1
|
Gray OA, Witonsky DB, Jousma J, Sobreira DR, Van Alstyne A, Huang RT, Fang Y, Di Rienzo A. Transcriptomic analysis of iPSC-derived endothelium reveals adaptations to high altitude hypoxia in energy metabolism and inflammation. PLoS Genet 2025; 21:e1011570. [PMID: 39928692 PMCID: PMC11809796 DOI: 10.1371/journal.pgen.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
Tibetan adaptation to high-altitude hypoxia remains a classic example of Darwinian selection in humans. Amongst Tibetan populations, alleles in the EPAS1 gene - whose protein product, HIF-2α, is a central regulator of the hypoxia response - have repeatedly been shown to carry some of the strongest signals of positive selection in humans. However, selective sweep signals alone may only account for some of the phenotypes that differentiate high-altitude adapted populations from closely related lowlanders. Therefore, there is a pressing need to functionally probe adaptive alleles and their impact at both the locus-specific and genome-wide levels and across cell types to uncover the full range of beneficial traits. To this end, we established a library of induced pluripotent stem cells (iPSCs) derived from Tibetan and Han Chinese individuals, a robust model system allowing precise exploration of allelic effects on transcriptional responses, and we differentiated them into vascular endothelium. Using this system, we focus first on a hypoxia-dependent enhancer (ENH5) that contributes to the regulation of EPAS1 to investigate its locus-specific effects in endothelium. Then, to cast a wider net, we harness the same experimental system to compare the transcriptome of Tibetan and Han Chinese cells in hypoxia and find evidence that angiogenesis, energy metabolism and immune pathways differ between these two populations with different histories of long-term residence at high altitude. Coupled with evidence of polygenic adaptations targeting the same pathways, these results suggests that the observed transcriptional differences between the two populations were shaped by natural selection.
Collapse
Affiliation(s)
- Olivia A. Gray
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Jordan Jousma
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Débora R. Sobreira
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Alexander Van Alstyne
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| | - Ru-Ting Huang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Intensive Care, University of Chicago Hospital: The University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago Division of the Biological Sciences, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
Ferraretti G, Abondio P, Alberti M, Dezi A, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Peluzzi D, Sarno S, Sazzini M. Archaic introgression contributed to shape the adaptive modulation of angiogenesis and cardiovascular traits in human high-altitude populations from the Himalayas. eLife 2024; 12:RP89815. [PMID: 39513938 PMCID: PMC11548878 DOI: 10.7554/elife.89815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of BolognaBolognaItaly
| | - Marta Alberti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Agnese Dezi
- Department of Emergency and Organ Transplantation, University of Bari Aldo MoroBari Aldo MoroItaly
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | | | | | | | - Luca Natali
- Explora Nunaat International, Montorio al VomanoTeramoItaly
- Italian Institute of Human PaleontologyRomeItaly
| | - Angela Corcelli
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo MoroBariItaly
| | | | - Davide Peluzzi
- Explora Nunaat International, Montorio al VomanoTeramoItaly
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of BolognaBolognaItaly
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of BolognaBolognaItaly
| |
Collapse
|
3
|
Ye S, Sun J, Craig SR, Di Rienzo A, Witonsky D, Yu JJ, Moya EA, Simonson TS, Powell FL, Basnyat B, Strohl KP, Hoit BD, Beall CM. Higher oxygen content and transport characterize high-altitude ethnic Tibetan women with the highest lifetime reproductive success. Proc Natl Acad Sci U S A 2024; 121:e2403309121. [PMID: 39432765 PMCID: PMC11551319 DOI: 10.1073/pnas.2403309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
We chose the "natural laboratory" provided by high-altitude native ethnic Tibetan women who had completed childbearing to examine the hypothesis that multiple oxygen delivery traits were associated with lifetime reproductive success and had genomic associations. Four hundred seventeen (417) women aged 46 to 86 y residing at ≥3,500 m in Upper Mustang, Nepal, provided information on reproductive histories, sociocultural factors, physiological measurements, and DNA samples for this observational cohort study. Simultaneously assessing multiple traits identified combinations associated with lifetime reproductive success measured as the number of livebirths. Women with the most livebirths had distinctive hematological and cardiovascular traits. A hemoglobin concentration near the sample mode and a high percent of oxygen saturation of hemoglobin raised arterial oxygen concentration without risking elevated blood viscosity. We propose ongoing stabilizing selection on hemoglobin concentration because extreme values predicted fewer livebirths and directional selection favoring higher oxygen saturation because higher values had more predicted livebirths. EPAS1, an oxygen homeostasis locus with strong signals of positive natural selection and a high frequency of variants occurring only among populations indigenous to the Tibetan Plateau, associated with hemoglobin concentration. High blood flow into the lungs, wide left ventricles, and low hypoxic heart rate responses aided effective convective oxygen transport to tissues. Women with physiologies closer to unstressed, low altitude values had the highest lifetime reproductive success. This example of ethnic Tibetan women residing at high altitudes in Nepal links reproductive fitness with trait combinations increasing oxygen delivery under severe hypoxic stress and demonstrates ongoing natural selection.
Collapse
Affiliation(s)
- Shenghao Ye
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Jiayang Sun
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Sienna R. Craig
- Anthropology Department, Dartmouth College, Hanover, NH03755
| | - Anna Di Rienzo
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - David Witonsky
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Buddha Basnyat
- Oxford University Clinical Research Unit-Nepal, Kathmandu44600, Nepal
| | - Kingman P. Strohl
- School of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Brian D. Hoit
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Departments of Medicine and Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Cynthia M. Beall
- Anthropology Department, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
4
|
Yue T, Guo Y, Qi X, Zheng W, Zhang H, Wang B, Liu K, Zhou B, Zeng X, Ouzhuluobu, He Y, Su B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 2024; 12:RP89004. [PMID: 38869160 PMCID: PMC11175615 DOI: 10.7554/elife.89004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.
Collapse
Affiliation(s)
- Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
5
|
Liu S, Wang F, Sha S, Cai H, Ng CH, Feng Y, Xiang YT. A comparison of quality of life between older adults living in high and low altitude areas. Front Public Health 2023; 11:1184967. [PMID: 38074716 PMCID: PMC10699141 DOI: 10.3389/fpubh.2023.1184967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background High altitude is known to have a significant impact on human physiology and health, therefore, understanding its relationship with quality of life is an important research area. This study compared the quality of life (QOL) in older adults living in high and low altitude areas, and examined the independent correlates of QOL in those living in a high altitude area. Methods Older adults living in three public nursing homes in Xining (high altitude area) and one public nursing home in Guangzhou (low altitude area) were recruited. The WHOQOL-BREF was used to measure the QOL. Results 644 older adults (male: 39.1%) were included, with 207 living in high altitude and 437 living in low altitude areas. After controlling for the covariates, older adults living in the high altitude area had higher QOL in terms of physical (P = 0.035) and social domains (P = 0.002), but had lower QOL in psychological (P = 0.009) domain compared to their counterparts living in the low altitude area. For older adults living in the high altitude area, smoking status was associated with higher social QOL (P = 0.021), good financial status was associated with higher physical QOL (P = 0.035), and fair or good health status was associated with higher physical (p < 0.001) and psychological QOL (P = 0.046), while more severe depressive symptoms were associated with lower QOL. Conclusion Appropriate interventions and support to improve depressive symptoms and both financial and health status should be developed for older adults living in high altitude areas to improve their QOL.
Collapse
Affiliation(s)
- Shou Liu
- Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China
| | - Fei Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Cai
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent's Hospital, University of Melbourne, Richmond, VIC, Australia
| | - Yuan Feng
- Beijing Key Laboratory of Mental Disorders, The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| |
Collapse
|
6
|
Mathieson I. Human genetics: An extreme fitness landscape. Curr Biol 2023; 33:R1064-R1066. [PMID: 37875084 DOI: 10.1016/j.cub.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A new study aims to identify how genetic and physiological adaptations to altitude affect pregnancy, childbirth and neonatal health in one of the most extreme environments on Earth, the Tibetan Plateau.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
He Y, Guo Y, Zheng W, Yue T, Zhang H, Wang B, Feng Z, Ouzhuluobu, Cui C, Liu K, Zhou B, Zeng X, Li L, Wang T, Wang Y, Zhang C, Xu S, Qi X, Su B. Polygenic adaptation leads to a higher reproductive fitness of native Tibetans at high altitude. Curr Biol 2023; 33:4037-4051.e5. [PMID: 37643619 DOI: 10.1016/j.cub.2023.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
The adaptation of Tibetans to high-altitude environments has been studied extensively. However, the direct assessment of evolutionary adaptation, i.e., the reproductive fitness of Tibetans and its genetic basis, remains elusive. Here, we conduct systematic phenotyping and genome-wide association analysis of 2,252 mother-newborn pairs of indigenous Tibetans, covering 12 reproductive traits and 76 maternal physiological traits. Compared with the lowland immigrants living at high altitudes, indigenous Tibetans show better reproductive outcomes, reflected by their lower abortion rate, higher birth weight, and better fetal development. The results of genome-wide association analyses indicate a polygenic adaptation of reproduction in Tibetans, attributed to the genomic backgrounds of both the mothers and the newborns. Furthermore, the EPAS1-edited mice display higher reproductive fitness under chronic hypoxia, mirroring the situation in Tibetans. Collectively, these results shed new light on the phenotypic pattern and the genetic mechanism of human reproductive fitness in extreme environments.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Chaoying Cui
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa 850000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100080, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
8
|
Zhang X, Xie W, Du W, Liu Y, Lin J, Yin W, Yang L, Yuan F, Zhang R, Liu H, Ma H, Zhang J. Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging Behav 2023; 17:271-281. [PMID: 36694086 DOI: 10.1007/s11682-023-00759-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
It has been well-established that high-altitude (HA) environments affect the human brain; however, the differences in brain structural and functional networks between HA natives and acclimatized immigrants have not been well clarified. In this study, native HA Tibetans were recruited for comparison with Han immigrants (average of 2.3 ± 0.3 years at HA), with lowland residents recruited as controls. Cortical gray matter volume, thickness, and functional connectivity were investigated using magnetic resonance imaging data. In addition, reaction time and correct score in the visual movement task, hematology, and SpO2 were measured. In both Tibetans and HA immigrants vs. lowlanders, decreased SpO2, increased hematocrit and hemoglobin, and increased reaction time and correct score in the visual movement task were detected. In both Tibetans and HA immigrants vs. lowlanders, gray matter volumes and cortical thickness were increased in the left somatosensory and motor cortex, and functional connectivity was decreased in the visual, default mode, subcortical, somatosensory-motor, ventral attention, and subcortical networks. Furthermore, SpO2 increased, hematocrit and hemoglobin decreased, and gray matter volumes and cortical thickness increased in the visual cortex, left motor cortex, and right auditory cortex in native Tibetans compared to immigrants. Movement time and correct score in task were positively correlated with the thickness of the visual cortex. In conclusion, brain structural and functional network difference in both Tibetan natives and HA immigrants were largely consistent, with native Tibetans only showing more intense brain modulation. Different populations acclimatized to HA develop similar brain mechanisms to cope with hostile HA environmental factors.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China
| | - Wenrui Du
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, 850000, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Nishimura T, Arima H, Koirala S, Ito H, Yamamoto T. Individual variations and sex differences in hemodynamics and percutaneous arterial oxygen saturation (SpO2) in Tibetan highlanders of Tsarang in the Mustang district of Nepal. J Physiol Anthropol 2022; 41:9. [PMID: 35292118 PMCID: PMC8925233 DOI: 10.1186/s40101-022-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Many studies have indicated specific low-hemoglobin (Hb) adaptation to high altitude in the Tibetan population, but studies focusing on physiological variations within this population are limited. This study aimed to investigate the relationships between SpO2 and related factors, including individual variations and sex differences, to assess the generality of high-altitude adaptation in the Tibetan population of Tsarang. Methods The participants were 31 male and 41 female community-dwelling people aged ≥18 years living in Tsarang, in the Mustang district of Nepal. Height, weight, SpO2, Hb concentration, finger temperature, heart rate, and blood pressure were measured. Lifestyle information was obtained by interview. Results Men had significantly higher systolic blood pressure (p = 0.002) and Hb (p < 0.001) than women. There was no significant correlation between SpO2 and other parameters in men. In women, SpO2 was negatively correlated with heart rate (p = 0.036), Hb (p = 0.004), and finger temperature (p = 0.037). In multiple regression analysis, a higher SpO2 was marginally correlated with lower age (β = −0.109, p = 0.086) and higher Hb (β = 0.547, p = 0.053) in men. In women, higher SpO2 was significantly correlated with lower heart rate (β = −0.045, p = 0.036) and Hb (β = −0.341, p = 0.018). Mean hemoglobin (95% confidence interval) was 13.6 g/dl (13.1–14.0 g/dl), which is lower than that found previously in Andeans and almost equal to that in Japanese lowlanders measured using the same device. In some participants of both sexes, hemoglobin was >17.0 g/dl. Conclusion Higher SpO2 was marginally correlated with younger age and higher Hb in men and with lower heart rate and lower Hb in women. Hemoglobin concentration was similar to that found previously in lowlanders, but higher in some individuals. These results indicate individual variation and sex differences in the hemodynamics of high-altitude adaptation in Tibetan highlanders of Tsarang, as well as low-Hb adaptation to high altitude equal to that of other Tibetans.
Collapse
|
10
|
A Critical Analysis of the Automated Hematology Assessment in Pregnant Women at Low and at High Altitude: Association between Red Blood Cells, Platelet Parameters, and Iron Status. Life (Basel) 2022; 12:life12050727. [PMID: 35629394 PMCID: PMC9143551 DOI: 10.3390/life12050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
The objectives of the study were to determine differences in the parameters of red blood cells (RBC), white blood cells (WBC), and platelets at low altitude (LA) and at high altitude (HA) and with the gestation being advanced, and to determine correlations between parameters of RBC and platelets. We also studied the association of RBC and platelets with markers of iron status. In addition, markers of iron status and inflammation were measured and compared at each trimester of gestation in pregnant women at LA and HA. A cross-sectional comparative study was conducted at Lima (150 m above sea level) and Cusco at 3400 m above sea level from May to December 2019. Hematological parameters in pregnant women (233 at LA and 211 at HA) were analyzed using an automated hematology analyzer. Serum ferritin levels, soluble transferrin receptor (sTfR), hepcidin, erythropoietin, testosterone, estradiol, and interleukin-6 (IL6) levels were measured by ELISA. One-way ANOVA supplemented with post hoc test, chi-square test, and Pearson correlation test statistical analyses were performed. p < 0.05 was considered significant. Pregnant woman at HA compared to LA had significantly lower WBC (p < 0.01), associated with higher parameters of the RBC, except for the mean corpuscular volume (MCV) that was no different (p > 0.05). Platelets and mean platelet volume (MPV) were higher (p < 0.01), and platelet distribution width (PDW) was lower at HA than at LA (p < 0.01). A higher value of serum ferritin (p < 0.01), testosterone (p < 0.05), and hepcidin (p < 0.01) was observed at HA, while the concentration of sTfR was lower at HA than at LA (p < 0.01). At LA, neutrophils increased in the third trimester (p < 0.05). RBC parameters decreased with the progress of the gestation, except RDW-CV, which increased. The platelet count decreased and the MPV and PDW were significantly higher in the third trimester. Serum ferritin, hepcidin, and serum testosterone decreased, while sTfR and serum estradiol increased during gestation. At HA, the WBC and red blood cell distribution width- coefficient of variation (RDW-CV), PCT, and serum IL-6 did not change with gestational trimesters. RBC, hemoglobin (Hb), hematocrit (Hct), mean corpuscular hemoglobin concentration (MCHC), and platelet count were lower as gestation advanced. MCV, MPV, and PDW increased in the third trimester. Serum ferritin, testosterone, and hepcidin were lower in the third trimester. Serum estradiol, erythropoietin, and sTfR increased as gestation progressed. Direct or inverse correlations were observed between RBC and platelet parameters and LA and HA. A better number of significant correlations were observed at HA. Hb, Hct, and RDW-CV showed a significant correlation with serum ferritin at LA and HA. Of these parameters, RDW-CV and PDW showed an inversely significant association with ferritin (p < 0.05). In conclusion, a different pattern was observed in hematological markers as well as in iron status markers between pregnant women at LA and HA. In pregnant women a significant correlation between several RBC parameters with platelet marker parameters was also observed. Data suggest that pregnant women at HA have adequate iron status during pregnancy as reflected by higher serum ferritin levels, lower sTfR levels, and higher hepcidin values than pregnant women at LA.
Collapse
|
11
|
Gu B, Wang S, Liu F, Song Y, Li J, Ni Y, Chen M, Hu J, Ouzhu L, Li Z, Liu L, Li X, Liu X. Same total normal forms sperm counts of males from Lhasa and Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18820-18831. [PMID: 34704224 DOI: 10.1007/s11356-021-17083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Male infertility may be caused by genetic and/or environmental factors that impair spermatogenesis and sperm maturation. High-altitude (HA) hypoxic environments represent one of the most serious challenges faced by humans that reside in these areas. To assess the influence of the plateau environment on semen parameters, 2,798 males, including 1,111 native Tibetans and 1,687 Han Chinese individuals living in the plains (HCILP) who underwent pre-pregnancy checkups, were enrolled in this study. The semen samples of males were evaluated to determine conventional sperm parameters, sperm morphology, and sperm movement. Reproductive endocrine hormones (REHs) were detected in 474 males, including 221 Tibetans and 253 HCILP. Due to recurrent abortions in partners, the DNA fragmentation index (DFI) of 133 native Tibetans and 393 HCILP individuals was further compared. Luteinizing hormone (LH) (4.94 ± 2.12 vs. 3.29 ± 1.43 U/L), prolactin (11.34 ± 3.87 vs. 8.97 ± 3.48 nmol/L), E2/T (0.22 ± 0.11 vs 0.11 ± 0.05), median total sperm motility (61.20% vs. 51.56%), and DFI (23.11% vs. 7.22%) were higher in males from plateau areas while median progressive motility (PR) (35.60% vs. 41.12%), total number of PR sperms (51.61 vs. 59.63 mil/ejaculate), percentage of normal form sperms (3.70% vs. 6.00%), curvilinear velocity (36.10 vs. 48.97 μm/s), straight-line (rectilinear) velocity (14.70 vs. 31.52 μm/s), estradiol (103.82 ± 45.92 vs. 146.01 ± 39.73 pmol/L), progesterone (0.29 ± 0.27 vs. 2.22 ± 0.84 nmol/L), testosterone (4.90 ± 1.96 vs. 14.36 ± 5.24 nmol/L), and testosterone secretion index (ratio of testosterone to LH) (33.45 ± 22.86 vs 145.78 ± 73.41) were lower than those in males from the plains. There was no difference in median total sperm number (157.76 vs. 151.65 mil/mL), sperm concentration (52.40 vs. 51.79 mil/mL), volume (3.10 vs. 3.10 mL), total normal form sperms (5.91 vs. 6.58 mil/ejaculate, p50), and follicle-stimulating hormone (FSH) levels (4.13 ± 2.55 U/L vs 3.82 ± 2.35 U/L) between the two groups of males. The REH and sperm parameters of males from HA hypoxic environments were adaptively altered. Although the total number of PR sperm decreased and DFI increased, the Tibetan population that lives at HAs has been found to grown continuously and rapidly. These results supplement prior findings regarding the impact of HA on male reproductive function.
Collapse
Affiliation(s)
- Benhong Gu
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Liu
- Department of Andrology, Center of Urologic Medicine, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University, Shanghai, 200080, China
- Reproductive Medicine Center, Fokind Maternity and Children's Hospital, Tibet, Lhasa, 850000, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jun Li
- Reproductive Medicine Center, Fokind Maternity and Children's Hospital, Tibet, Lhasa, 850000, China
| | - Yongtao Ni
- Reproductive Medicine Center, Fokind Maternity and Children's Hospital, Tibet, Lhasa, 850000, China
| | - Min Chen
- Reproductive Medicine Center, Fokind Maternity and Children's Hospital, Tibet, Lhasa, 850000, China
| | - Jianlin Hu
- Department of Andrology, Center of Urologic Medicine, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Luobu Ouzhu
- Reproductive Medicine Center, Fokind Maternity and Children's Hospital, Tibet, Lhasa, 850000, China
| | - Zheng Li
- Department of Andrology, Center of Urologic Medicine, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xia Li
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
12
|
Beall CM, Childs G, Craig SR, Strohl KP, Quinn E, Basnyat B. Repeatability of adaptive traits among ethnic Tibetan highlanders. Am J Hum Biol 2021; 34:e23670. [PMID: 34424596 DOI: 10.1002/ajhb.23670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Connecting traits to biological pathways and genes relies on stable observations. Researchers typically determine traits once, expecting careful study protocols to yield measurements free of noise. This report examines that expectation with test-retest repeatability analyses for traits used regularly in research on adaptation to high-altitude hypoxia, often in settings without climate control. METHODS Two hundred ninety-one ethnic Tibetan women residing from 3500 to 4200 m in Upper Mustang District, Nepal, provided three observations of hemoglobin concentration, percent of oxygen saturation of hemoglobin, and pulse by noninvasive pulse oximetry under conditions designed to minimize environmental noise. RESULTS High-intraclass correlation coefficients and low within-subject coefficients of variation reflected consistent measurements. Percent of oxygen saturation had the highest intraclass correlation coefficient and the smallest within-subject coefficient of variability; measurement noise occurred mainly in the lower values. Hemoglobin concentration and pulse presented slightly higher within-subject coefficients of variation; measurement noise occurred across the range of values. The women had performed the same measurements 7 years earlier using the same devices and protocol. The sample means and SD observed across 7 years differed little. Hemoglobin concentration increased substantially after menopause. CONCLUSIONS Analyzing repeatability features of traits may improve our interpretation of statistical analyses and detection of variation from measurement or biology. The high levels of measurement repeatability and biological stability support the continued use of these robust traits for investigating human adaptation in this altitude range.
Collapse
Affiliation(s)
- Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Geoff Childs
- Department of Anthropology, Washington University, St. Louis, Missouri, USA
| | - Sienna R Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Kingman P Strohl
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elizabeth Quinn
- Department of Anthropology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
13
|
Shaw S, Gidugu H, Bhaumik G, Reddy MPK, Panjwani U, Ghosh D. Anti-Mullerian Hormone and Macrophage Migration Inhibitory Factor Determine the Reproductive Health of Ladakhi Women Residing at 3,500 m. High Alt Med Biol 2021; 22:317-326. [PMID: 34314630 DOI: 10.1089/ham.2021.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Shaw, Snigdha, Himashree Gidugu, Gopinath Bhaumik, Maramreddy Prasanna Kumar Reddy, Usha Panjwani, and Dishari Ghosh. Anti-Mullerian hormone and macrophage migration inhibitory factor determine the reproductive health of Ladakhi women residing at 3,500 m. High Alt Med Biol. 00:000-000, 2021. Background: Reproductive health of Ladakhi high-altitude (HA) native females was investigated for the first time in this study. Available literature suggest that, female reproductive cycle and hormonal profile varies in different HA populations due to heterogeneity. Although these studies illustrate some progress on the role of HA hypoxia, it still leaves scope for evaluation of the remaining mechanisms involved in the maintenance of reproductive health in this contemporary population. Materials and Methods: Menstrual details, phasic variations in circulatory steroid hormones, and gonadotropins along with oxytocin in sea level (SL) and HA (∼3,500 m) native females of India were assessed. Moreover, ovarian reserve marker anti-Mullerian hormone (AMH) and proinflammatory cytokine macrophage migration inhibitory factor (MIF) were measured. Results: A difference in Ladakhi women was registered compared to SL, regarding luteinizing hormone (LH) (2.6 mIU/ml vs. 4.4 mIU/ml, p < 0.05) and progesterone (P) (4.1 ng/ml vs. 9.4 ng/ml, p < 0.05) levels in their luteal phase. Reduced LH might contribute to poor development of the ovarian corpus luteum, subsequently diminish P level. Decreased AMH level in three age groups: 21-30 years (1.4 ng/ml vs. 3.2 ng/ml, p < 0.01), 31-40 years (0.6 ng/ml vs. 2.1 ng/ml, p < 0.01), and >40 years (0.4 ng/ml vs. 1.7 ng/ml, p < 0.01) of Ladakhi women were recorded than their SL counterpart. Elevated oxytocin (83.5 ng/ml vs. 76.3 ng/ml, p < 0.05) and MIF levels (70.2 ng/ml vs. 49.7 ng/ml, p < 0.01) along with low P and AMH levels delineated the reason for recorded early menopause (43.9 years), shorter reproductive span (∼29 years), and history of miscarriage in HA dwellers compared to SL. Conclusion: Therefore, the findings insinuated that the response of the reproductive system to hypoxia in Ladakhi women differs from SL women, and the adaptive response in these women might be in favor of their reproductive health.
Collapse
Affiliation(s)
- Snigdha Shaw
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Himashree Gidugu
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Gopinath Bhaumik
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Maramreddy Prasanna Kumar Reddy
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Usha Panjwani
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Dishari Ghosh
- High Altitude Physiology Group, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
14
|
Basak N, Norboo T, Mustak MS, Thangaraj K. Heterogeneity in Hematological Parameters of High and Low Altitude Tibetan Populations. J Blood Med 2021; 12:287-298. [PMID: 34040473 PMCID: PMC8139737 DOI: 10.2147/jbm.s294564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction High altitude hypoxia is believed to be experienced at elevations of more than 2500 meters above sea level. Several studies have shed light on the biochemical aspects of high altitude acclimatization, where participants were sojourners to the high altitude from low altitude areas. However, information regarding the difference between the high altitude adapted Tibetans living at high altitude and their counterparts who reside at low altitude are lacking. To understand this, we have measured various hematological parameters in the Tibetan populations, who are residing in both high and low altitudes in India. Methods A total of 168 individuals (79 from high altitude (≥4500 meters) and 89 from low altitude (~850 meters) were recruited for this study. Hematological parameters such as red blood cells (RBC) count, hematocrit (HCT), hemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) were measured from the individuals from high and low altitudes. Serum erythropoietin (EPO) was measured by ELISA. Statistical analyses were performed to compare data from both of the altitudes. Gender-wise comparison of data was reported. Correlation analysis was performed within relevant parameters. Results Highly significant differences (p <0.0001) between high and low altitude Tibetans were detected in RBC count, HCT, Hb, MCHC in both males and females and in MCV in females. In the case of MCHC, however, age and BMI were potential confounders. Nominally significant differences (p <0.05) were detected in MCV and MCH within males. No significant difference in serum EPO level was found between altitude groups, in any gender. No significant correlation was found between serum EPO with Hb as well as serum EPO with HCT. Discussion Our study explores significantly lower RBC count, HCT, Hb, MCH, MCHC and higher MCV in long-term Tibetan residents living at low altitude compared to their high altitude counterparts, which is likely due to the outcome of hematological adaptation to a relatively hyperoxic environment in low altitude areas.
Collapse
Affiliation(s)
- Nipa Basak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | | | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India.,DBT-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
15
|
Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Mol Biol Evol 2021; 38:2677-2691. [PMID: 33751123 PMCID: PMC8233491 DOI: 10.1093/molbev/msab064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Population genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
16
|
Abstract
Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| |
Collapse
|
17
|
Shirazi TN, Rosinger AY. Reproductive Health Disparities in the USA: Self-Reported Race/Ethnicity Predicts Age of Menarche and Live Birth Ratios, but Not Infertility. J Racial Ethn Health Disparities 2021; 8:33-46. [PMID: 32378159 DOI: 10.1007/s40615-020-00752-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
Self-identified race/ethnicity and socioeconomic status (SES) contribute to disparities in several health domains, although research on their effects on women's reproductive function has largely focused on links between SES and age of menarche. Here, we assessed whether race/ethnicity, SES, and downstream correlates of SES such as food security and health-insurance security are associated with age of menarche, infertility, and live birth ratios (ratios of recognized pregnancies resulting in live births) in the USA. We used cross-sectional data from 1694 women aged 12-18 years for menarche (2007-2016), 974 women aged 23-45 for infertility (2013-2016), and 1714 women aged 23-45 for live birth ratios (2007-2016) from the National Health and Nutrition Examination Survey. We estimated multiple linear and logistic regressions with survey weights to test these associations. When controlling for lifestyle (activity levels, smoking, alcohol consumption) and physiological factors (diabetes, weight status), non-Hispanic (NH) black and Hispanic girls reported a significantly lower age of menarche by about 4.3 (standard error [SE] = 0.08, p < 0.001), and 3.2 months (SE = 0.09, p < 0.001), respectively, relative to NH white girls. NH black women reported live birth ratios 9% (SE = 0.02, p < 0.001) lower than NH white women. Women with unstable health insurance reported live birth ratios 6% (SE = 0.02, p = 0.02) lower than women with stable health insurance. Race/ethnicity, SES, and its downstream correlates were not associated with infertility. One hypothesized explanation for observed disparities in age of menarche and live birth ratios is the embodiment of discrimination faced by NH black women within the USA. Our findings also underscore the importance of health insurance access for favorable reproductive health outcomes. Future work should elucidate the role of embodied discrimination and other downstream correlates of SES in modulating women's reproductive health outcomes to inform strategies to mitigate health disparities.
Collapse
Affiliation(s)
- Talia N Shirazi
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA, 16802, USA
| | - Asher Y Rosinger
- Department of Anthropology, Pennsylvania State University, Carpenter Building, University Park, PA, 16802, USA.
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Sarna K, Brittenham GM, Beall CM. Current WHO hemoglobin thresholds for altitude and misdiagnosis of anemia among Tibetan highlanders. Am J Hematol 2020; 95:E134-E136. [PMID: 32096880 DOI: 10.1002/ajh.25765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Kaylee Sarna
- Department of AnthropologyCase Western Reserve University Cleveland Ohio
| | | | - Cynthia M. Beall
- Department of AnthropologyCase Western Reserve University Cleveland Ohio
| |
Collapse
|
19
|
Sarna K, Brittenham GM, Beall CM. Detecting anaemia at high altitude. Evol Med Public Health 2020; 2020:68-69. [PMID: 32382420 PMCID: PMC7196337 DOI: 10.1093/emph/eoaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kaylee Sarna
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary M Brittenham
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Abstract
Human survival is dependent upon the continuous delivery of O2 to each cell in the body in sufficient amounts to meet metabolic requirements, primarily for ATP generation by oxidative phosphorylation. Hypoxia-inducible factors (HIFs) regulate the transcription of thousands of genes to balance O2 supply and demand. The HIFs are negatively regulated by O2-dependent hydrox-ylation and ubiquitination by prolyl hydroxylase domain (PHD) proteins and the von Hippel-Lindau (VHL) protein. Germline mutations in the genes encoding VHL, HIF-2α, and PHD2 cause hereditary erythrocytosis, which is characterized by polycythemia and pulmonary hypertension and is caused by increased HIF activity. Evolutionary adaptation to life at high altitude is associated with unique genetic variants in the genes encoding HIF-2α and PHD2 that blunt the erythropoietic and pulmonary vascular responses to hypoxia.
Collapse
Affiliation(s)
- Gregg L Semenza
- Departments of Genetic Medicine, Oncology, Pediatrics, Radiation Oncology, Medicine, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
21
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
22
|
[Global situation of anemia in pregnant women]. NUTR HOSP 2019; 36:996-997. [PMID: 31291735 DOI: 10.20960/nh.02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction
Collapse
|
23
|
Jeong C, Witonsky DB, Basnyat B, Neupane M, Beall CM, Childs G, Craig SR, Novembre J, Di Rienzo A. Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genet 2018; 14:e1007650. [PMID: 30188897 PMCID: PMC6143271 DOI: 10.1371/journal.pgen.1007650] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Hospital, Kathmandu, Nepal
| | | | - Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Geoff Childs
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Sienna R. Craig
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Davenport MH, Steinback CD, Borle KJ, Matenchuk BA, Vanden Berg ER, de Freitas EM, Linares AM, O'Halloran KD, Sherpa MT, Day TA. Extreme pregnancy: maternal physical activity at Everest Base Camp. J Appl Physiol (1985) 2018; 125:580-585. [PMID: 29745793 DOI: 10.1152/japplphysiol.00146.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High-altitude natives employ numerous physiological strategies to survive and reproduce. However, the concomitant influence of altitude and physical activity during pregnancy has not been studied above 3,700 m. We report a case of physical activity, sleep behavior, and physiological measurements on a 28-yr-old third-trimester pregnant native highlander (Sherpa) during ascent from 3,440 m to Everest Base Camp (~5,300 m) over 8 days in the Nepal Himalaya and again ~10 mo postpartum during a similar ascent profile. The participant engaged in 250-300 min of moderate to vigorous physical activity per day during ascent to altitude while pregnant, with similar volumes of moderate to vigorous physical activity while postpartum. There were no apparent maternal, fetal, or neonatal complications related to the superimposition of the large volumes of physical activity at altitude. This report demonstrates a rare description of physical activity and ascent to high altitude during pregnancy and points to novel questions regarding the superimposition of pregnancy, altitude, and physical activity in high-altitude natives.
Collapse
Affiliation(s)
- Margie H Davenport
- Program for Pregnancy and Postpartum Health, Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Craig D Steinback
- Program for Pregnancy and Postpartum Health, Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Kennedy J Borle
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada.,University of British Columbia , Vancouver, British Columbia , Canada
| | - Brittany A Matenchuk
- Program for Pregnancy and Postpartum Health, Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Emily R Vanden Berg
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada.,Department of Biology, University of Victoria , Victoria, British Columbia , Canada
| | - Emily M de Freitas
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada
| | - Andrea M Linares
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada.,University of Ontario Institute of Technology , Oshawa, Ontario , Canada
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | | | - Trevor A Day
- Faculty of Science and Technology, Department of Biology, Mount Royal University , Calgary, Alberta , Canada
| |
Collapse
|
25
|
Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proc Natl Acad Sci U S A 2018; 115:E4426-E4432. [PMID: 29686092 PMCID: PMC5948952 DOI: 10.1073/pnas.1711788115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The frequency of the human-specific EDAR V370A isoform is highly elevated in North and East Asian populations. The gene is known to have several pleiotropic effects, among which are sweat gland density and ductal branching in the mammary gland. The former has led some geneticists to argue that the near-fixation of this allele was caused by selection for modulation of thermoregulatory sweating. We provide an alternative hypothesis, that selection instead acted on the allele’s effect of increasing ductal branching in the mammary gland, thereby amplifying the transfer of critical nutrients to infants via mother’s milk. This is likely to have occurred during the Last Glacial Maximum when a human population was genetically isolated in the high-latitude environment of the Beringia. Because of the ubiquitous adaptability of our material culture, some human populations have occupied extreme environments that intensified selection on existing genomic variation. By 32,000 years ago, people were living in Arctic Beringia, and during the Last Glacial Maximum (LGM; 28,000–18,000 y ago), they likely persisted in the Beringian refugium. Such high latitudes provide only very low levels of UV radiation, and can thereby lead to dangerously low levels of biosynthesized vitamin D. The physiological effects of vitamin D deficiency range from reduced dietary absorption of calcium to a compromised immune system and modified adipose tissue function. The ectodysplasin A receptor (EDAR) gene has a range of pleiotropic effects, including sweat gland density, incisor shoveling, and mammary gland ductal branching. The frequency of the human-specific EDAR V370A allele appears to be uniquely elevated in North and East Asian and New World populations due to a bout of positive selection likely to have occurred circa 20,000 y ago. The dental pleiotropic effects of this allele suggest an even higher occurrence among indigenous people in the Western Hemisphere before European colonization. We hypothesize that selection on EDAR V370A occurred in the Beringian refugium because it increases mammary ductal branching, and thereby may amplify the transfer of critical nutrients in vitamin D-deficient conditions to infants via mothers’ milk. This hypothesized selective context for EDAR V370A was likely intertwined with selection on the fatty acid desaturase (FADS) gene cluster because it is known to modulate lipid profiles transmitted to milk from a vitamin D-rich diet high in omega-3 fatty acids.
Collapse
|
26
|
Gonzales GF, Rubín de Celis V, Begazo J, del Rosario Hinojosa M, Yucra S, Zevallos-Concha A, Tapia V. Correcting the cut-off point of hemoglobin at high altitude favors misclassification of anemia, erythrocytosis and excessive erythrocytosis. Am J Hematol 2018; 93:E12-E16. [PMID: 28983947 DOI: 10.1002/ajh.24932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Gustavo F. Gonzales
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia; Lima Peru
- Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia; Lima Peru
- Research Circle in Plants with Effects in Health, Universidad Peruana Cayetano Heredia; Lima Peru
| | - Verónica Rubín de Celis
- Instituto de Ciencia y Tecnología, Genomic and Molecular Biology Laboratory, Universidad Ricardo Palma
| | - José Begazo
- School of Nutrition, Universidad Nacional del Altiplano; Puno
| | | | - Sandra Yucra
- Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia; Lima Peru
| | - Alisson Zevallos-Concha
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia; Lima Peru
- Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia; Lima Peru
- Research Circle in Plants with Effects in Health, Universidad Peruana Cayetano Heredia; Lima Peru
- Universidad de Chile
| | - Vilma Tapia
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia; Lima Peru
- Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia; Lima Peru
| |
Collapse
|