/16/2023] Open
Abstract
Bacteriophage T4 relies on host RNA polymerase to transcribe three promoter classes: early (Pe, requires no viral factors), middle (Pm, requires early proteins MotA and AsiA), and late (Pl, requires middle proteins gp55, gp33, and gp45). Using primer extension, RNA-seq, RT-qPCR, single bursts, and a semi-automated method to document plaque size, we investigated how deletion of DksA or ppGpp, two E. coli global transcription regulators, affects T4 infection. Both ppGpp⁰ and ΔdksA increase T4 wild type (wt) plaque size. However, ppGpp⁰ does not significantly alter burst size or latent period, and only modestly affects T4 transcript abundance, while ΔdksA increases burst size (2-fold) without affecting latent period and increases the levels of several Pe transcripts at 5 min post-infection. In a T4motAam infection, ΔdksA increases plaque size and shortens latent period, and the levels of specific middle RNAs increase due to more transcription from Pe’s that extend into these middle genes. We conclude that DksA lowers T4 early gene expression. Consequently, ΔdksA results in a more productive wt infection and ameliorates the poor expression of middle genes in a T4motAam infection. As DksA does not inhibit Pe transcription in vitro, regulation may be indirect or perhaps requires additional factors.
Collapse
|
44
|
Cui G, Wang J, Qi X, Su J. Transcription Elongation Factor GreA Plays a Key Role in Cellular Invasion and Virulence of Francisella tularensis subsp. novicida. Sci Rep 2018; 8:6895. [PMID: 29720697 PMCID: PMC5932009 DOI: 10.1038/s41598-018-25271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Francisella tularensis is a facultative intracellular Gram-negative bacterium that causes the zoonotic disease tularemia. We identified the transcription elongation factor GreA as a virulence factor in our previous study, but its role was not defined. Here, we investigate the effects of the inactivation of the greA gene, generating a greA mutant of F. tularensis subsp. novicida. Inactivation of greA impaired the bacterial invasion into and growth within host cells, and subsequently virulence in mouse infection model. A transcriptomic analysis (RNA-Seq) showed that the loss of GreA caused the differential expression of 196 bacterial genes, 77 of which were identified as virulence factors in previous studies. To confirm that GreA regulates the expression of virulence factors involved in cell invasion by Francisella, FTN_1186 (pepO) and FTN_1551 (ampD) gene mutants were generated. The ampD deletion mutant showed reduced invasiveness into host cells. These results strongly suggest that GreA plays an important role in the pathogenesis of Francisella by affecting the expression of virulence genes and provide new insights into the complex regulation of Francisella infection.
Collapse
Affiliation(s)
- Guolin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinyi Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
45
|
Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 2017; 8:1914. [PMID: 29203770 PMCID: PMC5715097 DOI: 10.1038/s41467-017-02081-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP–TFB–RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the Sulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host–virus relationship. Transcript cleavage factors such as eukaryotic TFIIS assist the resumption of transcription following RNA pol II backtracking. Here the authors find that one of the Sulfolobus solfataricus TFIIS homolog—TFS4—has evolved into a potent RNA polymerase inhibitor potentially involved in antiviral defense.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Ross Hartman
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA
| | - Alan C M Cheung
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Mark J Young
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA.,Department of Plant Sciences, Montana State University, 173150, Bozeman, MT, MT 59717, USA
| | - Finn Werner
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
Appling FD, Schneider DA, Lucius AL. Multisubunit RNA Polymerase Cleavage Factors Modulate the Kinetics and Energetics of Nucleotide Incorporation: An RNA Polymerase I Case Study. Biochemistry 2017; 56:5654-5662. [PMID: 28846843 DOI: 10.1021/acs.biochem.7b00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
All cellular RNA polymerases are influenced by protein factors that stimulate RNA polymerase-catalyzed cleavage of the nascent RNA. Despite divergence in amino acid sequence, these so-called "cleavage factors" appear to share a common mechanism of action. Cleavage factors associate with the polymerase through a conserved structural element of the polymerase known as the secondary channel or pore. This mode of association enables the cleavage factor to reach through the secondary channel into the polymerase active site to reorient the active site divalent metal ions. This reorientation converts the polymerase active site into a nuclease active site. Interestingly, eukaryotic RNA polymerases I and III (Pols I and III, respectively) have incorporated their cleavage factors as bona fide subunits known as A12.2 and C11, respectively. Although it is clear that A12.2 and C11 dramatically stimulate the polymerase's cleavage activity, it is not known if or how these subunits affect the polymerization mechanism. In this work we have used transient-state kinetic techniques to characterize a Pol I isoform lacking A12.2. Our data clearly demonstrate that the A12.2 subunit profoundly affects the kinetics and energetics of the elementary steps of Pol I-catalyzed nucleotide incorporation. Given the high degree of conservation between polymerase-cleavage factor interactions, these data indicate that cleavage factor-modulated nucleotide incorporation mechanisms may be common to all cellular RNA polymerases.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| |
Collapse
|
47
|
TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc Natl Acad Sci U S A 2017; 114:E5539-E5548. [PMID: 28652326 PMCID: PMC5514744 DOI: 10.1073/pnas.1704105114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli F element-encoded protein TraR is a distant homolog of the chromosome-encoded transcription factor DksA. Here we address the mechanism by which TraR acts as a global regulator, inhibiting some promoters and activating others. We show that TraR regulates transcription directly in vitro by binding to the secondary channel of RNA polymerase (RNAP) using interactions similar, but not identical, to those of DksA. Even though it binds to RNAP with only slightly higher affinity than DksA and is only half the size of DksA, TraR by itself inhibits transcription as strongly as DksA and ppGpp combined and much more than DksA alone. Furthermore, unlike DksA, TraR activates transcription even in the absence of ppGpp. TraR lacks the residues that interact with ppGpp in DksA, and TraR binding to RNAP uses the residues in the β' rim helices that contribute to the ppGpp binding site in the DksA-ppGpp-RNAP complex. Thus, unlike DksA, TraR does not bind ppGpp. We propose a model in which TraR mimics the effects of DksA and ppGpp together by binding directly to the region of the RNAP secondary channel that otherwise binds ppGpp, and its N-terminal region, like the coiled-coil tip of DksA, engages the active-site region of the enzyme and affects transcription allosterically. These data provide insights into the function not only of TraR but also of an evolutionarily widespread and diverse family of TraR-like proteins encoded by bacteria, as well as bacteriophages and other extrachromosomal elements.
Collapse
|
48
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
49
|
A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Genetics 2017; 206:179-187. [PMID: 28341651 PMCID: PMC5419468 DOI: 10.1534/genetics.116.198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022] Open
Abstract
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli. Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Collapse
|
50
|
Kang JY, Olinares PDB, Chen J, Campbell EA, Mustaev A, Chait BT, Gottesman ME, Darst SA. Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. eLife 2017; 6. [PMID: 28318486 PMCID: PMC5386594 DOI: 10.7554/elife.25478] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/19/2017] [Indexed: 01/24/2023] Open
Abstract
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI:http://dx.doi.org/10.7554/eLife.25478.001
Collapse
Affiliation(s)
- Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| | - Arkady Mustaev
- Public Health Research Institute, Newark, United States.,Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, United States.,Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York City, United States
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York City, United States
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York City, United States
| |
Collapse
|