1
|
Dong Z, Dai H, Feng Z, Liu W, Gao Y, Liu F, Zhang Z, Zhang N, Dong X, Zhao Q, Zhou X, Du J, Liu B. Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021; 23:234. [PMID: 33537809 PMCID: PMC7893801 DOI: 10.3892/mmr.2021.11873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephropathy is the most common complication of hypertension, and is one of the main causes of end-stage renal disease (ESRD) in numerous countries. The basic pathological feature of hypertensive nephropathy is arteriolosclerosis followed by renal parenchymal damage. The etiology of this disease is complex, and its pathogenesis is mainly associated with renal hemodynamic changes and vascular remodeling. Despite the increased knowledge on the pathogenesis of hypertensive nephropathy, the current clinical treatment methods are still not effective in preventing the development of the disease to ESRD. Herbal medicine, which is used to relieve symptoms, can improve hypertensive nephropathy through multiple targets. Since there are few clinical studies on the treatment of hypertensive nephropathy with herbal medicine, this article aims to review the progress on the basic research on the treatment of hypertensive nephropathy with herbal medicine, including regulation of the renin angiotensin system, inhibition of sympathetic excitation, antioxidant stress and anti-inflammatory protection of endothelial cells, and improvement of obesity-associated factors. Herbal medicine with different components plays a synergistic and multi-target role in the treatment of hypertensive nephropathy. The description of the mechanism of herbal medicine in the treatment of hypertensive nephropathy will contribute towards the progress of modern medicine.
Collapse
Affiliation(s)
- Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, P.R. China
| | - Zhandong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Wenbin Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Fei Liu
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zihan Zhang
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xuan Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
2
|
Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2019; 33:599-613. [DOI: 10.1007/s10557-019-06895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Stenmark KR, Graham BB. Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy? Cardiovasc Res 2019; 114:1057-1059. [PMID: 29800416 DOI: 10.1093/cvr/cvy117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and
| | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine; and.,Program in Translational Lung Research, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| |
Collapse
|
4
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
5
|
Rademaker MT, Richards AM. Urocortins: Actions in health and heart failure. Clin Chim Acta 2017; 474:76-87. [DOI: 10.1016/j.cca.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/04/2017] [Indexed: 01/21/2023]
|
6
|
The evolution of heart failure with reduced ejection fraction pharmacotherapy: What do we have and where are we going? Pharmacol Ther 2017; 178:67-82. [DOI: 10.1016/j.pharmthera.2017.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Urocortin Treatment Improves Acute Hemodynamic Instability and Reduces Myocardial Damage in Post-Cardiac Arrest Myocardial Dysfunction. PLoS One 2016; 11:e0166324. [PMID: 27832152 PMCID: PMC5104489 DOI: 10.1371/journal.pone.0166324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Hemodynamic instability occurs following cardiac arrest and is associated with high mortality during the post-cardiac period. Urocortin is a novel peptide and a member of the corticotrophin-releasing factor family. Urocortin has the potential to improve acute cardiac dysfunction, as well as to reduce the myocardial damage sustained after ischemia reperfusion injury. The effects of urocortin in post-cardiac arrest myocardial dysfunction remain unclear. Methods and Results We developed a preclinical cardiac arrest model and investigated the effects of urocortin. After cardiac arrest induced by 6.5 min asphyxia, male Wistar rats were resuscitated and randomized to either the urocortin treatment group or the control group. Urocortin (10 μg/kg) was administrated intravenously upon onset of resuscitation in the experimental group. The rate of return of spontaneous circulation (ROSC) was similar between the urocortin group (76%) and the control group (72%) after resuscitation. The left ventricular systolic (dP/dt40) and diastolic (maximal negative dP/dt) functions, and cardiac output, were ameliorated within 4 h after ROSC in the urocortin-treated group compared to the control group (P<0.01). The neurological function of surviving animals was better at 6 h after ROSC in the urocortin-treated group (p = 0.023). The 72-h survival rate was greater in the urocortin-treated group compared to the control group (p = 0.044 by log-rank test). Cardiomyocyte apoptosis was lower in the urocortin-treated group (39.9±8.6 vs. 17.5±4.6% of TUNEL positive nuclei, P<0.05) with significantly increased Akt, ERK and STAT-3 activation and phosphorylation in the myocardium (P<0.05). Conclusions Urocortin treatment can improve acute hemodynamic instability as well as reducing myocardial damage in post-cardiac arrest myocardial dysfunction.
Collapse
|
8
|
Stirrat CG, Venkatasubramanian S, Pawade T, Mitchell AJ, Shah AS, Lang NN, Newby DE. Cardiovascular effects of urocortin 2 and urocortin 3 in patients with chronic heart failure. Br J Clin Pharmacol 2016; 82:974-82. [PMID: 27275843 PMCID: PMC5026060 DOI: 10.1111/bcp.13033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/26/2016] [Accepted: 06/02/2016] [Indexed: 01/18/2023] Open
Abstract
AIMS Urocortin 2 and urocortin 3 may play a role in the pathophysiology of heart failure and are emerging therapeutic targets. We aimed to examine the local and systemic cardiovascular effects of urocortin 2 and urocortin 3 in healthy subjects and patients with heart failure. METHODS Patients with heart failure (n = 8) and age and gender-matched healthy subjects (n = 8) underwent bilateral forearm arterial blood flow measurement using forearm venous occlusion plethysmography during intra-arterial infusions of urocortin 2 (3.6-36 pmol min(-1) ), urocortin 3 (360-3600 pmol min(-1) ) and substance P (2-8 pmol min(-1) ). Heart failure patients (n = 9) and healthy subjects (n = 7) underwent non-invasive impedance cardiography during incremental intravenous infusions of sodium nitroprusside (573-5730 pmol kg(-1) min(-1) ), urocortin 2 (36-360 pmol min(-1) ), urocortin 3 (1.2-12 nmol min(-1) ) and saline placebo. RESULTS Urocortin 2, urocortin 3 and substance P induced dose-dependent forearm arterial vasodilatation in both groups (P < 0.05 for both) with no difference in magnitude of vasodilatation between patients and healthy subjects. During systemic intravenous infusions, urocortin 3 increased heart rate and cardiac index and reduced mean arterial pressure and peripheral vascular resistance index in both groups (P < 0.01 for all). Urocortin 2 produced similar responses to urocortin 3, although increases in cardiac index and heart rate were only significant in heart failure (P < 0.05) and healthy subjects (P < 0.001), respectively. CONCLUSION Urocortins 2 and 3 cause vasodilatation, reduce peripheral vascular resistance and increase cardiac output in both health and disease. These data provide further evidence to suggest that urocortins 2 and 3 continue to hold promise for the treatment of heart failure.
Collapse
Affiliation(s)
- Colin G Stirrat
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - Sowmya Venkatasubramanian
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Tania Pawade
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Andrew J Mitchell
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Anoop S Shah
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ninian N Lang
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David E Newby
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Chen S, Wang Z, Xu B, Mi X, Sun W, Quan N, Wang L, Chen X, Liu Q, Zheng Y, Leng J, Li J. The Modulation of Cardiac Contractile Function by the Pharmacological and Toxicological Effects of Urocortin2. Toxicol Sci 2015; 148:581-93. [PMID: 26342213 PMCID: PMC5009442 DOI: 10.1093/toxsci/kfv202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urocortin2 (Ucn2) has been revealed to enhance cardiac function in heart failure. However, the pharmacological and toxicological effects of Ucn2 on cardiomyocytes are incompletely understood. In this study, we investigated the possible mechanisms of Ucn2 on mediating the contractility of cardiomyocytes. Mechanical properties and intracellular Ca(2+) properties were measured in isolated cardiomyocytes from different treatment groups. The stress signaling was evaluated using Western blot. The results demonstrated that Ucn2 induced maximal velocity of shortening (+dL/dt), peak height, peak shortening (PS) amplitude, maximal velocity of relengthening (-dL/dt), accompanied by a significant rise in intracellular Ca(2+) level and a fall of the mean time constant of Ca(2+) transient decay (Tau) in WT cardiomyocytes. However, these effects were abolished by preincubation of type 2 CRF receptors (CRFR2) antagonist anti-sauvagine 30 (a-SVG-30). We also found that Ucn2 treatment activated the AMPK pathway in isolated cardiomyocytes via CRFR2. Furthermore, Ucn2 induced protein kinase A (PKA) and phospholamban (PLN) phosphorylation. Pretreatment of PKA inhibitor H89 reduced the inotropic and lusitropic effects of Ucn2 as well as decreased the intracellular Ca(2+) load and slowed down the Ca(2+) transient decay. We also showed that preincubation of Compound C, an inhibitor of AMPK, inhibited the phosphorylation of PKA and the intracellular Ca(2+) level in cardiomyocytes without affecting the contractile function and the Tau of cardiomyocytes. Taken together, it suggests that Ucn2 facilitate the contractility of cardiomyocytes via activating both AMPK and PKA.
Collapse
Affiliation(s)
- Si Chen
- State University of New York at Buffalo, Buffalo, New York 14214
| | - Zhenhua Wang
- *College of Life Sciences, Yantai University, Yantai, Shandong 264005
| | - Bo Xu
- *College of Life Sciences, Yantai University, Yantai, Shandong 264005, Key Laboratory of Pharmacology and Molecular Drug Evaluation, School of Pharmacy, Yantai University, Yantai, Shandong 264005
| | - Xiangquan Mi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000
| | - Wanqing Sun
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Nanhu Quan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Lin Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Xingchi Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| | - Quan Liu
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Yang Zheng
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Jiyan Leng
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| |
Collapse
|
10
|
Rademaker MT, Ellmers LJ, Charles CJ, Mark Richards A. Urocortin 2 protects heart and kidney structure and function in an ovine model of acute decompensated heart failure: Comparison with dobutamine. Int J Cardiol 2015; 197:56-65. [DOI: 10.1016/j.ijcard.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/18/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
|
11
|
Adão R, Santos-Ribeiro D, Rademaker MT, Leite-Moreira AF, Brás-Silva C. Urocortin 2 in cardiovascular health and disease. Drug Discov Today 2015; 20:906-14. [PMID: 25748088 DOI: 10.1016/j.drudis.2015.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/03/2015] [Accepted: 02/27/2015] [Indexed: 01/14/2023]
Abstract
Urocortin (Ucn)-2 - corticotropin-releasing hormone receptor 2 signaling has favorable effects in the cardiovascular system, including coronary vasodilatation, with increased coronary blood flow and conductance and augmented cardiac contractility and output, as well as protection against ischemia/reperfusion injury. Indeed, several animal studies have confirmed the salutary therapeutic effects of Ucn-2 in chronic heart failure, with improvements in cardiac performance and animal survival. In addition, recent clinical trials have demonstrated the benefits of Ucn-2 in patients with stable chronic heart failure on optimal medical therapy.
Collapse
Affiliation(s)
- Rui Adão
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto 4200-319, Portugal
| | - Diana Santos-Ribeiro
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto 4200-319, Portugal
| | - Miriam T Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto 4200-319, Portugal
| | - Carmen Brás-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, Porto 4200-319, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Chronic Urocortin 2 Administration Improves Cardiac Function and Ameliorates Cardiac Remodeling After Experimental Myocardial Infarction. J Cardiovasc Pharmacol 2015; 65:269-75. [DOI: 10.1097/fjc.0000000000000190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection. Mol Cell Biochem 2014; 398:135-46. [DOI: 10.1007/s11010-014-2213-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022]
|
14
|
Chan WYW, Frampton CM, Crozier IG, Troughton RW, Richards AM. Urocortin-2 infusion in acute decompensated heart failure: findings from the UNICORN study (urocortin-2 in the treatment of acute heart failure as an adjunct over conventional therapy). JACC-HEART FAILURE 2013; 1:433-41. [PMID: 24621976 DOI: 10.1016/j.jchf.2013.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The purpose of this study is to investigate the effects of urocortin-2 as adjunct therapy in acute decompensated heart failure (ADHF). BACKGROUND Urocortin-2 produced favorable integrated effects in experimental heart failure but there are no equivalent human data. We describe the first therapeutic study of urocortin-2 infusion in ADHF. METHODS Fifty-three patients with ADHF were randomly assigned to 5 ng/kg/min of urocortin-2 or placebo infusion for 4 h as an adjunct therapy. Changes in vital signs, plasma neurohormonal and renal indices during treatment were compared using repeated-measures analysis of covariance. Ten patients in each arm underwent more detailed invasive hemodynamic evaluation. RESULTS Urocortin-2 produced greater falls in systolic blood pressure compared to placebo (16 ± 5.8 mm Hg, p < 0.001) with nonsignificant increases in heart rate (5.7 ± 3.8 beats/min, p = 0.07) and increased cardiac output (2.1 ± 0.4 l/min vs. -0.1 ± 0.4 l/min, p < 0.001) associated with a 47% reduction in calculated total peripheral resistance (p = 0.015). Falls in pulmonary artery and pulmonary capillary wedge pressures did not differ significantly between groups. Urocortin-2 reduced urine volume and creatinine clearance during infusion but these returned to above baseline level in the 8 h after infusion. Plasma renin activity rose briefly with urocortin-2 coinciding with reductions in blood pressure (p < 0.001). B-type natriuretic peptide levels fell significantly over 24 h with urocortin-2 (p < 0.01) but not with placebo. CONCLUSIONS Urocortin-2 infusion in ADHF markedly augmented cardiac output without significant reflex tachycardia. Renal indices fell transiently concurrent with urocortin-2-induced reductions in blood pressure. Further investigations are required to uncover the full potential of urocortin-2 in treating ADHF.
Collapse
Affiliation(s)
- W Y Wandy Chan
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Cardiology Department, Christchurch Hospital, Christchurch, New Zealand.
| | | | - Ian G Crozier
- Cardiology Department, Christchurch Hospital, Christchurch, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Cardiology Department, Christchurch Hospital, Christchurch, New Zealand
| | - A Mark Richards
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand; Cardiovascular Research Institute, National University Health System, Singapore
| |
Collapse
|
15
|
Takahashi K. Distribution of urocortins and corticotropin-releasing factor receptors in the cardiovascular system. Int J Endocrinol 2012; 2012:395284. [PMID: 22675352 PMCID: PMC3362921 DOI: 10.1155/2012/395284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 12/27/2022] Open
Abstract
Urocortins are human homologues of urotensin I, a fish corticotropin-releasing-factor- (CRF-) like peptide secreted from the urophysis. There are three urocortins: urocortin 1, urocortin 2, and urocortin 3 in mammals. We have shown that urocortin 1 and urocortin 3 are endogenously synthesized in the myocardial cells of human heart and may act on CRF type 2 receptor (CRFR2) expressed in the heart. Expression levels of urocortin 1 in the heart and plasma urocortin 1 levels are elevated in patients with heart failure. Recent studies have shown that urocortins have various biological actions in the cardiovascular system, such as a vasodilator action, a positive inotropic action, a cardioprotective action against ischemia/reperfusion injury, and suppressive actions against the renin angiotensin system and the sympathetic nervous system. Urocortins and CRFR2 may therefore be a potential therapeutic target for cardiovascular diseases, such as congestive heart failure, hypertension, and myocardial infarction.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Departments of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
16
|
Ikeda K, Fujioka K, Manome Y, Tojo K. Clinical perspectives of urocortin and related agents for the treatment of cardiovascular disease. Int J Endocrinol 2012; 2012:198628. [PMID: 22548056 PMCID: PMC3324148 DOI: 10.1155/2012/198628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022] Open
Abstract
The effects of corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), on the cardiovascular system have been intensively researched since its discovery. Moreover, the actions of urocortin (Ucn) I on the cardiovascular system have also been intensively scrutinized following the cloning and identification of its receptor, CRF receptor type 2 (CRFR2), in peripheral tissues including the heart. Given the cardioprotective actions of CRFR2 ligands, the clinical potential of not only Ucn I but also Ucn II and III, which were later identified as more specific ligands for CRFR2, has received considerable attention from researchers. In addition, recent work has indicated that CRF type 1 receptor may be also involved in cardioprotection against ischemic/reperfusion injury. Here we provide a historical overview of research on Ucn I and related agents, their effects on the cardiovascular system, and the clinical potential of the use of such agents to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Ikeda
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
- *Keiichi Ikeda:
| | - Kouki Fujioka
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Katsuyoshi Tojo
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
17
|
Urocortin 2 sustains haemodynamic and renal function during introduction of beta-blockade in experimental heart failure. J Hypertens 2011; 29:1787-95. [DOI: 10.1097/hjh.0b013e3283493776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Current World Literature. Curr Opin Nephrol Hypertens 2011; 20:561-7. [DOI: 10.1097/mnh.0b013e32834a3de5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|