1
|
Ren L, Danser AHJ. Small Interfering RNA Therapy for the Management and Prevention of Hypertension. Curr Hypertens Rep 2025; 27:5. [PMID: 39808369 PMCID: PMC11732957 DOI: 10.1007/s11906-025-01325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen. RECENT FINDINGS Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control. Animal data support that its effects on blood pressure and end-organ damage are fully comparable to those of classical RAS blockers, and phase I and II clinical trials confirm its antihypertensive effectiveness and long-term action. Although its side effect profile is placebo-like, its long-term effects also pose a threat in patients who require immediate restoration of RAS activity, like in shock. Here tools are being developed, called REVERSIR, that allow immediate annihilation of the siRNA effect in the liver. One subcutaneous injection of angiotensinogen siRNA lowers blood pressure for 6 months without severe side effects. The decrease in angiotensinogen and blood pressure can be reversed with a drug called REVERSIR if needed.
Collapse
Affiliation(s)
- Liwei Ren
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Ye D, Cruz-López EO, van Veghel R, Garrelds IM, Kasper A, Wassarman K, Tu HC, Zlatev I, Danser AJ. Counteracting Angiotensinogen Small-Interfering RNA-Mediated Antihypertensive Effects With REVERSIR. Hypertension 2024; 81:1491-1499. [PMID: 38690653 PMCID: PMC11177597 DOI: 10.1161/hypertensionaha.124.22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Small-interfering RNA (siRNA) targeting hepatic AGT (angiotensinogen) mRNA depletes AGT, lowering blood pressure for up to 6 months. However, certain situations may require a rapid angiotensin increase. The REVERSIR (RVR) - reverse siRNA silencing technology a potential approach to counteract siRNA effects. METHODS Spontaneously hypertensive rats received 10 mg/kg AGT siRNA, and 3 weeks later were given AGT-RVR (1, 10, or 20 mg/kg). One week after AGT-RVR dosing, a redose of AGT siRNA assessed its post-AGT-RVR effectiveness for 2 weeks. Additionally, the impact of AGT-RVR after an equihypotensive dose of valsartan (4 mg/kg per day) was examined. RESULTS Baseline mean arterial pressure (MAP) was 144±1 mm Hg. AGT siRNA reduced MAP by ≈16 mm Hg and AGT by >95%, while renin increased 25-fold. All AGT-RVR doses restored MAP to baseline within 4 to 7 days. Notably, 10 and 20 mg/kg restored AGT and renin to baseline, while 1 mg/kg allowed ≈50% AGT restoration, with renin remaining above baseline. A second AGT siRNA treatment, following 1 mg/kg AGT-RVR, reduced MAP to the same degree as the initial dose, while following 10 mg/kg AGT-RVR, it resulted in ≈50% of the first dose's MAP effect at 2 weeks. The valsartan-induced MAP reduction was unaffected by AGT-RVR. CONCLUSIONS In spontaneously hypertensive rats, angiotensinogen-RVR dose-dependently reversed AGT siRNA-induced AGT reduction, normalizing MAP. MAP normalization persisted even with 50% recovered AGT levels, likely due to upregulated renin maintaining adequate angiotensin generation. Post-AGT-RVR dosing, a second AGT siRNA dose lowered MAP again.
Collapse
Affiliation(s)
- Dien Ye
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (D.Y., E.O.C.-L., R.v.V., I.M.G., A.H.J.D.)
| | - Edwyn O. Cruz-López
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (D.Y., E.O.C.-L., R.v.V., I.M.G., A.H.J.D.)
| | - Richard van Veghel
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (D.Y., E.O.C.-L., R.v.V., I.M.G., A.H.J.D.)
| | - Ingrid M. Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (D.Y., E.O.C.-L., R.v.V., I.M.G., A.H.J.D.)
| | - Anne Kasper
- Alnylam Pharmaceuticals, Cambridge, MA (A.K., K.W., H.-C.T., I.Z.)
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, Cambridge, MA (A.K., K.W., H.-C.T., I.Z.)
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, MA (A.K., K.W., H.-C.T., I.Z.)
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Cambridge, MA (A.K., K.W., H.-C.T., I.Z.)
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (D.Y., E.O.C.-L., R.v.V., I.M.G., A.H.J.D.)
| |
Collapse
|
3
|
Cruz-López EO, Ye D, Stolk DG, Clahsen-van Groningen MC, van Veghel R, Garrelds IM, Poglitsch M, Domenig O, Alipour Symakani RS, Merkus D, Verdonk K, Jan Danser AH. Combining renin-angiotensin system blockade and sodium-glucose cotransporter-2 inhibition in experimental diabetes results in synergistic beneficial effects. J Hypertens 2024; 42:883-892. [PMID: 38088400 DOI: 10.1097/hjh.0000000000003633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 (SGLT2) inhibition exerts cardioprotective and renoprotective effects, often on top of renin-angiotensin system (RAS) blockade. We investigated this in diabetic hypertensive (mREN2)27 rats. METHODS Rats were made diabetic with streptozotocin and treated with vehicle, the angiotensin receptor blocker valsartan, the SGLT2 inhibitor empagliflozin, or their combination. Blood pressure (BP) was measured by telemetry. RESULTS Diabetes resulted in albuminuria, accompanied by glomerulosclerosis, without a change in glomerular filtration rate. Empagliflozin did not lower BP, while valsartan did, and when combined the BP drop was largest. Only dual blockade reduced cardiac hypertrophy and prevented left ventricular dilatation. Valsartan, but not empagliflozin, increased renin, and the largest renin rise occurred during dual blockade, resulting in plasma angiotensin II [but not angiotensin-(1-7)] upregulation. In contrast, in the kidney, valsartan lowered angiotensin II and angiotensin-(1-7), and empagliflozin did not alter this. Although both valsartan and empagliflozin alone tended to diminish albuminuria, the reduction was significant only when both drugs were combined. This was accompanied by reduced glomerulosclerosis, no change in glomerular filtration rate, and a favorable expression pattern of fibrosis and inflammatory markers (including SGLT2) in the kidney. CONCLUSION RAS blockade and SGLT2 inhibition display synergistic beneficial effects on BP, kidney injury and cardiac hypertrophy in a rat with hypertension and diabetes. The synergy does not involve upregulation of angiotensin-(1-7), but may relate to direct RAS-independent effects of empagliflozin in the heart and kidney.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | - Dien Ye
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | - Daniel G Stolk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | | | - Richard van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | | | | | - Rahi S Alipour Symakani
- Division of Experimental Cardiology, Department of Cardiology
- Department of Cardiothoracic Surgery
- Division of Pediatric Cardiology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, LMU Munich
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377 Munich, Germany
| | - Koen Verdonk
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine
| |
Collapse
|
4
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Oppelaar JJ, Bouwmeester TA, Silova AA, Collard D, Wouda RD, van Duin RE, Rorije NMG, Olde Engberink RHG, Danser AHJ, van den Born BJH, Vogt L. Salt-sensitive trait of normotensive individuals is associated with altered autonomous cardiac regulation: a randomized controlled intervention study. Am J Physiol Renal Physiol 2023; 325:F707-F716. [PMID: 37795535 DOI: 10.1152/ajprenal.00076.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Blood pressure (BP) responses to sodium intake show great variation, discriminating salt-sensitive (SS) from salt-resistant (SR) individuals. The pathophysiology behind salt sensitivity is still not fully elucidated. We aimed to investigate salt-induced effects on body fluid, vascular tone, and autonomic cardiac response with regard to BP change in healthy normotensive individuals. We performed a randomized crossover study in 51 normotensive individuals with normal body mass index and estimated glomerular filtration rate. Subjects followed both a low-Na+ diet (LSD, <50 mmol/day) and a high-Na+ diet (HSD, >200 mmol/day). Cardiac output, systemic vascular resistance (SVR), and cardiac autonomous activity, through heart rate variability and cross-correlation baroreflex sensitivity (xBRS), were assessed with noninvasive continuous finger BP measurements. In a subset, extracellular volume (ECV) was assessed by iohexol measurements. Subjects were characterized as SS if mean arterial pressure (MAP) increased ≥3 mmHg after HSD. After HSD, SS subjects (25%) showed a 6.1-mmHg (SD 1.9) increase in MAP. No differences between SS and SR in body weight, cardiac output, or ECV were found. SVR was positively correlated with Delta BP (r = 0.31, P = 0.03). xBRS and heart rate variability were significantly higher in SS participants compared to SR participants after both HSD and LSD. Sodium loading did not alter heart rate variability within groups. Salt sensitivity in normotensive individuals is associated with an inability to decrease SVR upon high salt intake that is accompanied by alterations in autonomous cardiac regulation, as reflected by decreased xBRS and heart rate variability. No discriminatory changes upon high salt were observed among salt-sensitive individuals in body weight and ECV.NEW & NOTEWORTHY Extracellular fluid expansion in normotensive individuals after salt loading is present in both salt-sensitive and salt-resistant individuals and is not discriminatory to the blood pressure response to sodium loading in a steady-state measurement. In normotensive subjects, the ability to sufficiently vasodilate seems to play a pivotal role in salt sensitivity. In a normotensive cohort, differences in sympathovagal balance are also present in low-salt conditions rather than being affected by salt loading. Whereas treatment and prevention of salt-sensitive blood pressure increase are mostly focused on renal sodium handling and extracellular volume regulation, our study suggests that an inability to adequately vasodilate and altered autonomous cardiac functioning are additional key players in the pathophysiology of salt-sensitive blood pressure increase.
Collapse
Affiliation(s)
- Jetta J Oppelaar
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Thomas A Bouwmeester
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Anastasia A Silova
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
| | - Didier Collard
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Rosa D Wouda
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Robert E van Duin
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nienke M G Rorije
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Rik H G Olde Engberink
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bert-Jan H van den Born
- Section of Vascular Medicine, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Liffert Vogt
- Section of Nephrology, Department of Internal Medicine, Amsterdam UMC location, University of Amsterdam, Amsterdam, The Netherlands
- Microcirculation, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
de Bakker M, Petersen TB, Rueten-Budde AJ, Akkerhuis KM, Umans VA, Brugts JJ, Germans T, Reinders MJT, Katsikis PD, van der Spek PJ, Ostroff R, She R, Lanfear D, Asselbergs FW, Boersma E, Rizopoulos D, Kardys I. Machine learning-based biomarker profile derived from 4210 serially measured proteins predicts clinical outcome of patients with heart failure. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:444-454. [PMID: 38045440 PMCID: PMC10689916 DOI: 10.1093/ehjdh/ztad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Aims Risk assessment tools are needed for timely identification of patients with heart failure (HF) with reduced ejection fraction (HFrEF) who are at high risk of adverse events. In this study, we aim to derive a small set out of 4210 repeatedly measured proteins, which, along with clinical characteristics and established biomarkers, carry optimal prognostic capacity for adverse events, in patients with HFrEF. Methods and results In 382 patients, we performed repeated blood sampling (median follow-up: 2.1 years) and applied an aptamer-based multiplex proteomic approach. We used machine learning to select the optimal set of predictors for the primary endpoint (PEP: composite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization). The association between repeated measures of selected proteins and PEP was investigated by multivariable joint models. Internal validation (cross-validated c-index) and external validation (Henry Ford HF PharmacoGenomic Registry cohort) were performed. Nine proteins were selected in addition to the MAGGIC risk score, N-terminal pro-hormone B-type natriuretic peptide, and troponin T: suppression of tumourigenicity 2, tryptophanyl-tRNA synthetase cytoplasmic, histone H2A Type 3, angiotensinogen, deltex-1, thrombospondin-4, ADAMTS-like protein 2, anthrax toxin receptor 1, and cathepsin D. N-terminal pro-hormone B-type natriuretic peptide and angiotensinogen showed the strongest associations [hazard ratio (95% confidence interval): 1.96 (1.17-3.40) and 0.66 (0.49-0.88), respectively]. The multivariable model yielded a c-index of 0.85 upon internal validation and c-indices up to 0.80 upon external validation. The c-index was higher than that of a model containing established risk factors (P = 0.021). Conclusion Nine serially measured proteins captured the most essential prognostic information for the occurrence of adverse events in patients with HFrEF, and provided incremental value for HF prognostication beyond established risk factors. These proteins could be used for dynamic, individual risk assessment in a prospective setting. These findings also illustrate the potential value of relatively 'novel' biomarkers for prognostication. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT01851538?term=nCT01851538&draw=2&rank=1 24.
Collapse
Affiliation(s)
- Marie de Bakker
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Teun B Petersen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Anja J Rueten-Budde
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Victor A Umans
- Department of Cardiology, Northwest Clinics, Wilhelminalaan 12, 1815 JD, Alkmaar, The Netherlands
| | - Jasper J Brugts
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Northwest Clinics, Wilhelminalaan 12, 1815 JD, Alkmaar, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE, Delft, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Rachel Ostroff
- SomaLogic, Inc., 2945 Wilderness Pl., Boulder, CO 80301, USA
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Health System, 1 Ford Pl, Detroit, MI 48202, USA
| | - David Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit MI, 48202, USA
- Heart and Vascular Institute, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, Gower St, London, WC1E 6BT, UK
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Dr. Molenwaterplein 40, 3015GD, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Cruz-López EO, Ye D, Wu C, Lu HS, Uijl E, Mirabito Colafella KM, Danser AHJ. Angiotensinogen Suppression: A New Tool to Treat Cardiovascular and Renal Disease. Hypertension 2022; 79:2115-2126. [PMID: 35904033 PMCID: PMC9444253 DOI: 10.1161/hypertensionaha.122.18731] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple types of renin-angiotensin system (RAS) blockers exist, allowing interference with the system at the level of renin, angiotensin-converting enzyme, or the angiotensin II receptor. Yet, in particular, for the treatment of hypertension, the number of patients with uncontrolled hypertension continues to rise, either due to patient noncompliance or because of the significant renin rises that may, at least partially, overcome the effect of RAS blockade (RAS escape). New approaches to target the RAS are either direct antisense oligonucleotides that inhibit angiotensinogen RNA translation, or small interfering RNA (siRNA) that function via the RNA interference pathway. Since all angiotensins stem from angiotensinogen, lowering angiotensinogen has the potential to circumvent the RAS escape phenomenon. Moreover, antisense oligonucleotides and small interfering RNA require injections only every few weeks to months, which might reduce noncompliance. Of course, angiotensinogen suppression also poses a threat in situations where the RAS is acutely needed, for instance in women becoming pregnant during treatment, or in cases of emergency, when severe hypotension occurs. This review discusses all preclinical data on angiotensinogen suppression, as well as the limited clinical data that are currently available. It concludes that it is an exciting new tool to target the RAS with high specificity and a low side effect profile. Its long-term action might revolutionize pharmacotherapy, as it could overcome compliance problems. Preclinical and clinical programs are now carefully investigating its efficacy and safety profile, allowing an optimal introduction as a novel drug to treat cardiovascular and renal diseases in due time.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.O.C.L., D.Y., E.U., A.H.J.D.)
| | - Dien Ye
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.O.C.L., D.Y., E.U., A.H.J.D.)
| | - Congqing Wu
- Saha Cardiovascular Research Center (C.W., H.S.L.), University of Kentucky.,Department of Surgery (C.W.), University of Kentucky
| | - Hong S Lu
- Saha Cardiovascular Research Center (C.W., H.S.L.), University of Kentucky.,Department of Physiology (H.S.L.), University of Kentucky
| | - Estrellita Uijl
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.O.C.L., D.Y., E.U., A.H.J.D.)
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands (E.O.C.L., D.Y., E.U., A.H.J.D.)
| |
Collapse
|
8
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
9
|
Biomarkers in Patients with Left Ventricular Assist Device: An Insight on Current Evidence. Biomolecules 2022; 12:biom12020334. [PMID: 35204834 PMCID: PMC8869703 DOI: 10.3390/biom12020334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Left ventricular assist devices (LVADs) have been representing a cornerstone therapy for patients with end-stage heart failure during the last decades. However, their use induces several pathophysiological modifications which are partially responsible for the complications that typically characterize these patients, such as right ventricular failure, thromboembolic events, as well as bleedings. During the last years, biomarkers involved in the pathways of neurohormonal activation, myocardial injury, adverse remodeling, oxidative stress and systemic inflammation have raised attention. The search and analysis of potential biomarkers in LVAD patients could lead to the identification of a subset of patients with an increased risk of developing these adverse events. This could then promote a closer follow-up as well as therapeutic modifications. Furthermore, it might highlight some new therapeutic pharmacological targets that could lead to improved long-term survival. The aim of this review is to provide current evidence on the role of different biomarkers in patients with LVAD, in particular highlighting their possible implications in clinical practice.
Collapse
|
10
|
Cheng CJ, Mandour A, Yoshida T, Watari T, Tanaka R, Matsuura K. Changes in renin-angiotensin-aldosterone system during cardiac remodeling after mitral valvuloplasty in dogs. J Vet Intern Med 2022; 36:397-405. [PMID: 34994485 PMCID: PMC8965262 DOI: 10.1111/jvim.16346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Information regarding changes in renin-angiotensin-aldosterone system (RAAS) during cardiac remodeling after mitral valvuloplasty (MVP) in dogs remains lacking. HYPOTHESIS/OBJECTIVES To assess the longitudinal effects of MVP on circulating RAAS activity. ANIMALS Eight client-owned dogs receiving MVP for myxomatous mitral valve disease (MMVD). METHODS This is a cohort study. Plasma renin activity (PRA), angiotensin II (AT2), aldosterone (PAC), blood urea nitrogen (BUN), and creatinine concentrations, were measured in these dogs before (baseline) and at 3 consecutive monthly follow-ups (Post-1M, Post-2M, Post-3M). Echocardiography was concomitantly used to assess the process of cardiac recovery after MVP. RESULTS The echocardiography revealed a significant decrease in LVIDDN, LA/Ao, FS, E velocity, E/A, E' sep, S' lat, E' lat, and A' lat after MVP compared with baseline (P < .05). There was a significant reduction in the PRA (2.45, 3.05, 2.74 vs 8.8 ng/mL/h; P = .002), AT2 (466, 315, 235 vs 1200 pg/mL; P = .009), and PAC (39.88, 47, 54.62 vs 179.5 pg/mL; P = .01), respectively at Post-1M, Post-2M, Post-3M compared to the baseline. Additionally, BUN and creatinine concentrations decreased from Post-1M. The RAAS variables showed significant, weak to moderate, relationship with selected echocardiographic variables. CONCLUSIONS AND CLINICAL IMPORTANCE Mitral valvuloplasty contributes to decreased RAAS activity in MMVD dogs, which paralleled the process of cardiac reverse remodeling up to Post-3M. This information facilitates formulating strategies to optimize clinical outcomes for dogs after MVP.
Collapse
Affiliation(s)
- Chieh-Jen Cheng
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.,Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Ahmed Mandour
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| | - Toshihiro Watari
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Katsuhiro Matsuura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.,VCA Japan Shiraishi Animal Hospital, Sayama, Saitama, Japan
| |
Collapse
|
11
|
Ibrahim M, Acker MA, Szeto W, Gutsche J, Williams M, Atluri P, Woods M, Richards T, Gardner TJ, McGarvey J, Epler M, Wald J, Rame E, Birati E, Bermudez C. Proposal for a trial of early left ventricular venting during venoarterial extracorporeal membrane oxygenation for cardiogenic shock. JTCVS OPEN 2021; 8:393-400. [PMID: 36004109 PMCID: PMC9390694 DOI: 10.1016/j.xjon.2021.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Objective Patients with profound cardiogenic shock may require venoarterial (VA) extracorporeal membrane oxygenation (ECMO) for circulatory support most commonly via the femoral vessels. The rate of cardiac recovery in this population remains low, possibly because peripheral VA-ECMO increases ventricular afterload. Whether direct ventricular unloading in peripheral VA-ECMO enhances cardiac recovery is unknown, but is being more frequently utilized. A randomized trial is warranted to evaluate the clinical effectiveness of percutaneous left ventricle venting to enhance cardiac recovery in the setting of VA-ECMO. Methods We describe the rationale, design, and initial testing of a randomized controlled trial of VA-ECMO with and without percutaneous left ventricle venting using a percutaneous micro-axial ventricular assist device. Results This is an ongoing prospective randomized controlled trial in adult patients with primary cardiac failure presenting in cardiogenic shock requiring peripheral VA-ECMO, designed to test the safety and effectiveness of percutaneous left ventricle venting in improving the rate of cardiac recovery. Conclusions The results of this nonindustry-sponsored trial will provide critical information on whether left ventricle unloading in peripheral VA-ECMO is safe and effective.
Collapse
|
12
|
Cruz-López EO, Uijl E, Danser AHJ. Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role? J Cardiovasc Pharmacol 2021; 78:S53-S62. [PMID: 34840262 DOI: 10.1097/fjc.0000000000001027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Brinkley DM, Wang L, Yu C, Grandin EW, Kiernan MS. Impact of renin-angiotensin-aldosterone system inhibition on morbidity and mortality during long-term continuous-flow left ventricular assist device support: An IMACS report. J Heart Lung Transplant 2021; 40:1605-1613. [PMID: 34663529 DOI: 10.1016/j.healun.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Inhibition of the renin angiotensin aldosterone system (RAAS) improves survival and reduces adverse cardiac events in heart failure with reduced ejection fraction, but the benefit is not well-defined following left ventricular assist device (LVAD). METHODS We analyzed the ISHLT IMACS registry for adults with a primary, continuous-flow LVAD from January 2013 to September 2017 who were alive at postoperative month 3 without a major adverse event, and categorized patients according to treatment an angiotensin converting enzyme inhibitor (ACEI/ARB) or mineralocorticoid receptor antagonist (MRA). Propensity score matching was performed separately for ACEI/ARB vs none (n = 4,118 each) and MRA vs none (n = 3,892 each). RESULTS Of 11,494 patients included, 50% were treated with ACEI/ARB and 38% with MRA. Kaplan-Meier survival was significantly better for patients receiving ACEI/ARB (p < 0.001) but not MRA (p = 0.31). In Cox proportional hazards analyses adjusted for known predictors of mortality following LVAD, ACEI/ARB use (hazard ratio 0.81 [95% confidence interval 0.71-0.93], p < 0.0001) but not MRA use (hazard ratio 1.03 [95% confidence interval 0.88-1.21], p = 0.69) was independently associated with lower mortality. Among patients treated with an ACEI/ARB, there was a significantly lower unadjusted risk of cardiovascular death (p < 0.001), risk of gastrointestinal bleeding (p = 0.01), and creatinine level (p < 0.001). MRA therapy was associated with lower risk of gastrointestinal bleeding (p = 0.01) but higher risk of hemolysis (p < 0.01). Potential limitations include residual confounding and therapy crossover. CONCLUSION These findings suggest a benefit for ACEI/ARB therapy in patients with heart failure after LVAD implantation.
Collapse
Affiliation(s)
- D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Li Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E Wilson Grandin
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael S Kiernan
- Cardiovascular Division, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
14
|
Briasoulis A, Ruiz Duque E, Mouselimis D, Tsarouchas A, Bakogiannis C, Alvarez P. The role of renin-angiotensin system in patients with left ventricular assist devices. J Renin Angiotensin Aldosterone Syst 2021; 21:1470320320966445. [PMID: 33084480 PMCID: PMC7871286 DOI: 10.1177/1470320320966445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
End-stage heart failure is a condition in which the up-regulation of the systemic and local renin-angiotensin-aldosterone system (RAAS) leads to end-organ damage and is largely irreversible despite optimal medication. Left ventricular assist devices (LVADs) can downregulate RAAS activation by unloading the left ventricle and increasing the cardiac output translating into a better end-organ perfusion improving survival. However, the absence of pulsatility brought about by continuous-flow devices may variably trigger RAAS activation depending on left ventricular (LV) intrinsic contractility, the design and speed of the pump device. Moreover, the concept of myocardial recovery is being tested in clinical trials and in this setting LVAD support combined with intense RAAS inhibition can promote recovery and ensure maintenance of LV function after explantation. Blood pressure control on LVAD recipients is key to avoiding complications as gastrointestinal bleeding, pump thrombosis and stroke. Furthermore, emerging data highlight the role of RAAS antagonists as prevention of arteriovenous malformations that lead to gastrointestinal bleeds. Future studies should focus on the role of angiotensin receptor inhibitors in preventing myocardial fibrosis in patients with LVADs and examine in greater details the target blood pressure for these patients.
Collapse
Affiliation(s)
- Alexandros Briasoulis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ernesto Ruiz Duque
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Dimitrios Mouselimis
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Tsarouchas
- 3rd Department of Cardiology Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantinos Bakogiannis
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Paulino Alvarez
- Division of Cardiovascular Diseases, Section of Heart Failure and Transplant, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
15
|
Heusser K, Wittkoepper J, Bara C, Haverich A, Diedrich A, Levine BD, Schmitto JD, Jordan J, Tank J. Sympathetic vasoconstrictor activity before and after left ventricular assist device implantation in patients with end-stage heart failure. Eur J Heart Fail 2021; 23:1955-1959. [PMID: 34496114 DOI: 10.1002/ejhf.2344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS Sympathetic overactivity, which predicts poor outcome in patients with heart failure, normalizes following cardiac transplantation. We tested the hypothesis that haemodynamic improvement following left ventricular assist device (LVAD) implantation is also associated with reductions in centrally generated sympathetic activity. METHODS AND RESULTS In eight patients with heart failure (two women, six men, age 44-66 years), we continuously recorded electrocardiogram, beat-to-beat finger blood pressure, respiration, and muscle sympathetic nerve activity (MSNA) before and after implantation of the continuous-flow LVAD devices HeartWare HVAD (n = 4) and HeartMate II (n = 2), and the non-continuous-flow device HeartMate 3 (n = 2). LVAD implantation increased cardiac output by 1.29 ± 0.88 L/min (P = 0.060) and mean arterial pressure by 16.2 ± 7.9 mmHg (P < 0.001), while reducing pulse pressure by 25.3 ± 9.8 mmHg (P < 0.001). LVAD implantation did not change MSNA burst frequency (-1.3 ± 7.5 bursts/min, P = 0.636), total activity (+0.62 ± 1.83 au, P = 0.369), or normalized activity (+0.63 ± 4.23, P = 0.685). MSNA burst incidence was decreased (-7.8 ± 9.3 bursts/100 heart beats, P = 0.049). However, cardiac ectopy altered MSNA bursting patterns that could be mistaken for sympatholysis. CONCLUSION Implantation of current design LVAD does not consistently normalize sympathetic activity in patients with end-stage heart failure despite haemodynamic improvement.
Collapse
Affiliation(s)
- Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Judith Wittkoepper
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Christoph Bara
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - André Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Center, Vanderbilt University Medical Center & Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA.,Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan D Schmitto
- Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
16
|
Fifty years of research on the brain renin-angiotensin system: what have we learned? Clin Sci (Lond) 2021; 135:1727-1731. [PMID: 34291792 DOI: 10.1042/cs20210579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023]
Abstract
Although the existence of a brain renin-angiotensin system (RAS) had been proposed five decades ago, we still struggle to understand how it functions. The main reason for this is the virtual lack of renin at brain tissue sites. Moreover, although renin's substrate, angiotensinogen, appears to be synthesized locally in the brain, brain angiotensin (Ang) II disappeared after selective silencing of hepatic angiotensinogen. This implies that brain Ang generation depends on hepatic angiotensinogen after all. Rodrigues et al. (Clin Sci (Lond) (2021) 135:1353-1367) generated a transgenic mouse model overexpressing full-length rat angiotensinogen in astrocytes, and observed massively elevated brain Ang II levels, increased sympathetic nervous activity and vasopressin, and up-regulated erythropoiesis. Yet, blood pressure and kidney function remained unaltered, and surprisingly no other Ang metabolites occurred in the brain. Circulating renin was suppressed. This commentary critically discusses these findings, concluding that apparently in the brain, overexpressed angiotensinogen can be cleaved by an unidentified non-renin enzyme, yielding Ang II directly, which then binds to Ang receptors, allowing no metabolism by angiotensinases like ACE2 and aminopeptidase A. Future studies should now unravel the identity of this non-renin enzyme, and determine whether it also contributes to Ang II generation at brain tissue sites in wildtype animals. Such studies should also re-evaluate the concept that Ang-(1-7) and Ang III, generated by ACE2 and aminopeptidase A, respectively, have important functions in the brain.
Collapse
|
17
|
Wiegel RE, von Versen-Höynck F, Steegers-Theunissen RPM, Steegers EAP, Danser AHJ. Prorenin periconceptionally and in pregnancy: Does it have a physiological role? Mol Cell Endocrinol 2021; 529:111281. [PMID: 33878417 DOI: 10.1016/j.mce.2021.111281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/30/2022]
Abstract
Pregnancy demands major cardiovascular, renal and endocrine changes to provide an adequate blood supply for the growing fetus. The renin-angiotensin-aldosterone system plays a key role in this adaptation process. One of its components, prorenin, is released in significant amounts from the ovary and uteroplacental unit. This review describes the sources of prorenin in the periconception period and in pregnancy, including its modulation by in-vitro fertilization protocols, and discusses its potential effects, among others focusing on preeclampsia. It ends with discussing the long-term consequences, even in later life, of inappropriate renin-angiotensin-aldosterone system activity in pregnancy and offers directions for future research. Ultimately, a full understanding of the role of prorenin periconceptionally and during pregnancy will help to develop tools to diagnose and/or prevent reproductive complications.
Collapse
Affiliation(s)
- Rosalieke E Wiegel
- Departments of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Eric A P Steegers
- Departments of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Shah P, Psotka M, Taleb I, Alharethi R, Shams MA, Wever-Pinzon O, Yin M, Latta F, Stehlik J, Fang JC, Diao G, Singh R, Ijaz N, Kyriakopoulos CP, Zhu W, May CW, Cooper LB, Desai SS, Selzman CH, Kfoury A, Drakos SG. Framework to Classify Reverse Cardiac Remodeling With Mechanical Circulatory Support: The Utah-Inova Stages. Circ Heart Fail 2021; 14:e007991. [PMID: 33947201 PMCID: PMC8137588 DOI: 10.1161/circheartfailure.120.007991] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variable definitions and an incomplete understanding of the gradient of reverse cardiac remodeling following continuous flow left ventricular assist device (LVAD) implantation has limited the field of myocardial plasticity. We evaluated the continuum of LV remodeling by serial echocardiographic imaging to define 3 stages of reverse cardiac remodeling following LVAD. METHODS The study enrolled consecutive LVAD patients across 4 study sites. A blinded echocardiographer evaluated the degree of structural (LV internal dimension at end-diastole [LVIDd]) and functional (LV ejection fraction [LVEF]) change after LVAD. Patients experiencing an improvement in LVEF ≥40% and LVIDd ≤6.0 cm were termed responders, absolute change in LVEF of ≥5% and LVEF <40% were termed partial responders, and the remaining patients with no significant improvement in LVEF were termed nonresponders. RESULTS Among 358 LVAD patients, 34 (10%) were responders, 112 (31%) partial responders, and the remaining 212 (59%) were nonresponders. The use of guideline-directed medical therapy for heart failure was higher in partial responders and responders. Structural changes (LVIDd) followed a different pattern with significant improvements even in patients who had minimal LVEF improvement. With mechanical unloading, the median reduction in LVIDd was -0.6 cm (interquartile range [IQR], -1.1 to -0.1 cm; nonresponders), -1.1 cm (IQR, -1.8 to -0.4 cm; partial responders), and -1.9 cm (IQR, -2.9 to -1.1 cm; responders). Similarly, the median change in LVEF was -2% (IQR, -6% to 1%), 9% (IQR, 6%-14%), and 27% (IQR, 23%-33%), respectively. CONCLUSIONS Reverse cardiac remodeling associated with durable LVAD support is not an all-or-none phenomenon and manifests in a continuous spectrum. Defining 3 stages across this continuum can inform clinical management, facilitate the field of myocardial plasticity, and improve the design of future investigations.
Collapse
Affiliation(s)
- Palak Shah
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Mitchell Psotka
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Iosif Taleb
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Rami Alharethi
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Mortada A. Shams
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Division of Cardiology, George Washington University, Washington DC
| | - Omar Wever-Pinzon
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael Yin
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Federica Latta
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Department of Cardiology, University of Brescia, Italy, Brescia, Italy
| | - Josef Stehlik
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - James C. Fang
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, George Washington University, Washington DC
| | - Ramesh Singh
- Cardiac Surgery, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Naila Ijaz
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christos P. Kyriakopoulos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Wei Zhu
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christopher W. May
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Lauren B. Cooper
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Shashank S. Desai
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Craig H. Selzman
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Abdallah Kfoury
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Stavros G. Drakos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
19
|
Wiegel RE, von Versen-Höynck F, Steegers-Theunissen RPM, Steegers EAP, Danser AHJ. Prorenin periconceptionally and in pregnancy: Does it have a physiological role? Mol Cell Endocrinol 2021; 522:111118. [PMID: 33340569 DOI: 10.1016/j.mce.2020.111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023]
Abstract
Pregnancy demands major cardiovascular, renal and endocrine changes to provide an adequate blood supply for the growing fetus. The renin-angiotensin-aldosterone system plays a key role in this adaptation process. One of its components, prorenin, is released in significant amounts from the ovary and uteroplacental unit. This review describes the sources of prorenin in the periconception period and in pregnancy, including its modulation by in-vitro fertilization protocols, and discusses its potential effects, among others focusing on preeclampsia. It ends with discussing the long-term consequences, even in later life, of inappropriate renin-angiotensin-aldosterone system activity in pregnancy and offers directions for future research. Ultimately, a full understanding of the role of prorenin periconceptionally and during pregnancy will help to develop tools to diagnose and/or prevent reproductive complications.
Collapse
Affiliation(s)
- Rosalieke E Wiegel
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Miranda-Silva D, G Rodrigues P, Alves E, Rizo D, Fonseca ACRG, Lima T, Baganha F, Conceição G, Sousa C, Gonçalves A, Miranda I, Vasques-Nóvoa F, Magalhães J, Leite-Moreira A, Falcão-Pires I. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling. Circ Heart Fail 2020; 13:e006170. [PMID: 33176457 DOI: 10.1161/circheartfailure.119.006170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Often, pressure overload-induced myocardial remodeling does not undergo complete reverse remodeling after decreasing afterload. Recently, mitochondrial abnormalities and oxidative stress have been successively implicated in the pathogenesis of several chronic pressure overload cardiac diseases. Therefore, we aim to clarify the myocardial energetic dysregulation in (reverse) remodeling, mainly focusing on the mitochondria. METHODS Thirty-five Wistar Han male rats randomly underwent sham or ascending (supravalvular) aortic banding procedure. Echocardiography revealed that banding induced concentric hypertrophy and diastolic dysfunction (early diastolic transmitral flow velocity to peak early-diastolic annular velocity ratio, E/E': sham, 13.6±2.1, banding, 18.5±4.1, P=0.014) accompanied by increased oxidative stress (dihydroethidium fluorescence: sham, 1.6×108±6.1×107, banding, 2.6×108±4.5×107, P<0.001) and augmented mitochondrial function. After 8 to 9 weeks, half of the banding animals underwent overload relief by an aortic debanding surgery (n=10). RESULTS Two weeks later, hypertrophy decreased with the decline of oxidative stress (dihydroethidium fluorescence: banding, 2.6×108±4.5×107, debanding, 1.96×108±6.8×107, P<0.001) and diastolic dysfunction improved simultaneously (E/E': banding, 18.5±4.1, debanding, 15.1±1.8, P=0.029). The reduction of energetic demands imposed by overload relief allowed the mitochondria to reduce its activity and myocardial levels of phosphocreatine, phosphocreatine/ATP, and ATP/ADP to normalize in debanding towards sham values (phosphocreatine: sham, 38.4±7.4, debanding, 35.6±8.7, P=0.71; phosphocreatine/ATP: sham, 1.22±0.23 debanding, 1.11±0.24, P=0.59; ATP/ADP: sham, 6.2±0.9, debanding, 5.6±1.6, P=0.66). Despite the decreased mitochondrial area, complex III and V expression increased in debanding compared with sham or banding. Autophagy and mitophagy-related markers increased in banding and remained higher in debanding rats. CONCLUSIONS During compensatory and maladaptive hypertrophy, mitochondria become more active. However, as the disease progresses, the myocardial energetic demands increase and the myocardium becomes energy deficient. During reverse remodeling, the concomitant attenuation of cardiac hypertrophy and oxidative stress allowed myocardial energetics, left ventricle hypertrophy, and diastolic dysfunction to recover. Autophagy and mitophagy are probably involved in the myocardial adaptation to overload and to unload. We conclude that these mitochondrial reversible changes underlie diastolic function adaptations during myocardial (reverse) remodeling.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Patrícia G Rodrigues
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Estela Alves
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - David Rizo
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Ana Catarina R G Fonseca
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal (A.C.R.G.F.)
| | - Tânia Lima
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Fabiana Baganha
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Gloria Conceição
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Cláudia Sousa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Isabel Miranda
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - José Magalhães
- LaMetEX, Laboratory of Metabolism and Exercise (E.A., D.R., J.M.).,CIAFEL, Research Centre in Physical Activity, Health and Leisure, Faculty of Sports, Portugal (E.A., D.R., J.M.)
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Porto, Portugal (D.M.S., P.G.R., T.L., F.B., G.C., C.S., A.G., I.M., F.V.-N., A.L.-M., I.F.-P.)
| |
Collapse
|
21
|
Messmann R, Dietl A, Wagner S, Domenig O, Jungbauer C, Luchner A, Maier LS, Schopka S, Hirt S, Schmid C, Birner C. Alterations of the renin angiotensin system in human end-stage heart failure before and after mechanical cardiac unloading by LVAD support. Mol Cell Biochem 2020; 472:79-94. [PMID: 32564294 PMCID: PMC7431447 DOI: 10.1007/s11010-020-03787-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Heart transplantation is often an unrealizable therapeutic option for end-stage heart failure, which is why mechanical left ventricular assist devices (LVADs) become an increasingly important therapeutic alternative. Currently, there is a lack of information about molecular mechanisms which are influenced by LVADs, particularly regarding the pathophysiologically critical renin angiotensin system (RAS). We, therefore, determined regulation patterns of key components of the RAS and the β-arrestin signaling pathways in left ventricular (LV) tissue specimens from 8 patients with end-stage ischemic cardiomyopathy (ICM) and 12 patients with terminal dilated cardiomyopathy (DCM) before and after LVAD implantation and compared them with non-failing (NF) left ventricular tissue samples: AT1R, AT2R, ACE, ACE2, MasR, and ADAM17 were analyzed by polymerase chain reaction. ERK, phosphorylated ERK, p38, phosphorylated p38, JNK, phosphorylated JNK, GRK2, β-arrestin 2, PI3K, Akt, and phosphorylated Akt were determined by Western blot analysis. Angiotensin I and Angiotensin II were quantified by mass spectrometry. Patients were predominantly middle-aged (53 ± 10 years) men with severely impaired LV function (LVEF 19 ± 8%), when receiving LVAD therapy for a mean duration of 331 ± 317 days. Baseline characteristics did not differ significantly between ICM and DCM patients. By comparing failing with non-failing left ventricles, i.e., before LVAD implantation, a downregulation of AT1R, AT2R, and MasR and an upregulation of ACE, ACE2, GRK, β-arrestin, ERK, PI3K, and Akt were seen. Following LVAD support, then angiotensin I, ACE2, GRK, and β-arrestin were downregulated and AT2R, JNK, and p38 were upregulated. ACE, angiotensin II, AT1R, ADAM17, MasR, ERK, PI3K, and Akt remained unchanged. Some regulation patterns were influenced by the underlying etiology of heart failure, the severity of LV dysfunction at baseline, and the duration of LVAD therapy. Key components of the RAS and β-arrestin signaling pathways were divergently altered in failing left ventricles both before and after LVAD implantation, whereas a remarkable fraction remained unchanged. This indicates a rather incomplete molecular reverse remodeling, whose functional relevance has to be further evaluated.
Collapse
Affiliation(s)
- Rebecca Messmann
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Carsten Jungbauer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Luchner
- Department of Cardiology, Clinic Barmherzige Brüder, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Schopka
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Hirt
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Birner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
- Department of Internal Medicine I, Klinikum St. Marien, Amberg, Germany.
| |
Collapse
|
22
|
Wenstedt EFE, Rorije NMG, Olde Engberink RHG, van der Molen KM, Chahid Y, Danser AHJ, van den Born BJH, Vogt L. Effect of high-salt diet on blood pressure and body fluid composition in patients with type 1 diabetes: randomized controlled intervention trial. BMJ Open Diabetes Res Care 2020; 8:e001039. [PMID: 32404378 PMCID: PMC7228471 DOI: 10.1136/bmjdrc-2019-001039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Patients with type 1 diabetes are susceptible to hypertension, possibly resulting from increased salt sensitivity and accompanied changes in body fluid composition. We examined the effect of a high-salt diet (HSD) in type 1 diabetes on hemodynamics, including blood pressure (BP) and body fluid composition. RESEARCH DESIGN AND METHODS We studied eight male patients with type 1 diabetes and 12 matched healthy controls with normal BP, body mass index, and renal function. All subjects adhered to a low-salt diet and HSD for eight days in randomized order. On day 8 of each diet, extracellular fluid volume (ECFV) and plasma volume were calculated with the use of iohexol and 125I-albumin distribution. Hemodynamic measurements included BP, cardiac output (CO), and systemic vascular resistance. RESULTS After HSD, patients with type 1 diabetes showed a BP increase (mean arterial pressure: 85 (5) mm Hg vs 80 (3) mm Hg; p<0.05), while BP in controls did not rise (78 (5) mm Hg vs 78 (5) mm Hg). Plasma volume increased after HSD in patients with type 1 diabetes (p<0.05) and not in controls (p=0.23). There was no significant difference in ECFV between diets, while HSD significantly increased CO, heart rate (HR) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) in type 1 diabetes but not in controls. There were no significant differences in systemic vascular resistance, although there was a trend towards an HSD-induced decrease in controls (p=0.09). CONCLUSIONS In the present study, patients with type 1 diabetes show a salt-sensitive BP rise to HSD, which is accompanied by significant increases in plasma volume, CO, HR, and NT-proBNP. Underlying mechanisms for these responses need further research in order to unravel the increased susceptibility to hypertension and cardiovascular disease in diabetes. TRIAL REGISTRATION NUMBERS NTR4095 and NTR4788.
Collapse
Affiliation(s)
- Eliane F E Wenstedt
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - Nienke M G Rorije
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - Rik H G Olde Engberink
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - Kim M van der Molen
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - Youssef Chahid
- Department of Pharmacy, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | - Bert-Jan H van den Born
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, North Holland, Netherlands
| |
Collapse
|
23
|
Matsumura Y, Zhu Y, Jiang H, D'Amore A, Luketich SK, Charwat V, Yoshizumi T, Sato H, Yang B, Uchibori T, Healy KE, Wagner WR. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials 2019; 217:119289. [DOI: 10.1016/j.biomaterials.2019.119289] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
24
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
25
|
Moderate Aortic Insufficiency with a Left Ventricular Assist Device Portends a Worse Long-Term Survival. ASAIO J 2019; 66:780-785. [DOI: 10.1097/mat.0000000000001071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Uijl E, Mirabito Colafella KM, Sun Y, Ren L, van Veghel R, Garrelds IM, de Vries R, Poglitsch M, Zlatev I, Kim JB, Hoorn EJ, Foster D, Danser AJ. Strong and Sustained Antihypertensive Effect of Small Interfering RNA Targeting Liver Angiotensinogen. Hypertension 2019; 73:1249-1257. [DOI: 10.1161/hypertensionaha.119.12703] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Estrellita Uijl
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Division of Nephrology and Transplantation (E.U., E.J.H.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Katrina M. Mirabito Colafella
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Cardiovascular Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia (K.M.M.C.)
| | - Yuan Sun
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Liwei Ren
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ingrid M. Garrelds
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - René de Vries
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Ivan Zlatev
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - Jae B. Kim
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation (E.U., E.J.H.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Don Foster
- Alnylam Pharmaceuticals, Cambridge, MA (I.Z., J.B.K., D.F.)
| | - A.H. Jan Danser
- From the Division of Vascular Medicine and Pharmacology (E.U., K.M.M.C., Y.S., L.R., R.v.V., I.M.G., R.d.V., A.H.J.D.), Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
27
|
Hussain MA, Colicchia M, Veerapen J, Weeraman D, Podaru MN, Jones D, Suzuki K, Mathur A. Circulatory support and stem cell therapy in the management of advanced heart failure: a concise review of available evidence. Regen Med 2019; 14:585-593. [PMID: 31115248 DOI: 10.2217/rme-2018-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell therapy utilizing bone marrow mononuclear cells (BMC's) is a potential strategy to treat heart failure patients with improvement in symptom profile and cardiac function. We describe a rationale for concurrent BMC and left ventricular assist device therapy in selected heart failure patients. This combination therapy has demonstrated improved myocardial perfusion and cardiac function in patients with advanced ischemic cardiomyopathy. Moreover, preclinical data support improved cell retention with left ventricular unloading. The beneficial effects of BMC's are likely through a paracrine mechanism initiating a 'cardiac-repair' process. Combination therapy of BMC's and a left ventricular assist device may exhibit a synergistic effect with improved engraftment of BMC's through left ventricular unloading.
Collapse
Affiliation(s)
- Mohsin A Hussain
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Martina Colicchia
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Jessry Veerapen
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Deshan Weeraman
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Daniel Jones
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| | - Anthony Mathur
- William Harvey Research Institute, Queen Mary University of London, St Bartholomew's Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Miranda-Silva D, Gonçalves-Rodrigues P, Almeida-Coelho J, Hamdani N, Lima T, Conceição G, Sousa-Mendes C, Cláudia-Moura, González A, Díez J, Linke WA, Leite-Moreira A, Falcão-Pires I. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Sci Rep 2019; 9:2956. [PMID: 30814653 PMCID: PMC6393473 DOI: 10.1038/s41598-019-39581-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 01/03/2023] Open
Abstract
Aortic Stenosis (AS) is the most frequent valvulopathy in the western world. Traditionally aortic valve replacement (AVR) has been recommended immediately after the onset of heart failure (HF) symptoms. However, recent evidence suggests that AVR outcome can be improved if performed earlier. After AVR, the process of left ventricle (LV) reverse remodelling (RR) is variable and frequently incomplete. In this study, we aimed at detecting mechanism underlying the process of LV RR regarding myocardial structural, functional and molecular changes before the onset of HF symptoms. Wistar-Han rats were subjected to 7-weeks of ascending aortic-banding followed by a 2-week period of debanding to resemble AS-induced LV remodelling and the early events of AVR-induced RR, respectively. This resulted in 3 groups: Sham (n = 10), Banding (Ba, n = 15) and Debanding (Deb, n = 10). Concentric hypertrophy and diastolic dysfunction (DD) were patent in the Ba group. Aortic-debanding induced RR, which promoted LV functional recovery, while cardiac structure did not normalise. Cardiac parameters of RV dysfunction, assessed by echocardiography and at the cardiomyocyte level prevailed altered after debanding. After debanding, these alterations were accompanied by persistent changes in pathways associated to myocardial hypertrophy, fibrosis and LV inflammation. Aortic banding induced pulmonary arterial wall thickness to increase and correlates negatively with effort intolerance and positively with E/e′ and left atrial area. We described dysregulated pathways in LV and RV remodelling and RR after AVR. Importantly we showed important RV-side effects of aortic constriction, highlighting the impact that LV-reverse remodelling has on both ventricles.
Collapse
Affiliation(s)
| | | | | | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University, Bochum, Germany
| | - Tânia Lima
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Glória Conceição
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | | | - Cláudia-Moura
- Department of Surgery and Physiology, University of Porto, Porto, Portugal
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra and CIBERCV, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery and Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | | | - Inês Falcão-Pires
- Department of Surgery and Physiology, University of Porto, Porto, Portugal.
| |
Collapse
|
29
|
Poglajen G, Gregoric ID, Radovancevic R, Vrtovec B. Stem Cell and Left Ventricular Assist Device Combination Therapy. Circ Heart Fail 2019; 12:e005454. [PMID: 30759999 DOI: 10.1161/circheartfailure.118.005454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ventricular assist device (VAD) technology has evolved significantly over the past decades and currently represents one of the most important treatment strategies for patients with advanced chronic heart failure. There is increasing evidence that in selected patients undergoing long-term VAD support, improvement of myocardial structure and function may occur. However, there seems to be a significant discrepancy between structural and functional recovery of the failing myocardium, as only a small fraction of VAD-supported patients demonstrate reverse structural remodeling and eventually reach clinically significant and stable, functional improvement. More recently, cell therapy has gained a growing interest in the heart failure community because of its potential to augment reverse remodeling of the failing myocardium. Although theoretically the combination of long-term VAD support and cell therapy may offer significant advantages over using these therapeutic modalities separately, it remains largely unexplored. This review aims to summarize the current state of the art of the effects of VAD support and cell therapy on the reverse remodeling of the failing myocardium and to discuss the rationale for using a combined treatment strategy to further promote myocardial recovery in patients with advanced chronic heart failure.
Collapse
Affiliation(s)
- Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.).,Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Igor D Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Rajko Radovancevic
- Department of Advanced Cardiopulmonary Therapies and Transplantation, Center for Advanced Heart Failure, University of Texas Health Science Center at Houston (G.P., I.D.G., R.R.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Slovenia (G.P., B.V.)
| |
Collapse
|
30
|
Dandel M, Hetzer R. Recovery of failing hearts by mechanical unloading: Pathophysiologic insights and clinical relevance. Am Heart J 2018; 206:30-50. [PMID: 30300847 DOI: 10.1016/j.ahj.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
By reduction of ventricular wall-tension and improving the blood supply to vital organs, ventricular assist devices (VADs) can eliminate the major pathophysiological stimuli for cardiac remodeling and even induce reverse remodeling occasionally accompanied by clinically relevant reversal of cardiac structural and functional alterations allowing VAD explantation, even if the underlying cause for the heart failure (HF) was dilated cardiomyopathy. Accordingly, a tempting potential indication for VADs in the future might be their elective implantation as a therapeutic strategy to promote cardiac recovery in earlier stages of HF, when the reversibility of morphological and functional alterations is higher. However, the low probability of clinically relevant cardiac improvement after VAD implantation and the lack of criteria which can predict recovery already before VAD implantation do not allow so far VAD implantations primarily designed as a bridge to cardiac recovery. The few investigations regarding myocardial reverse remodeling at cellular and sub-cellular level in recovered patients who underwent VAD explantation, the differences in HF etiology and pre-implant duration of HF in recovered patients and also the differences in medical therapy used by different institutions during VAD support make it currently impossible to understand sufficiently all the biological processes and mechanisms involved in cardiac improvement which allows even VAD explantation in some patients. This article aims to provide an overview of the existing knowledge about VAD-promoted cardiac improvement focusing on the importance of bench-to-bedside research which is mandatory for attaining the future goal to use long-term VADs also as therapy-devices for reversal of chronic HF.
Collapse
|
31
|
Grosman-Rimon L, McDonald MA, Freedman D, Yip P, Cherney DZ, Rao V. Neurohormone levels remain elevated in continuous flow left ventricular assist device recipients. J Card Surg 2018; 33:403-411. [DOI: 10.1111/jocs.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liza Grosman-Rimon
- Division of Cardiovascular Surgery; Peter Munk Cardiac Centre; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Michael A. McDonald
- Division of Cardiology; Peter Munk Cardiac Centre; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Danit Freedman
- Division of Cardiovascular Surgery; Peter Munk Cardiac Centre; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Paul Yip
- Laboratory Medicine and Pathobiology; University Health Network; University of Toronto; Toronto Ontario Canada
| | - David Z. Cherney
- Division of Nephrology; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery; Peter Munk Cardiac Centre; University Health Network; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
32
|
Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond) 2018; 132:839-850. [PMID: 29712882 DOI: 10.1042/cs20180236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
The existence of a so-called brain renin-angiotensin system (RAS) is controversial. Given the presence of the blood-brain barrier, angiotensin generation in the brain, if occurring, should depend on local synthesis of renin and angiotensinogen. Yet, although initially brain-selective expression of intracellular renin was reported, data in intracellular renin knockout animals argue against a role for this renin in angiotensin generation. Moreover, renin levels in brain tissue at most represented renin in trapped blood. Additionally, in neurogenic hypertension brain prorenin up-regulation has been claimed, which would generate angiotensin following its binding to the (pro)renin receptor. However, recent studies reported no evidence for prorenin expression in the brain, nor for its selective up-regulation in neurogenic hypertension, and the (pro)renin receptor rather displays RAS-unrelated functions. Finally, although angiotensinogen mRNA is detectable in the brain, brain angiotensinogen protein levels are low, and even these low levels might be an overestimation due to assay artefacts. Taken together, independent angiotensin generation in the brain is unlikely. Indeed, brain angiotensin levels are extremely low, with angiotensin (Ang) I levels corresponding to the small amounts of Ang I in trapped blood plasma, and Ang II levels at most representing Ang II bound to (vascular) brain Ang II type 1 receptors. This review concludes with a unifying concept proposing the blood origin of angiotensin in the brain, possibly resulting in increased levels following blood-brain barrier disruption (e.g. due to hypertension), and suggesting that interfering with either intracellular renin or the (pro)renin receptor has consequences in an RAS-independent manner.
Collapse
|
33
|
Catino AB, Ferrin P, Wever-Pinzon J, Horne BD, Wever-Pinzon O, Kfoury AG, McCreath L, Diakos NA, McKellar S, Koliopoulou A, Bonios MJ, Al-Sarie M, Taleb I, Dranow E, Fang JC, Drakos SG. Clinical and histopathological effects of heart failure drug therapy in advanced heart failure patients on chronic mechanical circulatory support. Eur J Heart Fail 2017; 20:164-174. [PMID: 29094485 DOI: 10.1002/ejhf.1018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Adjuvant heart failure (HF) drug therapy in patients undergoing chronic mechanical circulatory support (MCS) is often used in conjunction with a continuous-flow left ventricular assist device (LVAD), but its potential impact is not well defined. The objective of the present study was to examine the effects of conventional HF drug therapy on myocardial structure and function, peripheral organ function and the incidence of adverse events in the setting of MCS. METHODS AND RESULTS Patients with chronic HF requiring LVAD support were prospectively enrolled. Paired myocardial tissue samples were obtained prior to LVAD implantation and at transplantation for histopathology. The Meds group comprised patients treated with neurohormonal blocking therapy (concurrent beta-blocker, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, and aldosterone antagonist), and the No Meds group comprised patients on none of these. Both the Meds (n = 37) and No Meds (n = 44) groups experienced significant improvements in cardiac structure and function over the 6 months following LVAD implantation. The degree of improvement was greater in the Meds group, including after adjustment for baseline differences. There were no differences between the two groups in arrhythmias, end-organ injury, or neurological events. In patients with high baseline pre-LVAD myocardial fibrosis, treatment with HF drug therapy was associated with a reduction in fibrosis. CONCLUSIONS Clinical and histopathological evidence showed that adjuvant HF drug therapy was associated with additional favourable effects on the structure and function of the unloaded myocardium that extended beyond the beneficial effects attributed to LVAD-induced unloading alone. Adjuvant HF drug therapy did not influence the incidence of major post-LVAD adverse events during the follow-up period.
Collapse
Affiliation(s)
- Anna B Catino
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Peter Ferrin
- Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - James Wever-Pinzon
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Benjamin D Horne
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Omar Wever-Pinzon
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Abdallah G Kfoury
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Lauren McCreath
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - Nikolaos A Diakos
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA
| | - Stephen McKellar
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Antigone Koliopoulou
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Michael J Bonios
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Mohammad Al-Sarie
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Iosif Taleb
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Elizabeth Dranow
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - James C Fang
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Utah Transplantation Affiliated Hospitals (UTAH) Cardiac Transplant Program, Divisions of Cardiovascular Medicine and Cardiovascular Surgery, University of Utah Health Sciences Center, Salt Lake VA Medical Center, Intermountain Medical Center, Salt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institution (CVRTI), Salt Lake City, UT, USA.,Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Abstract
BACKGROUND The function of prorenin, the inactive precursor of renin, remains unclear after many decades of research. The discovery of a (pro)renin receptor suggested that prorenin, by binding to this receptor, would become active, that is, obtain an 'open' conformation. However, the receptor only interacted with prorenin at levels that were many orders of magnitude above its normal levels, making such interaction in-vivo unlikely. Prorenin occurs in two conformations, an open, active form, and a closed, inactive form. Under physiological conditions (pH 7.4, 37 °C), virtually all prorenin occurs in the closed conformation. This study investigated to what degree prorenin-synthesizing cells release prorenin in an open conformation. METHODS AND RESULTS Renin plus prorenin-synthesizing human mast cells, and prorenin-synthesizing HEK293 cells (transfected with the mammalian expression vector pRhR1100, containing human prorenin) and human decidua cells were incubated with the renin inhibitor VTP-27999. This inhibitor will trap open prorenin, as after VTP-27999 binding, prorenin can no longer return to its closed conformation, thus allowing its detection in a renin immunoradiometric assay. No evidence for the release of open prorenin was found. Moreover, incubating decidua cells with angiotensinogen yielded low angiotensin levels, corresponding with the activity of ≈1% of prorenin in the medium, that is, the amount of open prorenin expected based upon the equilibrium between open and closed prorenin under physiological conditions. CONCLUSION Our study does not reveal evidence for the release of open, active prorenin by prorenin-synthesizing cells, at least under cell culture conditions. This argues against prorenin activity at the site of its release.
Collapse
|
35
|
Salih M, Bovée DM, Roksnoer LCW, Casteleijn NF, Bakker SJL, Gansevoort RT, Zietse R, Danser AHJ, Hoorn EJ. Urinary renin-angiotensin markers in polycystic kidney disease. Am J Physiol Renal Physiol 2017; 313:F874-F881. [PMID: 28747358 DOI: 10.1152/ajprenal.00209.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), activation of the renin-angiotensin aldosterone system (RAAS) may contribute to hypertension and disease progression. Although previous studies have focused on circulating RAAS components, preliminary evidence suggests that APDKD may increase urinary RAAS components. Therefore, our aim was to analyze circulating and urinary RAAS components in ADPKD. We cross-sectionally compared 60 patients with ADPKD with 57 patients with non-ADPKD chronic kidney disease (CKD). The two groups were matched by sex, estimated glomerular filtration rate (eGFR), blood pressure, and RAAS inhibitor use. Despite similar plasma levels of angiotensinogen and renin, urinary angiotensinogen and renin excretion were five- to sixfold higher in ADPKD (P < 0.001). These differences persisted when adjusting for group differences and were present regardless of RAAS inhibitor use. In multivariable analyses, ADPKD, albuminuria, and the respective plasma concentrations were independent predictors for urinary angiotensinogen and renin excretion. In ADPKD, both plasma and urinary renin correlated negatively with eGFR. Total kidney volume correlated with plasma renin and albuminuria but not with urinary renin or angiotensinogen excretions. Albuminuria correlated positively with urinary angiotensinogen and renin excretions in ADPKD and CKD. In three ADPKD patients who underwent nephrectomy, the concentrations of albumin and angiotensinogen were highest in plasma, followed by cyst fluid and urine; urinary renin concentrations were higher than cyst fluid. In conclusion, this study shows that, despite similar circulating RAAS component levels, higher urinary excretions of angiotensinogen and renin are a unique feature of ADPKD. Future studies should address the underlying mechanism and whether this may contribute to hypertension or disease progression in ADPKD.
Collapse
Affiliation(s)
- Mahdi Salih
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dominique M Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lodi C W Roksnoer
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Niek F Casteleijn
- Department of Urology, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Ronald T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
36
|
Houston BA, Shah KB, Mehra MR, Tedford RJ. A new “twist” on right heart failure with left ventricular assist systems. J Heart Lung Transplant 2017; 36:701-707. [DOI: 10.1016/j.healun.2017.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
|
37
|
van Thiel BS, Góes Martini A, Te Riet L, Severs D, Uijl E, Garrelds IM, Leijten FPJ, van der Pluijm I, Essers J, Qadri F, Alenina N, Bader M, Paulis L, Rajkovicova R, Domenig O, Poglitsch M, Danser AHJ. Brain Renin-Angiotensin System: Does It Exist? Hypertension 2017; 69:1136-1144. [PMID: 28396529 DOI: 10.1161/hypertensionaha.116.08922] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/14/2022]
Abstract
Because of the presence of the blood-brain barrier, brain renin-angiotensin system activity should depend on local (pro)renin synthesis. Indeed, an intracellular form of renin has been described in the brain, but whether it displays angiotensin (Ang) I-generating activity (AGA) is unknown. Here, we quantified brain (pro)renin, before and after buffer perfusion of the brain, in wild-type mice, renin knockout mice, deoxycorticosterone acetate salt-treated mice, and Ang II-infused mice. Brain regions were homogenized and incubated with excess angiotensinogen to detect AGA, before and after prorenin activation, using a renin inhibitor to correct for nonrenin-mediated AGA. Renin-dependent AGA was readily detectable in brain regions, the highest AGA being present in brain stem (>thalamus=cerebellum=striatum=midbrain>hippocampus=cortex). Brain AGA increased marginally after prorenin activation, suggesting that brain prorenin is low. Buffer perfusion reduced AGA in all brain areas by >60%. Plasma renin (per mL) was 40× to 800× higher than brain renin (per gram). Renin was undetectable in plasma and brain of renin knockout mice. Deoxycorticosterone acetate salt and Ang II suppressed plasma renin and brain renin in parallel, without upregulating brain prorenin. Finally, Ang I was undetectable in brains of spontaneously hypertensive rats, while their brain/plasma Ang II concentration ratio decreased by 80% after Ang II type 1 receptor blockade. In conclusion, brain renin levels (per gram) correspond with the amount of renin present in 1 to 20 μL of plasma. Brain renin disappears after buffer perfusion and varies in association with plasma renin. This indicates that brain renin represents trapped plasma renin. Brain Ang II represents Ang II taken up from blood rather than locally synthesized Ang II.
Collapse
Affiliation(s)
- Bibi S van Thiel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Alexandre Góes Martini
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Luuk Te Riet
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - David Severs
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Estrellita Uijl
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid M Garrelds
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Frank P J Leijten
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ingrid van der Pluijm
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Jeroen Essers
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Fatimunnisa Qadri
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Natalia Alenina
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Michael Bader
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Ludovit Paulis
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Romana Rajkovicova
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Oliver Domenig
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - Marko Poglitsch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria
| | - A H Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (B.S.v.T., A.G.M., L.t.R., D.S., E.U., I.M.G., F.P.J.L., A.H.J.D.), Department of Vascular Surgery (B.S.v.T., L.t.R., I.v.d.P., J.E.), Department of Molecular Genetics, Cancer Genomics Center Netherlands (B.S.v.T., I.v.d.P., J.E.), Division of Nephrology and Transplantation, Department of Internal Medicine (D.S., E.U.), Department of Radiation Oncology (J.E.), Erasmus MC, Rotterdam, The Netherlands; Department of Molecular Cardiovascular Endocrinology, Max Delbrück Center, Berlin, Germany (F.Q., N.A., M.B.); DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany (N.A., M.B.); Berlin Institute of Health (BIH), Germany (M.B.); Charité-University Medicine, Berlin, Germany (M.B.); Institute for Biology, University of Lübeck, Germany (M.B.); Institute of Pathophysiology, Faculty of Medicine, Comenius University (L.P., R.R.); Institute of Normal and Pathophysiological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic (L.P.); and Attoquant Diagnostics (O.D., M.P.) and Department of Internal Medicine III (O.D.), Medical University of Vienna, Austria.
| |
Collapse
|
38
|
Eduardo Rame J. Hemodynamic unloading and the molecular-functional phenotype dissociation in myocardial recovery. J Heart Lung Transplant 2017; 36:715-717. [PMID: 28377152 DOI: 10.1016/j.healun.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022] Open
Affiliation(s)
- J Eduardo Rame
- Cardiovascular Division, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Percutaneous Transcatheter Interventions for Aortic Insufficiency in Continuous-Flow Left Ventricular Assist Device Patients: A Systematic Review and Meta-Analysis. ASAIO J 2017; 63:117-122. [DOI: 10.1097/mat.0000000000000447] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
40
|
Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices 2016; 14:15-26. [PMID: 27871197 DOI: 10.1080/17434440.2017.1262762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The abnormal structure, function and molecular makeup of dilated cardiomyopathic hearts can be partially normalized in patients supported by a left ventricular assist device (LVAD), a process called reverse remodeling. This leads to recovery of function in many patients, though the rate of full recovery is low and in many cases is temporary, leading to the concept of heart failure remission, rather than recovery. Areas covered: We summarize data indicative of ventricular reverse remodeling, recovery and remission during LVAD support. These terms were used in searches performed in Pubmed. Duplication of topics covered in depth in prior review articles were avoided. Expert commentary: Although most patients undergoing mechanical circulatory support (MCS) show a significant degree of reverse remodeling, very few exhibit sufficiently improved function to justify device explantation, and many from whom LVADs have been explanted have relapsed back to the original heart failure phenotype. Future research has the potential to clarify the ideal combination of pharmacological, cell, gene, and mechanical therapies that would maximize recovery of function which has the potential to improve exercise tolerance of patients while on support, and to achieve a higher degree of myocardial recovery that is more likely to persist after device removal.
Collapse
Affiliation(s)
- Karolina K Marinescu
- a Department of Medicine, Division of Cardiology, Advanced Heart Failure , Rush University Medical Center , Chicago , IL , USA
| | - Nir Uriel
- b Department of Medicine, Division of Cardiology , University of Chicago , Chicago , IL , USA
| | - Douglas L Mann
- c Department of Medicine, Division of Cardiology , Washington University School of Medicine/Barnes Jewish Hospital , St. Louis , MO , USA
| | - Daniel Burkhoff
- d Department of Medicine, Division of Cardiology , Columbia University Medical Center/New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
41
|
Depressed Myocardial Contractility: Can It Be Rescued? Am J Med Sci 2016; 352:428-432. [PMID: 27776727 DOI: 10.1016/j.amjms.2016.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
Abstract
Current dogma suggests patients with advanced systolic heart failure have an irreversible depression in myocardial contractility. Recent experience with improved ventricular function during continuous flow ventricular assist devices used as destination therapy would suggest otherwise. Herein, cellular and molecular signaling involved in reversing depressed myocardial contractility would be addressed. This includes cardiomyocyte thyroid hormone signaling responsible for the reexpression of fetal gene program that preserves cell efficiency (work and energy consumed) and the rescue of an endogenous population of atrophic myocytes bordering on microdomains of fibrosis to improve contractile mass.
Collapse
|
42
|
|
43
|
Grupper A, Zhao YM, Sajgalik P, Joyce LD, Park SJ, Pereira NL, Stulak JM, Burnett JC, Edwards BS, Daly RC, Kushwaha SS, Schirger JA. Effect of Neurohormonal Blockade Drug Therapy on Outcomes and Left Ventricular Function and Structure After Left Ventricular Assist Device Implantation. Am J Cardiol 2016; 117:1765-70. [PMID: 27079215 DOI: 10.1016/j.amjcard.2016.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/27/2022]
Abstract
Neurohormonal blockade drug therapy (NHBDT) is the cornerstone therapy in heart failure (HF) management for promoting reverse cardiac remodeling and improving outcomes. It's utility in left ventricular assist device (LVAD) supported patients remains undefined. Sixty-four patients who received continuous flow LVAD at our institution were retrospectively reviewed and divided into 2 groups: no-NHBDT group (n = 33) received LVAD support only and NHBDT group (n = 31) received concurrent NHBDT based on the clinical judgment of the attending physicians. Cardiac remodeling (echocardiographic parameters and biomarkers) and clinical outcome (functional status, HF-related hospital readmissions, and mortality) data were collected. A statistically significant increase in ejection fraction, decrease in LV end-diastolic diameter index and LV mass index, and a sustained reduction in N-terminal pro B-type natriuretic peptide (NTproBNP) were observed in the NHBDT group at 6 months after LVAD implant (p <0.05). NHBDT-treated patients experienced significantly greater improvement in New York Heart Association functional classification and 6-minute-walk distance throughout the study. The combined end point of cardiovascular death or HF hospitalization was significantly reduced in patients receiving NHBDT (p = 0.013) associated primarily with a 12.1% absolute reduction in HF-related hospitalizations (p = 0.046). In conclusion, NHBDT in LVAD-supported patients is associated with a significant reversal in adverse cardiac remodeling and a reduction in morbidity and mortality compared with LVAD support alone.
Collapse
|
44
|
Drakos SG, Mehra MR. Clinical myocardial recovery during long-term mechanical support in advanced heart failure: Insights into moving the field forward. J Heart Lung Transplant 2016; 35:413-20. [DOI: 10.1016/j.healun.2016.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/21/2015] [Accepted: 01/10/2016] [Indexed: 01/04/2023] Open
|
45
|
Roksnoer LCW, Heijnen BFJ, Nakano D, Peti-Peterdi J, Walsh SB, Garrelds IM, van Gool JMG, Zietse R, Struijker-Boudier HAJ, Hoorn EJ, Danser AHJ. On the Origin of Urinary Renin: A Translational Approach. Hypertension 2016; 67:927-33. [PMID: 26928805 DOI: 10.1161/hypertensionaha.115.07012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
Urinary angiotensinogen excretion parallels albumin excretion, which is not the case for renin, while renin's precursor, prorenin, is undetectable in urine. We hypothesized that renin and prorenin, given their smaller size, are filtered through the glomerulus in larger amounts than albumin and angiotensinogen, and that differences in excretion rate are because of a difference in reabsorption in the proximal tubule. To address this, we determined the glomerular sieving coefficient of renin and prorenin and measured urinary renin/prorenin 1) after inducing prorenin in Cyp1a1-Ren2 rats and 2) in patients with Dent disease or Lowe syndrome, disorders characterized by defective proximal tubular reabsorption. Glomerular sieving coefficients followed molecular size (renin>prorenin>albumin). The induction of prorenin in rats resulted in a >300-fold increase in plasma prorenin and doubling of blood pressure but did not lead to the appearance of prorenin in urine. It did cause parallel rises in urinary renin and albumin, which losartan but not hydralazine prevented. Defective proximal tubular reabsorption increased urinary renin and albumin 20- to 40-fold, and allowed prorenin detection in urine, at ≈50% of its levels in plasma. Taken together, these data indicate that circulating renin and prorenin are filtered into urine in larger amounts than albumin. All 3 proteins are subsequently reabsorbed in the proximal tubule. For prorenin, such reabsorption is ≈100%. Minimal variation in tubular reabsorption (in the order of a few %) is sufficient to explain why urinary renin and albumin excretion do not correlate. Urinary renin does not reflect prorenin that is converted to renin in tubular fluid.
Collapse
Affiliation(s)
- Lodi C W Roksnoer
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Bart F J Heijnen
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Daisuke Nakano
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Janos Peti-Peterdi
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Stephen B Walsh
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Ingrid M Garrelds
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Jeanette M G van Gool
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Robert Zietse
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Harry A J Struijker-Boudier
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - Ewout J Hoorn
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine (L.C.W.R, I.M.G., J.M.G.v.G., A.H.J.D.), Division of Nephrology and Transplantation (L.C.W.R., R.Z., E.J.H.), Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (B.F.J.H., H.A.J.S.-B.); Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles (D.N., J. P.-P.); Department of Pharmacology, Kagawa University, Kagawa, Japan (D.N.); and UCL Centre for Nephrology, Royal Free Hospital, London, United Kingdom (S.B.W.).
| |
Collapse
|
46
|
Khazanie P, Hammill BG, Patel CB, Kiernan MS, Cooper LB, Arnold SV, Fendler TJ, Spertus JA, Curtis LH, Hernandez AF. Use of Heart Failure Medical Therapies Among Patients With Left Ventricular Assist Devices: Insights From INTERMACS. J Card Fail 2016; 22:672-9. [PMID: 26892975 DOI: 10.1016/j.cardfail.2016.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Use of left ventricular assist devices (LVADs) for treatment of advanced heart failure has expanded significantly over the past decade. However, concomitant use of heart failure medical therapies after implant is poorly characterized. METHODS AND RESULTS We examined the use of heart failure medications before and after LVAD implant in adult patients enrolled in the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) between 2008 and 2013 (N = 9359). Using logistic regression, we examined relationships between patient characteristics and medication use at 3 months after implant. Baseline rates of heart failure therapies before implant were 38% for angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), 55% for β-blockers, 40% for mineralocorticoid receptor antagonists (MRAs), 87% for loop diuretics, 54% for amiodarone, 11% for phosphodiesterase inhibitors, 22% for warfarin, and 54% for antiplatelet agents. By 3 months after implant, the rates were 50% for ACE inhibitors or ARBs, 68% for β-blockers, 33% for MRAs, 68% for loop diuretics, 42% for amiodarone, 21% for phosphodiesterase inhibitors, 92% for warfarin, and 84% for antiplatelet agents. In general, age, preimplant INTERMACS profile, and prior medication use were associated with medication use at 3 months. CONCLUSIONS Overall use of neurohormonal antagonists was low after LVAD implant, whereas use of loop diuretics and amiodarone remained high. Heart failure medication use is highly variable, but appears to generally increase after LVAD implantation. Low neurohormonal antagonist use may reflect practice uncertainty in the clinical utility of these medications post-LVAD.
Collapse
Affiliation(s)
- Prateeti Khazanie
- Division of Cardiology and the Colorado Cardiovascular Outcomes Consortium, University of Colorado School of Medicine, Aurora, CO
| | - Bradley G Hammill
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Chetan B Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Lauren B Cooper
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | | | - John A Spertus
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri
| | - Lesley H Curtis
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Adrian F Hernandez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina; Department of Medicine, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
47
|
Danser AHJ. The Role of the (Pro)renin Receptor in Hypertensive Disease. Am J Hypertens 2015; 28:1187-96. [PMID: 25890829 DOI: 10.1093/ajh/hpv045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022] Open
Abstract
Tissue angiotensin generation depends on the uptake of circulating (kidney-derived) renin and/or its precursor prorenin (together denoted as (pro)renin). Since tissue renin levels are usually higher than expected based upon the amount of (renin-containing) blood in tissue, an active uptake mechanism has been proposed. The (pro)renin receptor ((P)RR), discovered in 2002, appeared a promising candidate, although its nanomolar affinity for renin/prorenin is many orders of magnitude above their levels in blood. This review discusses (P)RR-related research since its discovery. First, encouraging in vitro findings supported detrimental effects of (pro)renin-(P)RR interaction, even resulting in angiotensin-independent signaling. Moreover, the putative (P)RR blocker "handle region peptide" (HRP) yielded beneficial effects in various cardiovascular animal models. Then doubt arose whether such interaction truly occurs in vivo, and (P)RR deletion unexpectedly turned out to be lethal. Moreover, HRP results could not be confirmed. Finally, it was discovered that the (P)RR actually is a component of vacuolar-type H(+)-ATPase, a multisubunit protein found in virtually every cell type which is essential for vesicle trafficking, protein degradation, and coupled transport. Nevertheless, selective (P)RR blockade in the brain with the putative antagonist PRO20 (corresponding with the first 20 amino acids of prorenin's prosegment) reduced blood pressure in the deoxycorticosteroneacetate (DOCA)-salt model, and (P)RR gene single nucleotide polymorphisms associate with hypertension. To what degree this relates to (pro)renin remains uncertain. The concept of (P)RR blockade in hypertension, if pursued, requires rigorous testing of any newly designed antagonist, and may not hold promise given the early death of tissue-specific (P)RR knockout animals.
Collapse
Affiliation(s)
- A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Advanced (stage D) heart failure: a statement from the Heart Failure Society of America Guidelines Committee. J Card Fail 2015; 21:519-34. [PMID: 25953697 DOI: 10.1016/j.cardfail.2015.04.013] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
Abstract
We propose that stage D advanced heart failure be defined as the presence of progressive and/or persistent severe signs and symptoms of heart failure despite optimized medical, surgical, and device therapy. Importantly, the progressive decline should be primarily driven by the heart failure syndrome. Formally defining advanced heart failure and specifying when medical and device therapies have failed is challenging, but signs and symptoms, hemodynamics, exercise testing, biomarkers, and risk prediction models are useful in this process. Identification of patients in stage D is a clinically important task because treatments are inherently limited, morbidity is typically progressive, and survival is often short. Age, frailty, and psychosocial issues affect both outcomes and selection of therapy for stage D patients. Heart transplant and mechanical circulatory support devices are potential treatment options in select patients. In addition to considering indications, contraindications, clinical status, and comorbidities, treatment selection for stage D patients involves incorporating the patient's wishes for survival versus quality of life, and palliative and hospice care should be integrated into care plans. More research is needed to determine optimal strategies for patient selection and medical decision making, with the ultimate goal of improving clinical and patient centered outcomes in patients with stage D heart failure.
Collapse
|
50
|
Renin-angiotensin system phenotyping as a guidance toward personalized medicine for ACE inhibitors: can the response to ACE inhibition be predicted on the basis of plasma renin or ACE? Cardiovasc Drugs Ther 2015; 28:335-45. [PMID: 24958603 DOI: 10.1007/s10557-014-6537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE & METHODS Not all hypertensive patients respond well to ACE inhibition. Here we determined whether renin-angiotensin system (RAS) phenotyping, i.e., the measurement of renin or ACE, can predict the individual response to RAS blockade, either chronically (enalapril vs. enalapril + candesartan) or acutely (enalapril ± hydrochlorothiazide, HCT). RESULTS Chronic enalapril + candesartan induced larger renin rises, but did not lower blood pressure (BP) more than enalapril. Similar observations were made for enalapril + HCT vs. enalapril when given acutely. Baseline renin predicted the peak changes in BP chronically, but not acutely. Baseline ACE levels had no predictive value. Yet, after acute drug intake, the degree of ACE inhibition, like Δrenin, did correlate with ΔBP. Only the relationship with Δrenin remained significant after chronic RAS blockade. Thus, a high degree of ACE inhibition and a steep renin rise associate with larger acute responses to enalapril. However, variation was large, ranging >50 mm Hg for a given degree of ACE inhibition or Δrenin. The same was true for the relationships between Δrenin and ΔBP, and between baseline renin and the maximum reduction in BP in the chronic study. CONCLUSIONS Our data do not support that RAS phenotyping will help to predict the individual BP response to RAS blockade. Notably, these conclusions were reached in a carefully characterized, homogenous population, and when taking into account the known fluctuations in renin that relate to gender, age, ethnicity, salt intake and diuretic treatment, it seems unlikely that a cut-off renin level can be defined that has predictive value.
Collapse
|