1
|
Raad M, Markman TM. Cardiac sympathetic modulation: searching for a simplified approach. J Interv Card Electrophysiol 2025; 68:401-403. [PMID: 38261103 DOI: 10.1007/s10840-024-01737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Mohamad Raad
- Department of Medicine, University of Pennsylvania, 1 Convention Aveue, Level 2, Philadelphia, PA, 19104, USA
| | - Timothy M Markman
- Department of Medicine, University of Pennsylvania, 1 Convention Aveue, Level 2, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Cauti FM, Capone S, Rossi P, Polselli M, Venuta F, Vannucci J, Bruno K, Pugliese F, Tozzi P, Bianchi S, Anile M. Cardiac sympathetic denervation for untreatable ventricular tachycardia in structural heart disease. Strengths and pitfalls of evolving surgical techniques. J Interv Card Electrophysiol 2025; 68:381-389. [PMID: 36282370 DOI: 10.1007/s10840-022-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2022]
Abstract
Cardiac sympathetic denervation (CSD) is a valuable option in the setting of refractory ventricular arrhythmias in patient with structural heart disease. Since the procedure was introduced for non structural heart disease patients the techniques evolved and were modified to be adopted in several settings. In this state-of-the-art article we revised different techniques, their rationale, strengths, and pitfalls.
Collapse
Affiliation(s)
- Filippo Maria Cauti
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli Isola Tiberina, Via Ponte Quattro Capi 39, 00186, Rome, Italy.
| | - Silvia Capone
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli Isola Tiberina, Via Ponte Quattro Capi 39, 00186, Rome, Italy
- Cardiology Unit, Dipartimento Cuore E Grossi Vasi, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Pietro Rossi
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli Isola Tiberina, Via Ponte Quattro Capi 39, 00186, Rome, Italy
| | - Marco Polselli
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli Isola Tiberina, Via Ponte Quattro Capi 39, 00186, Rome, Italy
| | - Federico Venuta
- Thoracic Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Jacopo Vannucci
- Thoracic Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Katia Bruno
- Department of Anesthesiology, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Francesco Pugliese
- Department of Anesthesiology, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Pierfrancesco Tozzi
- Department of Anesthesiology, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Stefano Bianchi
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli Isola Tiberina, Via Ponte Quattro Capi 39, 00186, Rome, Italy
| | - Marco Anile
- Thoracic Unit, Policlinico Umberto I, Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Cauti FM, Rossi P, Bianchi S, Magnocavallo M, Capone S, Della Rocca DG, Polselli M, Bruno K, Tozzi P, Rossi C, Vannucci J, Pugliese F, Quaglione R, Venuta F, Anile M. Modified sympathicotomy in patients with refractory ventricular tachycardia and structural heart disease: a single-center experience. J Interv Card Electrophysiol 2025; 68:391-399. [PMID: 38040851 DOI: 10.1007/s10840-023-01706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Modified cardiac sympathetic denervation (CSD) with stellate ganglion (SG) sparing is a novel technique for cardiac neuromodulation in patients with refractory ventricular tachycardia (VT). OBJECTIVES Our aim is to describe the mid- to long-term clinical outcome of the modified CSD with SG sparing in a series of patients with structural heart disease (SHD) and refractory VT. METHODS All consecutive patients with SHD and refractory VT undergoing modified CSD were enrolled. Baseline clinical characteristics and periprocedural data were collected for all patients. The primary outcome was any recurrence of sustained VT. RESULTS We enrolled 15 patients (age: 69.2 ± 7.9 years; male 100%) undergoing modified CSD. Left ventricular ejection fraction was 37 ± 11% and all patients had an implantable cardiac defibrillator (ICD); the underlying cardiomyopathy was non-ischemic in 73.3% of them. At least one previous ablation had been attempted in 66.6% of cases. The 73.3% of patients underwent bilateral CSD and the mean effective surgical time was 10.8 ± 2.4 min per side; no major periprocedural complication occurred. After a median follow-up time of 15 months (IQR: 8.5-24.5 months), the primary outcome occurred in 47.6% of cases. All patients experienced a reduction of ICD shocks after CSD (3.1 ICD shocks/patient before vs. 0.3 ICD shocks/patient after CSD; p-value: 0.001). Bilateral CSD and a VT cycle length < 340 ms were associated with better outcomes. CONCLUSIONS A modified CSD approach with stellate ganglion sparing appears to be safe, fast, and effective in the treatment of patients with SHD and refractory VTs.
Collapse
Affiliation(s)
- Filippo Maria Cauti
- Arrhythmology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Cardiology Unit, Dipartimento Cuore e Grossi Vasi, Policlinico Umberto I, Sapienza University, Rome, Italy.
| | - Pietro Rossi
- Arrhythmology Unit, Fatebenefratelli Isola - Gemelli Isola, Rome, Italy
| | - Stefano Bianchi
- Arrhythmology Unit, Fatebenefratelli Isola - Gemelli Isola, Rome, Italy
| | | | - Silvia Capone
- Arrhythmology Unit, Fatebenefratelli Isola - Gemelli Isola, Rome, Italy
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard - Heart, Brussels, Belgium
| | - Marco Polselli
- Arrhythmology Unit, Fatebenefratelli Isola - Gemelli Isola, Rome, Italy
| | - Katia Bruno
- Department of Anesthesiology, Sapienza University, Rome, Italy
| | | | - Chiara Rossi
- Presidio Ospedaliero Santo Spirito in Sassia, Rome, Italy
| | - Jacopo Vannucci
- Division of Thoracic Surgery and Lung Transplant, Sapienza University, Rome, Italy
| | | | - Raffaele Quaglione
- Cardiology Unit, Dipartimento Cuore e Grossi Vasi, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Federico Venuta
- Division of Thoracic Surgery and Lung Transplant, Sapienza University, Rome, Italy
| | - Marco Anile
- Division of Thoracic Surgery and Lung Transplant, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Zhao Y, Feng L, Wu C, Xu Y, Bo W, Di L, Pan S, Cai M, Tian Z. Aerobic Exercise Activates Fibroblast Growth Factor 21 and Alleviates Cardiac Ischemia/Reperfusion-induced Neuronal Oxidative Stress and Ferroptosis in Paraventricular Nucleus. Mol Neurobiol 2025:10.1007/s12035-025-04780-1. [PMID: 40009261 DOI: 10.1007/s12035-025-04780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Cardiac ischemia/reperfusion (I/R) induces systemic oxidative stress, which in turn gives rise to the development of multiple organ abnormalities, including brain injury. The paraventricular nucleus (PVN) of the hypothalamus is a cardiovascular regulatory center. Aerobic exercise is an effective intervention to protect the heart against I/R injury. However, the effect of aerobic exercise on cardiac I/R-induced neuronal injury in the PVN has not been fully elucidated. The aim of this study is to investigate whether aerobic exercise can up-regulate fibroblast growth factor 21 (FGF21) and alleviate neuronal oxidative stress and ferroptosis in the PVN caused by cardiac I/R. In vivo, after six weeks of aerobic exercise, the cardiac I/R model was established by ligating the left anterior descending (LAD) coronary artery for 30 min, followed by 2 h of reperfusion. Cardiac function and heart rate variability (HRV) were measured. Morphological changes, oxidative stress, expression of FGF21 and its downstream signaling molecules, as well as ferroptosis-related indicators in the PVN, were evaluated. In vitro, HT22 cells were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and treated with recombinant human FGF21 (rhFGF21) and compound C to elucidate the potential mechanism. Cardiac I/R induced iron deposition, elevated expression of lipid peroxidation drivers, and impaired antioxidant capacity in the PVN, which collectively contributed to neuronal ferroptosis. Aerobic exercise up-regulated the expression of FGF21, FGFR1, and PGC-1α, maintained the phosphorylation of AMPKα, enhanced antioxidant capacity, reduced ROS and lipid peroxidation, regulated iron homeostasis, and effectively attenuated neuronal ferroptosis induced by cardiac I/R. In addition, rhFGF21 protected HT22 cells against OGD/R-induced oxidative stress and ferroptosis, which was blocked by AMPK inhibition. FGF21 plays a pivotal role in regulating neuronal oxidative stress and ferroptosis. Aerobic exercise could increase the expression of FGF21, FGFR1, and PGC-1α, maintain the phosphorylation of AMPKα, and alleviate cardiac I/R-induced neuronal oxidative stress and ferroptosis. These results confirm the protective effect of aerobic exercise against cardiac I/R-induced brain injury and provide an experimental basis for studying the relationship between exercise and the "heart-brain axis."
Collapse
Affiliation(s)
- Yifang Zhao
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Lili Feng
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Chenyang Wu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxiang Xu
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Wenyan Bo
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Lingyun Di
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Shou Pan
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China
| | - Mengxin Cai
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Boudoulas KD, Pitsis A, Iliescu C, Marmagkiolis K, Triposkiadis F, Boudoulas H. Floppy Mitral Valve/Mitral Valve Prolapse and Manifestations Not Related to Mitral Regurgitation: Time to Search the Dark Side of the Moon. Cardiology 2024:1-11. [PMID: 39226885 DOI: 10.1159/000541179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Floppy mitral valve/mitral valve prolapse (FMV/MVP) is a complex entity in which several clinical manifestations are not directly related to the severity of mitral regurgitation (MR). SUMMARY Patients with FMV/MVP and trivial to mild MR may have exercise intolerance, orthostatic phenomena, syncope/presyncope, chest pain, and ventricular arrhythmias, among others. Several anatomical and pathophysiologic consequences related to the abnormal mitral valve apparatus and to prolapse of the mitral leaflets into the left atrium provide some explanation for these symptoms. Further, it should be emphasized that MVP is a non-specific finding, while FMV (redundant mitral leaflets, elongated/rupture chordae tendineae, annular dilatation) is the central issue in the MVP story. KEY MESSAGE The purpose of this review was to highlight the clinical manifestations of FMV/MVP not directly related to the severity of MR and to discuss the pathophysiologic mechanisms contributing to these manifestations.
Collapse
Affiliation(s)
| | - Antonios Pitsis
- Cardiac Surgery Institute of Thessaloniki, Thessaloniki, Greece
| | - Cezar Iliescu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Konstantinos Marmagkiolis
- Tampa Heart, Tampa, Florida, USA
- Department of Internal Medicine, University of South Florida, Tampa, Florida, USA
| | | | - Harisios Boudoulas
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
6
|
Farhat K, Po SS, Stavrakis S. Non-invasive Neuromodulation of Arrhythmias. Card Electrophysiol Clin 2024; 16:307-314. [PMID: 39084723 PMCID: PMC11292161 DOI: 10.1016/j.ccep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of arrhythmias. Preclinical and clinical studies have demonstrated the therapeutic effect of neuromodulation at multiple anatomic targets across the neurocardiac axis for the treatment of arrhythmias. In this review, we discuss the rationale and clinical application of noninvasive neuromodulation techniques in treating arrhythmias and explore associated barriers and future directions, including optimization of stimulation parameters and patient selection.
Collapse
Affiliation(s)
| | - Sunny S Po
- University of Oklahoma Health Sciences Center
| | | |
Collapse
|
7
|
Shao M, Yao C, Han Y, Zhou X, Lu Y, Zhang L, Li Y, Tang B. Ablation of myocardial autonomic ganglion plexus in the treatment of bradyarrhythmia A one-arm interventional study. Clinics (Sao Paulo) 2024; 79:100448. [PMID: 39096858 PMCID: PMC11334784 DOI: 10.1016/j.clinsp.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/07/2024] [Accepted: 06/30/2024] [Indexed: 08/05/2024] Open
Abstract
OBJECTIVES To study the complications and effectiveness of the treatment of chronic arrhythmias with cardiac Ganglion Plexus (GP) ablation, and to explore the value of the treatment of chronic arrhythmias with GP ablation. METHODS This study was a one-arm interventional study of patients from the first hospital of Xinjiang Medical University and the People's Hospital of Xuancheng City admitted (09/2018-08/2021) because of bradyarrhythmia. The left atrium was modeled using the Carto3 mapping system. The ablation endpoint was the absence of a vagal response under anatomically localized and high-frequency stimulation guidance. Postoperative routine follow-up was conducted. Holter data at 3-, 6-, and 12-months were recorded. RESULTS Fifty patients (25 male, mean age 33.16 ± 7.89 years) were induced vagal response by either LSGP, LIGP, RAGP, or RIGP. The heart rate was stable at 76 bpm, SNRT 1.092s. DC, DR, HR, SDNN, RMSSD values were lower than that before ablation. AC, SSR, TH values were higher than those before ablation, mean heart rate and the slowest heart rate were significantly increased. There were significant differences in follow-up data between the preoperative and postoperative periods (all p < 0.05). All the patients were successfully ablated, and their blood pressure decreased significantly. No complications such as vascular damage, vascular embolism and pericardial effusion occurred. CONCLUSIONS Left Atrial GP ablation has good long-term clinical results and can be used as a treatment option for patients with bradyarrhythmia.
Collapse
Affiliation(s)
- Mingliang Shao
- Department of Cardiovascular, The People's Hospital of Xuancheng City, Xuancheng City, Anhui Province, China; Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Chenhuan Yao
- Department of Research and Teaching, The People's Hospital of Xuancheng City, Xuancheng City, Anhui Province, China
| | - Yafan Han
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Xianhui Zhou
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Yanmei Lu
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Ling Zhang
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Yaodong Li
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Department of Pacing Electrophysiology, Xinjiang Key Laboratory of Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi City, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
8
|
Fang S, Zhang W. Heart-Brain Axis: A Narrative Review of the Interaction between Depression and Arrhythmia. Biomedicines 2024; 12:1719. [PMID: 39200183 PMCID: PMC11351688 DOI: 10.3390/biomedicines12081719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Arrhythmias and depression are recognized as diseases of the heart and brain, respectively, and both are major health threats that often co-occur with a bidirectional causal relationship. The autonomic nervous system (ANS) serves as a crucial component of the heart-brain axis (HBA) and the pathway of interoception. Cardiac activity can influence emotional states through ascending interoceptive pathways, while psychological stress can precipitate arrhythmias via the ANS. However, the HBA and interoception frameworks are often considered overly broad, and the precise mechanisms underlying the bidirectional relationship between depression and arrhythmias remain unclear. This narrative review aims to synthesize the existing literature, focusing on the pathological mechanisms of the ANS in depression and arrhythmia while integrating other potential mechanisms to detail heart-brain interactions. In the bidirectional communication between the heart and brain, we emphasize considering various internal factors such as genes, personality traits, stress, the endocrine system, inflammation, 5-hydroxytryptamine, and behavioral factors. Current research employs multidisciplinary knowledge to elucidate heart-brain relationships, and a deeper understanding of these interactions can help optimize clinical treatment strategies. From a broader perspective, this study emphasizes the importance of considering the body as a complex, interconnected system rather than treating organs in isolation. Investigating heart-brain interactions enhance our understanding of disease pathogenesis and advances medical science, ultimately improving human quality of life.
Collapse
Affiliation(s)
- Shuping Fang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wei Zhang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China;
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Han Y, Shao M, Yang H, Sun H, Sang W, Wang L, Wang L, Yang S, Jian Y, Tang B, Li Y. Safety and efficacy of cardioneuroablation for vagal bradycardia in a single arm prospective study. Sci Rep 2024; 14:5926. [PMID: 38467744 PMCID: PMC10928196 DOI: 10.1038/s41598-024-56651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Cardioneuroablation (CNA) is currently considered as a promising treatment option for patients with symptomatic bradycardia caused by vagotonia. This study aims to further investigate its safety and efficacy in patients suffering from vagal bradycardia. A total of 60 patients with vagal bradycardia who underwent CNA in the First Affiliated Hospital of Xinjiang Medical University from November 2019 to June 2022. Preoperative atropine tests revealed abnormal vagal tone elevation in all patients. First, the electroanatomic structures of the left atrium was mapped out by using the Carto 3 system, according to the protocol of purely anatomy-guided and local fractionated intracardiac electrogram-guided CNA methods. The upper limit of ablation power of superior left ganglion (SLGP) and right anterior ganglion (RAGP) was not more than 45W with an ablation index of 450.Postoperative transesophageal cardiac electrophysiological examination was performed 1 to 3 months after surgery. The atropine test was conducted when appropriate. Twelve-lead electrocardiogram, Holter electrocardiogram, and skin sympathetic nerve activity were reviewed at 1, 3, 6 and 12 months after operation. Adverse events such as pacemaker implantation and other complications were also recorded to analyze the safety and efficacy of CNA in the treatment of vagus bradycardia. Sixty patients were enrolled in the study (38 males, mean age 36.67 ± 9.44, ranging from 18 to 50 years old). None of the patients had a vascular injury, thromboembolism, pericardial effusion, or other surgical complications. The mean heart rate, minimum heart rate, low frequency, low/high frequency, acceleration capacity of rate, and skin sympathetic nerve activity increased significantly after CNA. Conversely, SDNN, PNN50, rMSSD, high frequency, and deceleration capacity of rate values decreased after CNA (all P < 0.05). At 3 months after ablation, the average heart rate, maximum heart rate, and acceleration capacity of heart rate remained higher than those before ablation, and the deceleration capacity of heart rate remained lower than those before ablation and the above results continued to follow up for 12 months after ablation (all P < 0.05). There was no significant difference in other indicators compared with those before ablation (all P > 0.05). The remaining 81.67% (49/60) of the patients had good clinical results, with no episodes of arrhythmia during follow-up. CNA may be a safe and effective treatment for vagal-induced bradycardia, subject to confirmation by larger multicenter trials.
Collapse
Affiliation(s)
- Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Medical Science and Technology Innovation Center, College of Laboratory Animals (Provincial Laboratory Animal Center), Shandong First Medical University, Affiliated Provincial Hospital, Jinan, 250117, China
| | - Mingliang Shao
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Cardiovascular Department, The People's Hospital of Xuancheng City, Anhui, 242000, China
| | - Hang Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huaxin Sun
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu Cardiovascular Disease Research Institute, Chengdu, 610014, Sichuan, China
| | - Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Liang Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Suxia Yang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
10
|
Vega Suarez L, Epstein SE, Martin LG, Davidow EB, Hoehne SN. Prevalence and factors associated with initial and subsequent shockable cardiac arrest rhythms and their association with patient outcomes in dogs and cats undergoing cardiopulmonary resuscitation: A RECOVER registry study. J Vet Emerg Crit Care (San Antonio) 2023; 33:520-533. [PMID: 37573256 DOI: 10.1111/vec.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE To report the prevalence of initial shockable cardiac arrest rhythms (I-SHKR), incidence of subsequent shockable cardiac arrest rhythms (S-SHKR), and factors associated with I-SHKRs and S-SHKRs and explore their association with return of spontaneous circulation (ROSC) rates in dogs and cats undergoing CPR. DESIGN Multi-institutional prospective case series from 2016 to 2021, retrospectively analyzed. SETTING Eight university and eight private practice veterinary hospitals. ANIMALS A total of 457 dogs and 170 cats with recorded cardiac arrest rhythm and event outcome reported in the Reassessment Campaign on Veterinary Resuscitation CPR registry. MEASUREMENTS AND MAIN RESULTS Logistic regression was used to evaluate association of animal, hospital, and arrest variables with I-SHKRs and S-SHKRs and with patient outcomes. Odds ratios (ORs) were generated, and significance was set at P < 0.05. Of 627 animals included, 28 (4%) had I-SHKRs. Odds for I-SHKRs were significantly higher in animals with a metabolic cause of arrest (OR 7.61) and that received lidocaine (OR 17.50) or amiodarone (OR 21.22) and significantly lower in animals experiencing arrest during daytime hours (OR 0.22), in the ICU (OR 0.27), in the emergency room (OR 0.13), and out of hospital (OR 0.18) and that received epinephrine (OR 0.19). Of 599 initial nonshockable rhythms, 74 (12%) developed S-SHKRs. Odds for S-SHKRs were significantly higher in animals with higher body weight (OR 1.03), hemorrhage (OR 2.85), or intracranial cause of arrest (OR 3.73) and that received epinephrine (OR 11.36) or lidocaine (OR 18.72) and significantly decreased in those arresting in ICU (OR 0.27), emergency room (OR 0.29), and out of hospital (OR 0.38). Overall, 171 (27%) animals achieved ROSC, 81 (13%) achieved sustained ROSC, and 15 (2%) survived. Neither I-SHKRs nor S-SHKRs were significantly associated with ROSC. CONCLUSIONS I-SHKRs and S-SHKRs occur infrequently in dogs and cats undergoing CPR and are not associated with increased ROSC rates.
Collapse
Affiliation(s)
- Laura Vega Suarez
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Steven E Epstein
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Linda G Martin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Elizabeth B Davidow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sabrina N Hoehne
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y. Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? A state-of-the-art review. Prog Lipid Res 2023; 91:101240. [PMID: 37473965 DOI: 10.1016/j.plipres.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.
Collapse
Affiliation(s)
- Zhengbin Zhang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Liwen Zhu
- Department of Cardiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Ziqian Wang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Ning Hua
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Shunying Hu
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
12
|
Jentzer JC, Noseworthy PA, Kashou AH, May AM, Chrispin J, Kabra R, Arps K, Blumer V, Tisdale JE, Solomon MA. Multidisciplinary Critical Care Management of Electrical Storm: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 81:2189-2206. [PMID: 37257955 PMCID: PMC10683004 DOI: 10.1016/j.jacc.2023.03.424] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023]
Abstract
Electrical storm (ES) reflects life-threatening cardiac electrical instability with 3 or more ventricular arrhythmia episodes within 24 hours. Identification of underlying arrhythmogenic cardiac substrate and reversible triggers is essential, as is interrogation and programming of an implantable cardioverter-defibrillator, if present. Medical management includes antiarrhythmic drugs, beta-adrenergic blockade, sedation, and hemodynamic support. The initial intensity of these interventions should be matched to the severity of ES using a stepped-care algorithm involving escalating treatments for higher-risk presentations or recurrent ventricular arrhythmias. Many patients with ES are considered for catheter ablation, which may require the use of temporary mechanical circulatory support. Outcomes after ES are poor, including frequent ES recurrences and deaths caused by progressive heart failure and other cardiac causes. A multidisciplinary collaborative approach to the management of ES is crucial, and evaluation for heart transplantation or palliative care is often appropriate, even for patients who survive the initial episode.
Collapse
Affiliation(s)
- Jacob C Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Peter A Noseworthy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony H Kashou
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Adam M May
- Cardiovascular Division, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jonathan Chrispin
- Clinical Cardiac Electrophysiology, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rajesh Kabra
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | - Kelly Arps
- Cardiac Electrophysiology Section, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Vanessa Blumer
- Department of Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - James E Tisdale
- College of Pharmacy, Purdue University, West Lafayette, Indiana, USA; School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Michael A Solomon
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Kamsani SH, Sanders P. A dream within a dream. HeartRhythm Case Rep 2023; 9:341. [PMID: 37361982 PMCID: PMC10285173 DOI: 10.1016/j.hrcr.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Affiliation(s)
- Suraya H. Kamsani
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
14
|
Cauti FM, Rossi P, Stefano Bianchi. Neuromodulation Strategies for Refractory Ventricular Arrhythmias: Time to "Tune" the Volume? JACC Clin Electrophysiol 2023; 9:170-172. [PMID: 36858682 DOI: 10.1016/j.jacep.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 03/03/2023]
Affiliation(s)
- Filippo Maria Cauti
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli, Rome, Italy.
| | - Pietro Rossi
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli, Rome, Italy
| | - Stefano Bianchi
- Arrhythmology Unit, Ospedale San Giovanni Calibita, Fatebenefratelli, Rome, Italy
| |
Collapse
|
15
|
Wei Z, Zhang M, Zhang Q, Gong L, Wang X, Wang Z, Gao M, Zhang Z. A narrative review on sacubitril/valsartan and ventricular arrhythmias. Medicine (Baltimore) 2022; 101:e29456. [PMID: 35801732 PMCID: PMC9259167 DOI: 10.1097/md.0000000000029456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sacubitril/valsartan, the first angiotensin receptor neprilysin inhibitor approved by the Food and Drug Administration for marketing, has been shown to reduce the risk of cardiovascular death or heart failure hospitalization and improve symptoms in patients with chronic heart failure with a reduced ejection fraction. However, some researchers have also found that sacubitril/valsartan has an antiarrhythmic effect. The mechanism by which sacubitril/valsartan reduces the mortality associated with malignant ventricular arrhythmias is not precise. Many studies have concluded that ventricular arrhythmia is associated with a reduction in myocardial fibrosis. This article reviews the current understanding of the effects of sacubitril/valsartan on the reduction of ventricular arrhythmia and explains its possible mechanisms. The results of this study suggest that sacubitril/valsartan reduces the occurrence of appropriate implantable cardioverter-defibrillator shocks. Meanwhile, sacubitril/valsartan may reduce the occurrence of ventricular arrhythmias by affecting 3 pathways of B-type natriuretic peptide, Angiotensin II, and Bradykinin. The conclusion of this study is that sacubitril/valsartan reduces the number of implantable cardioverter-defibrillator shocks and ventricular arrhythmias in heart failure with reduced ejection fraction patients.
Collapse
Affiliation(s)
- Zhaoyang Wei
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Meiwei Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Linan Gong
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiangyu Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zanzan Wang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ming Gao
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- * Correspondence: Zhiguo Zhang, MD, Department of Cardiology, the First Hospital of Jilin University, Changchun, Jilin Province 130021, China (e-mail: )
| |
Collapse
|
16
|
Reply: Significance of Stellate Ganglion Removal During Cardiac Sympathetic Denervation. JACC Clin Electrophysiol 2021; 7:1071-1072. [PMID: 34412873 DOI: 10.1016/j.jacep.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/21/2022]
|