1
|
Veen D, Ye Z, van Schie MS, Knops P, Kavousi M, Vos L, Yildirim V, Taverne YJ, de Groot NM. Sex differences in atrial potential morphology. IJC HEART & VASCULATURE 2025; 56:101597. [PMID: 39850780 PMCID: PMC11754489 DOI: 10.1016/j.ijcha.2024.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Background Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology. Therefore, atrial potential morphologies during sinus rhythm (SR) were compared between male and female patients. Methods Based on propensity score matching, 62 male and female patients in whom high-resolution mapping of the right atrium (RA), left atrium (LA), and pulmonary vein area (PVA) including Bachmann's bundle (BB) was performed during coronary bypass grafting surgery and/or valvular heart surgery. Unipolar potentials were classified as single potentials (SPs), short double potentials (SDPs), long double potentials (LDP), fractionated potentials (FPs) and fraction duration (FD). The proportion of conduction block lines was also determined. Results Female patients had a higher proportion of SDPs, LDPs and FPs at the RA, and SDPs at BB. At the PVA, there were less SPs and more SDPs and FPs. In females, FDs were longer at the RA and PVA, and potential voltages of only SPs were lower at the RA (all P < 0.05). Females also had more CB at the RA and at PVA (P < 0.05). Conclusion In females, the proportion of single unipolar potentials indicative of smooth conduction, was lower compared to males, at the RA and PVA and to a lesser degree at BB. Females also had more CB at RA and PVA. Hence, these results may reflect sex-differences in the degree of electrical remodeling.
Collapse
Affiliation(s)
- Danny Veen
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ziliang Ye
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mathijs S. van Schie
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Paul Knops
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Dept. of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lara Vos
- Dept. of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Vehpi Yildirim
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yannick J.H.J. Taverne
- Dept. of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Natasja M.S de Groot
- Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Dept. of Micro-electronics, Circuits and Systems, Faculty of Electrical Engineering, mathematics and computer sciences, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
2
|
Silva Cunha P, Laranjo S, Monteiro S, Portugal G, Guerra C, Rocha AC, Pereira M, Ferreira RC, Heijman J, Oliveira MM. The impact of atrial voltage and conduction velocity phenotypes on atrial fibrillation recurrence. Front Cardiovasc Med 2024; 11:1427841. [PMID: 39736879 PMCID: PMC11683111 DOI: 10.3389/fcvm.2024.1427841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Low atrial voltage and slow conduction velocity (CV) have been associated with atrial fibrillation (AF); however, their interaction and relative importance as early disease markers remain incompletely understood. We aimed to elucidate the relationship between atrial voltage and CV using high-density electroanatomic (HDE) maps of patients with AF. Methods HDE maps obtained during sinus rhythm in 52 patients with AF and five healthy controls were analysed. Atrial voltage and CV maps were generated, and their correlations were assessed. Subgroup analyses were performed based on clinically relevant factors such as AF type, CV, and voltage levels. Finally, cluster analysis was conducted to identify distinct phenotypes within the population, reflecting different patterns of conduction and voltage. Results A moderate positive correlation was found between the mean atrial voltage and CV (r = 0.570). Subgroup analysis revealed differences in voltage (p = 0.0044) but not in global CV (p = 0.42), with no significant differences between AF types. Three distinct phenotypes emerged: normal voltage/normal CV, normal voltage/low CV, and low voltage/low CV, with distinct recurrence rates, suggesting different disease progression paths. Slower atrial CV was identified as a significant predictor of arrhythmia recurrence at 12 and 24 months after AF ablation, surpassing the predictive potential of atrial voltage. Conclusion Atrial voltage and CV analyses revealed distinct phenotypes. Lower atrial CV emerged as a significant predictor of AF recurrence, exceeding the predictive significance of atrial voltage. These findings emphasise the importance of considering CV and voltage in managing AF and offer potential insights for personalised strategies.
Collapse
Affiliation(s)
- Pedro Silva Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- CCUL @ RISE, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- Departamento de Fisiologia, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sofia Monteiro
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - Guilherme Portugal
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
| | - Cátia Guerra
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
| | | | | | - Rui Cruz Ferreira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Gottfried Schatz Research Center, Division of Medical Physics & Biophysics, Medical University of Graz, Graz, Austria
| | - Mário Martins Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Cardiology Service, Santa Marta Hospital, Lisbon, Portugal
- Centro Clínico Académico, Hospital de Santa Marta, Lisboa, Portugal
- Physiology Institute, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- CCUL @ RISE, Faculdade de Medicina, University of Lisbon, Lisbon, Portugal
- Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Markman TM, Xu L, Zahid S, Patel D, Marchlinski FE, Callans D, Nazarian S. Augmentation of Atrial Conduction Velocity With Pharmacological and Direct Electrical Sympathetic Stimulation. JACC Clin Electrophysiol 2024; 10:2635-2643. [PMID: 39365212 DOI: 10.1016/j.jacep.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Atrial conduction velocity (CV) is influenced by autonomic tone and contributes to the pathophysiology of re-entrant arrhythmias and atrial fibrillation. Cardiac sympathetic nerve activation has been reported via electrical stimulation within the vertebral vein (VV). OBJECTIVES This study sought to characterize changes in right atrial (RA) CV associated with sympathetic stimulation from pharmacologic (isoproterenol) or direct electrical (VV stimulation) approaches. METHODS Subjects undergoing catheter ablation for atrial fibrillation had baseline RA electroanatomic maps performed in sinus rhythm (SR). RA mapping was repeated during right VV stimulation (20 Hz; up to 20 mA) and again with both RA pacing and during isoproterenol infusion, each titrated to the heart rate achieved with VV stimulation. RESULTS A total of 100 RA maps were analyzed from 25 subjects (mean age: 58 ± 14 years; 56% male), and CV was calculated from 51,534 electroanatomic map points. VV stimulation increased heart rate from baseline in all subjects (22.5 ± 5.5 beats/min). The average CV increased with VV stimulation (82.0 ± 34.5 cm/s) or isoproterenol (83.7 ± 35.0 cm/s) when compared to SR (70.8 ± 32.5 cm/s; P < 0.001). Heterogeneity of CV decreased with VV stimulation or isoproterenol when compared to SR (coefficient of variation: 0.33 ± 0.21 vs 0.35 ± 0.23 vs 0.57 ± 0.29; P < 0.001). There was no difference in CV or CV heterogeneity between SR and RA pacing, suggesting that these changes were independent of heart rate. CONCLUSIONS Global RA CV is enhanced, and heterogeneity of CV is reduced, with either pharmacologic or direct electrical sympathetic stimulation via the right VV.
Collapse
Affiliation(s)
- Timothy M Markman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Lingyu Xu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sohail Zahid
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Darshak Patel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francis E Marchlinski
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Callans
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saman Nazarian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Amesz JH, Bierhuizen MFA, Langmuur SJJ, Knops P, van Steenis YP, Dumay D, van Schie MS, Manintveld OC, de Groot NMS, Taverne YJHJ. Electrophysiological Markers of Ex-Situ Heart Performance in a Porcine Model of Cardiac Donation After Circulatory Death. Transpl Int 2024; 37:13279. [PMID: 39635569 PMCID: PMC11616589 DOI: 10.3389/ti.2024.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Normothermic ex-situ heart perfusion (ESHP) enables assessment of hearts donated after circulatory death (DCD) prior to transplantation. However, sensitive parameters of cardiac function of DCD hearts on ESHP are needed. This study proposes a novel approach using electrophysiological (EP) parameters derived from electrical mapping as biomarkers of post-ischemic cardiac performance. Porcine slaughterhouse hearts (PSH) were divided in two groups based on the type of warm ischemia (Group 1: 10 ± 1 min with animal depilation vs. Group 2: ≤5 min without depilation). Electrical mapping of the right (RV) and left ventricle (LV) was performed on ESHP. Potential voltages, slopes and conduction velocities were computed from unipolar electrograms and compared between groups. Voltages were lower in Group 1 compared to Group 2 (RV: 3.6 vs. 15.3 mV, p = 0.057; LV: 10.8 vs. 23.6 mV, p = 0.029). In addition, the percentage of low-voltage potentials was higher and potential slopes were flatter in Group 1. Voltages and slopes strongly correlated with the visual contractile performance of PSH, but showed weaker correlation with lactate profiles. In conclusion, unipolar potential voltages and potential slopes were decreased in hearts with severe warm ischemia. As such, EP parameters could aid transplantation teams in decision-making on transplantability of DCD hearts.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mark F. A. Bierhuizen
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. J. Langmuur
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul Knops
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvar P. van Steenis
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dwight Dumay
- Department of Clinical Perfusion, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mathijs S. van Schie
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Olivier C. Manintveld
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. de Groot
- Translational Electrophysiology Lab, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Circuits and Systems, Delft University of Technology, Delft, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Ye Z, Ramdat Misier NL, van Schie MS, Xiang H, Knops P, Kluin J, Taverne YJHJ, de Groot NMS. Identification of Critical Slowing of Conduction Using Unipolar Atrial Voltage and Fractionation Mapping. JACC Clin Electrophysiol 2024; 10:1971-1981. [PMID: 39023486 DOI: 10.1016/j.jacep.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Ablation strategies targeting fractionated or low-voltage potentials have been widely used in patients with persistent types of atrial fibrillation (AF). However, recent studies have questioned their role in effectively representing sites of conduction slowing, and thus arrhythmogenic substrates. OBJECTIVES The authors studied the relationship between local conduction velocity (CV) and the occurrence of fractionated and/or low-voltage potentials in order to identify areas with critically slowing of conduction. METHODS Intraoperative epicardial mapping was performed during sinus rhythm. Unipolar potentials with an amplitude <1.0 mV were initially classified as low-voltage and potentials with ≥3 deflections as fractionation. A range of thresholds were also explored. Local CV was computed using discrete velocity vectors. RESULTS A total of 319 patients were included. Fractionated, low-voltage potentials were rare, accounting for only 0.36% (Q1-Q3: 0.15%-0.78%) of all atrial sites. Local CV at sites with fractionated, low-voltage potentials (46.0 cm/s [Q1-Q3: 22.6-72.7 cm/s]) was lowest compared with sites with either low-voltage, nonfractionated potentials (64.5 cm/s [Q1-Q3: 34.8-99.4 cm/s]) or fractionated, high-voltage potentials (65.9 cm/s [Q1-Q3: 41.7-92.8 cm/s]; P < 0.001). Slow conduction areas (CV <50 cm/s) could be most accurately identified by using a low voltage threshold (<1 mV) and a minimum of 3 deflections (positive predictive value: 54.2%-70.7%), although the overall sensitivity remained low (0.1%-1.9%). CONCLUSIONS Sites with fractionated, low-voltage potentials have substantially slower local CV compared with sites with either low-voltage, nonfractionated potentials or fractionated, high-voltage potentials. However, the strong inverse relationship between the positive predictive value and sensitivity of a combined voltage and fractionation threshold for slowed conduction is likely to complicate the use of these signal-based ablation approaches in AF patients.
Collapse
Affiliation(s)
- Ziliang Ye
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hongxian Xiang
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Microelectronics, Signal Processing Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
6
|
van Schie MS, Talib S, Knops P, Taverne YJHJ, de Groot NMS. Conduction Velocity and Anisotropic Properties of Fibrillation Waves During Acutely Induced and Long-Standing Persistent AF. JACC Clin Electrophysiol 2024; 10:1592-1604. [PMID: 38752952 DOI: 10.1016/j.jacep.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Quantified features of local conduction heterogeneity due to pathological alterations of myocardial tissue could serve as a marker for the degree of electrical remodeling and hence be used to determine the stage of atrial fibrillation (AF). OBJECTIVES In this study, the authors investigated whether local directional heterogeneity (LDH) and anisotropy ratio, derived from estimated local conduction velocities (CVs) during AF, are suitable electrical parameters to stage AF. METHODS Epicardial mapping (244-electrode array, interelectrode distance 2.25 mm) of the right atrium was performed during acute atrial fibrillation (AAF) (n = 25, 32 ± 11 years of age) and during long-standing persistent atrial fibrillation (LSPAF) (n = 23, 64 ± 9 years of age). Episodes of 9 ± 4 seconds of AF were analyzed. Local CV vectors were constructed to assess the degree of anisotropy. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. RESULTS Compared with the entire AAF group, LSPAF was characterized by slower conduction (71.5 ± 6.8 cm/s vs 67.6 ± 5.6 cm/s; P = 0.037) with a larger dispersion (1.59 ± 0.21 vs 1.95 ± 0.17; P < 0.001) and temporal variability (32.0 ± 4.7 cm/s vs 38.5 ± 3.3 cm/s; P < 0.001). Also, LSPAF was characterized by more LDH (19.6% ± 4.4% vs 26.0% ± 3.4%; P < 0.001) and a higher degree of anisotropy (1.38 ± 0.07 vs 1.51 ± 0.14; P < 0.001). Compared with the most complex type of AAF (type III), LSPAF was still associated with a larger CV dispersion, higher temporal variability of CV, and larger amount of LDH. CONCLUSIONS Increasing AF complexity was associated with increased spatiotemporal variability of local CV vectors, local conduction heterogeneity, and anisotropy ratio. By using these novel parameters, LSPAF could potentially be discriminated from the most complex type of AAF. These observations may indicate pathological alterations of myocardial tissue underlying progression of AF.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shmaila Talib
- Department of Cardiology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Microelectronics, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
7
|
Ramdat Misier NL, Amesz JH, Taverne YJHJ, Nguyen H, van Schie MS, Knops P, Schinkel AFL, de Jong PL, Brundel BJJM, de Groot NMS. Biatrial arrhythmogenic substrate in patients with hypertrophic obstructive cardiomyopathy. Heart Rhythm 2024; 21:819-827. [PMID: 38246568 DOI: 10.1016/j.hrthm.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) in patients with hypertrophic obstructive cardiomyopathy (HOCM) may be caused by a primary atrial myopathy. Whether HOCM-related atrial myopathy affects mainly electrophysiological properties of the left atrium (LA) or also the right atrium (RA) has never been investigated. OBJECTIVE The purpose of this study was to characterize atrial conduction and explore differences in the prevalence of conduction disorders, potential fractionation, and low-voltage areas (LVAs) between the RA and LA during sinus rhythm (SR) as indicators of potential arrhythmogenic areas. METHODS Intraoperative epicardial mapping of both atria during SR was performed in 15 HOCM patients (age 50 ± 12 years). Conduction delay (CD) and conductin block (CB), unipolar potential characteristics (voltages, fractionation), and LVA were quantified. RESULTS Conduction disorders and LVA were found scattered throughout both atria in all patients and did not differ between the RA and LA (CD: 2.9% [1.9%-3.6%] vs 2.6% [2.1%-6.4%], P = .541; CB: 1.7% [0.9%-3.1%] vs 1.5% [0.5%-2.8%], P = .600; LVA: 4.7% [1.6%-7.7%] vs 2.9% [2.1%-7.1%], P = .793). Compared to the RA, unipolar voltages of single potentials (SPs) and fractionated potentials (FPs) were higher in the LA (SP: P75 7.3 mV vs 10.9 mV; FP: P75 2.0 mV vs 3.7 mV). FP contained low-voltage components in only 18% of all LA sites compared to 36% of all RA sites. CONCLUSION In patients with HOCM, conduction disorders, LVA, and FP are equally present in both atria, supporting the hypothesis of a primary atrial myopathy. Conceptually, the presence of a biatrial substrate and high-voltage FP may contribute to failure of ablative therapy of atrial tachyarrhythmias in this population.
Collapse
Affiliation(s)
| | - Jorik H Amesz
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hoang Nguyen
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arend F L Schinkel
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Okubo Y, Oguri N, Sakai T, Uotani Y, Furutani M, Miyamoto S, Miyauchi S, Okamura S, Tokuyama T, Nakano Y. Conduction velocity mapping in atrial fibrillation using omnipolar technology. Pacing Clin Electrophysiol 2024; 47:19-27. [PMID: 38041418 DOI: 10.1111/pace.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Recent studies have shown that atrial slow conduction velocity (CV) is associated with the perpetuation of atrial fibrillation (AF). However, the criteria of CV measurement have not been standardized. The aim of this study was to evaluate the relationship between the slow CV area (SCVA) measured by novel omnipolar technology (OT) and AF recurrence. METHODS This study included 90 patients with AF who underwent initial pulmonary vein isolation (PVI). The segmented surface area of the SCVA was measured by left atrial (LA) electrophysiological mapping using OT before the PVI. The proportion of the SCVA at each cutoff value of CV (from < 0.6 to < 0.9 m/s) was compared between the patients with and without AF recurrence. RESULTS During a mean follow-up period of 516 ± 197 days, the recurrence of AF after the initial PVI was observed in 23 (25.5%) patients. In patients with AF recurrence, the proportion of the SCVA in the LA posterior, LA appendage (LAA), and LA anterior were significantly higher than those without AF recurrence. The multivariate analysis indicated that the proportion of the low voltage area and the SCVA in the LA anterior (local CV < 0.7 m/s) were independent predictors of AF recurrence (hazard ratio [HR], 1.07; 95% confidence interval [CI], 1.01-1.14; p = 0.03; HR, 1.40; 95% CI, 1.07-1.83; p = 0.01, respectively). CONCLUSION By evaluating the local CV using OT, it was indicated that SCVA with CV < 0.7 m/s in the LA anterior is strongly associated with AF recurrence after PVI.
Collapse
Affiliation(s)
- Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoto Oguri
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takumi Sakai
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukimi Uotani
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Motoki Furutani
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Miyamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shunsuke Miyauchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Sho Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
9
|
Kharbanda RK, Ramdat Misier NL, van Schie MS, Zwijnenburg RD, Amesz JH, Knops P, Bogers AJJC, Taverne YJHJ, de Groot NMS. Insights Into the Effects of Low-Level Vagus Nerve Stimulation on Atrial Electrophysiology: Towards Patient-Tailored Cardiac Neuromodulation. JACC Clin Electrophysiol 2023; 9:1843-1853. [PMID: 37480858 DOI: 10.1016/j.jacep.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Low-level vagus nerve stimulation through the tragus (tLLVNS) is increasingly acknowledged as a therapeutic strategy to prevent and treat atrial fibrillation. However, a lack in understanding of the exact antiarrhythmic properties of tLLVNS has hampered clinical implementation. OBJECTIVES In this study, the authors aimed to study the effects of tLLVNS on atrial electrophysiology by performing intraoperative epicardial mapping during acute and chronic tLLVNS. METHODS Epicardial mapping of the superior right atrium was performed before and after arterial graft harvesting in patients undergoing coronary artery bypass grafting without a history of atrial fibrillation. The time needed for arterial graft harvesting was used to perform chronic tLLVNS. Electrophysiological properties were compared before and during chronic tLLVNS. RESULTS A total of 10 patients (median age 74 years [IQR: 69-78 years]) underwent tLLVNS for a duration of 56 minutes (IQR: 43-73 minutes). During acute and chronic tLLVNS, a shift of the sinoatrial node exit site toward a more cranial direction was observed in 5 (50%) patients. Unipolar potential voltage increased significantly during acute and chronic tLLVNS (3.9 mV [IQR: 3.1-4.8 mV] vs 4.7 mV [IQR: 4.0-5.3 mV] vs 5.2 mV [IQR: 4.8-7.0 mV]; P = 0.027, P = 0.02, respectively). Total activation time, slope of unipolar potentials, amount of fractionation, low-voltage areas and conduction velocity did not differ significantly between baseline measurements and tLLVNS. Two patients showed consistent "improvement" of all electrophysiological properties during tLLVNS, while 1 patient appeared to have no beneficial effect. CONCLUSIONS We demonstrated that tLLVNS resulted in a significant increase in unipolar potential voltage. In addition, we observed the following in selective patients: 1) reduction in total activation time; 2) steeper slope of unipolar potentials; 3) decrease in the amount of fractionation; and 4) change in sinoatrial node exit sites.
Collapse
Affiliation(s)
- Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roxanne D Zwijnenburg
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jorik H Amesz
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul Knops
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
10
|
Remme CA, Heijman J, Gomez AM, Zaza A, Odening KE. 25 years of basic and translational science in EP Europace: novel insights into arrhythmia mechanisms and therapeutic strategies. Europace 2023; 25:euad210. [PMID: 37622575 PMCID: PMC10450791 DOI: 10.1093/europace/euad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/26/2023] Open
Abstract
In the last 25 years, EP Europace has published more than 300 basic and translational science articles covering different arrhythmia types (ranging from atrial fibrillation to ventricular tachyarrhythmias), different diseases predisposing to arrhythmia formation (such as genetic arrhythmia disorders and heart failure), and different interventional and pharmacological anti-arrhythmic treatment strategies (ranging from pacing and defibrillation to different ablation approaches and novel drug-therapies). These studies have been conducted in cellular models, small and large animal models, and in the last couple of years increasingly in silico using computational approaches. In sum, these articles have contributed substantially to our pathophysiological understanding of arrhythmia mechanisms and treatment options; many of which have made their way into clinical applications. This review discusses a representative selection of EP Europace manuscripts covering the topics of pacing and ablation, atrial fibrillation, heart failure and pro-arrhythmic ventricular remodelling, ion channel (dys)function and pharmacology, inherited arrhythmia syndromes, and arrhythmogenic cardiomyopathies, highlighting some of the advances of the past 25 years. Given the increasingly recognized complexity and multidisciplinary nature of arrhythmogenesis and continued technological developments, basic and translational electrophysiological research is key advancing the field. EP Europace aims to further increase its contribution to the discovery of arrhythmia mechanisms and the implementation of mechanism-based precision therapy approaches in arrhythmia management.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC location University of Amsterdam, Heart Centre, Academic Medical Center, Room K2-104.2, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ana M Gomez
- Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, 91400 Orsay, France
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, Inselspital University Hospital Bern, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
11
|
van Schie MS, Liao R, Ramdat Misier NL, Knops P, Heida A, Taverne YJHJ, de Groot NMS. Atrial extrasystoles enhance low-voltage fractionation electrograms in patients with atrial fibrillation. Europace 2023; 25:euad223. [PMID: 37477953 PMCID: PMC10401323 DOI: 10.1093/europace/euad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND AIMS Atrial extrasystoles (AES) provoke conduction disorders and may trigger episodes of atrial fibrillation (AF). However, the direction- and rate-dependency of electrophysiological tissue properties on epicardial unipolar electrogram (EGM) morphology is unknown. Therefore, this study examined the impact of spontaneous AES on potential amplitude, -fractionation, -duration, and low-voltage areas (LVAs), and correlated these differences with various degrees of prematurity and aberrancy. METHODS AND RESULTS Intra-operative high-resolution epicardial mapping of the right and left atrium, Bachmann's Bundle, and pulmonary vein area was performed during sinus rhythm (SR) in 287 patients (60 with AF). AES were categorized according to their prematurity index (>25% shortening) and degree of aberrancy (none, mild/opposite, moderate and severe). In total, 837 unique AES (457 premature; 58 mild/opposite, 355 moderate, and 154 severe aberrant) were included. The average prematurity index was 28% [12-45]. Comparing SR and AES, average voltage decreased (-1.1 [-1.2, -0.9] mV, P < 0.001) at all atrial regions, whereas the amount of LVAs and fractionation increased (respectively, +3.4 [2.7, 4.1] % and +3.2 [2.6, 3.7] %, P < 0.001). Only weak or moderate correlations were found between EGM morphology parameters and prematurity indices (R2 < 0.299, P < 0.001). All parameters were, however, most severely affected by either mild/opposite or severely aberrant AES, in which the effect was more pronounced in AF patients. Also, there were considerable regional differences in effects provoked by AES. CONCLUSION Unipolar EGM characteristics during spontaneous AES are mainly directional-dependent and not rate-dependent. AF patients have more direction-dependent conduction disorders, indicating enhanced non-uniform anisotropy that is uncovered by spontaneous AES.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Rongheng Liao
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Nawin L Ramdat Misier
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Annejet Heida
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
- Department of Microelectronics, Signal Processing Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft University of Technology, Mekelweg 4, 2628CD Delft, the Netherlands
| |
Collapse
|
12
|
Nairn D, Eichenlaub M, Müller-Edenborn B, Huang T, Lehrmann H, Nagel C, Azzolin L, Luongo G, Figueras Ventura RM, Rubio Forcada B, Vallès Colomer A, Westermann D, Arentz T, Dössel O, Loewe A, Jadidi A. Differences in atrial substrate localization using late gadolinium enhancement-magnetic resonance imaging, electrogram voltage, and conduction velocity: a cohort study using a consistent anatomical reference frame in patients with persistent atrial fibrillation. Europace 2023; 25:euad278. [PMID: 37713626 PMCID: PMC10533207 DOI: 10.1093/europace/euad278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
AIMS Electro-anatomical voltage, conduction velocity (CV) mapping, and late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) have been correlated with atrial cardiomyopathy (ACM). However, the comparability between these modalities remains unclear. This study aims to (i) compare pathological substrate extent and location between current modalities, (ii) establish spatial histograms in a cohort, (iii) develop a new estimated optimized image intensity threshold (EOIIT) for LGE-MRI identifying patients with ACM, (iv) predict rhythm outcome after pulmonary vein isolation (PVI) for persistent atrial fibrillation (AF). METHODS AND RESULTS Thirty-six ablation-naive persistent AF patients underwent LGE-MRI and high-definition electro-anatomical mapping in sinus rhythm. Late gadolinium enhancement areas were classified using the UTAH, image intensity ratio (IIR >1.20), and new EOIIT method for comparison to low-voltage substrate (LVS) and slow conduction areas <0.2 m/s. Receiver operating characteristic analysis was used to determine LGE thresholds optimally matching LVS. Atrial cardiomyopathy was defined as LVS extent ≥5% of the left atrium (LA) surface at <0.5 mV. The degree and distribution of detected pathological substrate (percentage of individual LA surface are) varied significantly (P < 0.001) across the mapping modalities: 10% (interquartile range 0-14%) of the LA displayed LVS <0.5 mV vs. 7% (0-12%) slow conduction areas <0.2 m/s vs. 15% (8-23%) LGE with the UTAH method vs. 13% (2-23%) using IIR >1.20, with most discrepancies on the posterior LA. Optimized image intensity thresholds and each patient's mean blood pool intensity correlated linearly (R2 = 0.89, P < 0.001). Concordance between LGE-MRI-based and LVS-based ACM diagnosis improved with the novel EOIIT applied at the anterior LA [83% sensitivity, 79% specificity, area under the curve (AUC): 0.89] in comparison to the UTAH method (67% sensitivity, 75% specificity, AUC: 0.81) and IIR >1.20 (75% sensitivity, 62% specificity, AUC: 0.67). CONCLUSION Discordances in detected pathological substrate exist between LVS, CV, and LGE-MRI in the LA, irrespective of the LGE detection method. The new EOIIT method improves concordance of LGE-MRI-based ACM diagnosis with LVS in ablation-naive AF patients but discrepancy remains particularly on the posterior wall. All methods may enable the prediction of rhythm outcomes after PVI in patients with persistent AF.
Collapse
Affiliation(s)
- Deborah Nairn
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Martin Eichenlaub
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn Müller-Edenborn
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Taiyuan Huang
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Lehrmann
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Nagel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Luca Azzolin
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Giorgio Luongo
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | | | | | | | - Dirk Westermann
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Arentz
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, Karlsruhe 76131, Germany
| | - Amir Jadidi
- Department of Cardiology and Angiology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Arrhythmia Division, Department of Cardiology, Heart Center Lucerne, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
13
|
Ramos KS, Li J, Wijdeveld LFJ, van Schie MS, Taverne YJHJ, Boon RA, de Groot NMS, Brundel BJJM. Long Noncoding RNA UCA1 Correlates With Electropathology in Patients With Atrial Fibrillation. JACC Clin Electrophysiol 2023:S2405-500X(23)00116-0. [PMID: 37227342 DOI: 10.1016/j.jacep.2023.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perpetuation of atrial fibrillation (AF) is rooted in derailment of molecular proteostasis pathways that cause electrical conduction disorders that drive AF. Emerging evidence indicates a role for long noncoding RNAs (lncRNAs) in the pathophysiology of cardiac diseases, including AF. OBJECTIVES In the present study, the authors explored the association between 3 cardiac lncRNAs and the degree of electropathology. METHODS Patients had paroxysmal AF (ParAF) (n = 59), persistent AF (PerAF) (n = 56), or normal sinus rhythm without a history of AF (SR) (n = 70). The relative expression levels of urothelial carcinoma-associated 1 (UCA1), OXCT1-AS1 (SARRAH), and the mitochondrial lncRNA uc022bqs.q (LIPCAR) were measured by means of quantitative reverse-transcription polymerase chain reaction in the right atrial appendage (RAA) or serum (or both). A selection of the patients was subjected to high-resolution epicardial mapping to evaluate electrophysiologic features during SR. RESULTS The expression levels of SARRAH and LIPCAR were decreased in RAAs of all AF patients compared with SR. Also, in RAAs, UCA1 levels significantly correlated with the percentage of conduction block and delay, and inversely with conduction velocity, indicating that UCA1 levels in RAA reflect the degree of electrophysiologic disorders. Moreover, in serum samples, SARRAH and UCA1 levels were increased in the total AF group and ParAF patients compared with SR. CONCLUSIONS LncRNAs SARRAH and LIPCAR are reduced in RAA of AF patients, and UCA1 levels correlate with electrophysiologic conduction abnormalities. Thus, RAA UCA1 levels may aid staging of electropathology severity and act as a patient-tailored bioelectrical fingerprint.
Collapse
Affiliation(s)
- Kennedy S Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jin Li
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Leonoor F J Wijdeveld
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Heida A, van der Does WFB, van Schie MS, van Staveren LN, Taverne YJHJ, Bogers AJJC, de Groot NMS. Does conduction heterogeneity determine the supervulnerable period after atrial fibrillation? Med Biol Eng Comput 2023; 61:897-908. [PMID: 36223000 PMCID: PMC9988743 DOI: 10.1007/s11517-022-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Atrial fibrillation (AF) resumes within 90 s in 27% of patients after sinus rhythm (SR) restoration. The aim of this study is to compare conduction heterogeneity during the supervulnerable period immediately after electrical cardioversion (ECV) with long-term SR in patients with AF. Epicardial mapping of both atria was performed during SR and premature atrial extrasystoles in patients in the ECV (N = 17, age: 73 ± 7 years) and control group (N = 17, age: 71 ± 6 years). Inter-electrode conduction times were used to identify areas of conduction delay (CD) (conduction times 7-11 ms) and conduction block (CB) (conduction times ≥ 12 ms). For all atrial regions, prevalences and length of longest CB and continuous CDCB lines, magnitude of conduction disorders, conduction velocity, biatrial activation time, and voltages did not differ between the ECV and control group during both SR and premature atrial extrasystoles (p ≥ 0.05). Hence, our data suggest that there may be no difference in biatrial conduction characteristics between the supervulnerable period after ECV and long-term SR in AF patients. The supervulnerable period after AF termination is not determined by conduction heterogeneity during SR and PACs. It is unknown to what extent intra-atrial conduction is impaired during the supervulnerable period immediately after ECV and whether different right and left atrial regions are equally affected. This high-resolution epicardial mapping study (upper left panel) of both atria shows that during SR the prevalences and length of longest CB and cCDCB lines (upper middle panel), magnitude of conduction disorders, CV and TAT (lower left panel), and voltages did not differ between the ECV and control group. Likewise, these parameters were comparable during PACs between the ECV and control group (lower left panel). †Non-normally distributed. cm/s = centimeters per second; mm = millimeter; ms = millisecond; AF = atrial fibrillation; AT = activation time; BB = Bachmann's bundle; cCDCB = continuous lines of conduction delay and block; CB = conduction block; CD = conduction delay; CT = conduction time; CV = conduction velocity; ECV = electrical cardioversion; LA = left atrium; LAT = local activation times; PAC = premature atrial complexes; PVA = pulmonary vein area; RA = right atrium; SR = sinus rhythm; TAT = total activation time.
Collapse
Affiliation(s)
- Annejet Heida
- Unit Translational Electrophysiology, Department of Cardiology, RG-619, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Willemijn F B van der Does
- Unit Translational Electrophysiology, Department of Cardiology, RG-619, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Mathijs S van Schie
- Unit Translational Electrophysiology, Department of Cardiology, RG-619, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Lianne N van Staveren
- Unit Translational Electrophysiology, Department of Cardiology, RG-619, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Unit Translational Electrophysiology, Department of Cardiology, RG-619, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
van Schie MS, Ramdat Misier NL, Razavi Ebrahimi P, Heida A, Kharbanda RK, Taverne YJHJ, de Groot NMS. Premature atrial contractions promote local directional heterogeneities in conduction velocity vectors. Europace 2023; 25:1162-1171. [PMID: 36637110 PMCID: PMC10062298 DOI: 10.1093/europace/euac283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023] Open
Abstract
AIMS Loss of cell-to-cell communication results in local conduction disorders and directional heterogeneity (LDH) in conduction velocity (CV) vectors, which may be unmasked by premature atrial contractions (PACs). We quantified LDH and examined differences between sinus rhythm (SR) and spontaneous PACs in patients with and without atrial fibrillation (AF). METHODS AND RESULTS Intra-operative epicardial mapping of the right and left atrium (RA, LA), Bachmann's bundle (BB) and pulmonary vein area (PVA) was performed in 228 patients (54 with AF). Conduction velocity vectors were computed at each electrode using discrete velocity vectors. Directions and magnitudes of individual vectors were compared with surrounding vectors to identify LDH. Five hundred and three PACs [2 (1-3) per patient; prematurity index of 45 ± 12%] were included. During SR, most LDH were found at BB and LA [11.9 (8.3-14.9) % and 11.3 (8.0-15.2) %] and CV was lowest at BB [83.5 (72.4-94.3) cm/s, all P < 0.05]. Compared with SR, the largest increase in LDH during PAC was found at BB and PVA [+13.0 (7.7, 18.3) % and +12.5 (10.8, 14.2) %, P < 0.001]; CV decreased particularly at BB, PVA and LA [-10.0 (-13.2, -6.9) cm/s, -9.3 (-12.5, -6.2) cm/s and -9.1 (-11.7, -6.6) cm/s, P < 0.001]. Comparing patients with and without AF, more LDH were found during SR in AF patients at PVA and BB, although the increase in LDH during PACs was similar for all sites. CONCLUSION Local directional heterogeneity is a novel methodology to quantify local heterogeneity in CV as a possible indicator of electropathology. Intra-operative high-resolution mapping indeed revealed that LDH increased during PACs particularly at BB and PVA. Also, patients with AF already have more LDH during SR, which becomes more pronounced during PACs.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Nawin L Ramdat Misier
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Payam Razavi Ebrahimi
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Annejet Heida
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Dr. Molewaterplein 40, 3015GD Rotterdam, the Netherlands
| | | |
Collapse
|
16
|
Van Schie MS, Knops P, Zhang L, Van Schaagen FRN, Taverne YJHJ, De Groot NMS. Detection of endo-epicardial atrial low-voltage areas using unipolar and omnipolar voltage mapping. Front Physiol 2022; 13:1030025. [PMID: 36277177 PMCID: PMC9582746 DOI: 10.3389/fphys.2022.1030025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Low-voltage areas (LVA) can be located exclusively at either the endocardium or epicardium. This has only been demonstrated for bipolar voltages, but the value of unipolar and omnipolar voltages recorded from either the endocardium and epicardium in predicting LVAs at the opposite layer remains unknown. The goal of this study was therefore to compare simultaneously recorded endo-epicardial unipolar and omnipolar potentials and to determine whether their voltage characteristics are predictive for opposite LVAs.Methods: Intra-operative simultaneous endo-epicardial mapping (256 electrodes, interelectrode distances 2 mm) was performed during sinus rhythm at the right atrium in 93 patients (67 ± 9 years, 73 male). Cliques of four electrodes (2 × 2 mm) were used to define maximal omnipolar (Vomni,max) and unipolar (Vuni,max) voltages. LVAs were defined as Vomni,max ≤0.5 mV or Vuni,max ≤1.0 mV.Results: The majority of both unipolar and omnipolar LVAs were located at only the endocardium (74.2% and 82.0% respectively) or epicardium (52.7% and 47.6% respectively). Of the endocardial unipolar LVAs, 25.8% were also located at the opposite layer and 47.3% vice-versa. In omnipolar LVAs, 18.0% of the endocardial LVAs were also located at the epicardium and 52.4% vice-versa. The combination of epicardial Vuni,max and Vomni,max was most accurate in identifying dual-layer LVAs (50.4%).Conclusion: Unipolar and omnipolar LVAs are frequently located exclusively at either the endocardium or epicardium. Endo-epicardial LVAs are most accurately identified using combined epicardial unipolar and omnipolar voltages. Therefore, a combined endo-epicardial unipolar and omnipolar mapping approach is favoured as it may be more indicative of possible arrhythmogenic substrates.
Collapse
Affiliation(s)
| | - Paul Knops
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | - Natasja M. S. De Groot
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- *Correspondence: Natasja M. S. De Groot,
| |
Collapse
|
17
|
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate. Med Biol Eng Comput 2022; 60:2463-2478. [PMID: 35867323 PMCID: PMC9365755 DOI: 10.1007/s11517-022-02621-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Characterizing patient-specific atrial conduction properties is important for understanding arrhythmia drivers, for predicting potential arrhythmia pathways, and for personalising treatment approaches. One metric that characterizes the health of the myocardial substrate is atrial conduction velocity, which describes the speed and direction of propagation of the electrical wavefront through the myocardium. Atrial conduction velocity mapping algorithms are under continuous development in research laboratories and in industry. In this review article, we give a broad overview of different categories of currently published methods for calculating CV, and give insight into their different advantages and disadvantages overall. We classify techniques into local, global, and inverse methods, and discuss these techniques with respect to their faithfulness to the biophysics, incorporation of uncertainty quantification, and their ability to take account of the atrial manifold.
Collapse
|
18
|
Siles-Paredes JG, Crowley CJ, Fenton FH, Bhatia N, Iravanian S, Sandoval I, Pollnow S, Dössel O, Salinet J, Uzelac I. Circle Method for Robust Estimation of Local Conduction Velocity High-Density Maps From Optical Mapping Data: Characterization of Radiofrequency Ablation Sites. Front Physiol 2022; 13:794761. [PMID: 36035466 PMCID: PMC9417315 DOI: 10.3389/fphys.2022.794761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/15/2022] [Indexed: 01/10/2023] Open
Abstract
Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies.
Collapse
Affiliation(s)
- Jimena G. Siles-Paredes
- Graduate Program in Biotechnoscience, Federal University of ABC, São Paulo, Brazil
- HEartLab, Federal University of ABC, São Paulo, Brazil
- *Correspondence: Jimena G. Siles-Paredes,
| | | | - Flavio H. Fenton
- Georgia Institute of Technology, School of Physics, Atlanta, GA, United States
| | - Neal Bhatia
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | | | - Stefan Pollnow
- Karlsruhe Institute of Technology (KIT)/Institute of Biomedical Engineering, Karlsruhe, Germany
| | - Olaf Dössel
- Karlsruhe Institute of Technology (KIT)/Institute of Biomedical Engineering, Karlsruhe, Germany
| | - João Salinet
- Graduate Program in Biotechnoscience, Federal University of ABC, São Paulo, Brazil
- HEartLab, Federal University of ABC, São Paulo, Brazil
| | - Ilija Uzelac
- Georgia Institute of Technology, School of Physics, Atlanta, GA, United States
| |
Collapse
|
19
|
van Schie MS, de Groot NMS. Clinical Relevance of Sinus Rhythm Mapping to Quantify Electropathology Related to Atrial Fibrillation. Arrhythm Electrophysiol Rev 2022; 11:e11. [PMID: 35846426 PMCID: PMC9277615 DOI: 10.15420/aer.2022.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
Progression of AF is accompanied by structural and electrical remodelling, resulting in complex electrical conduction disorders. This is defined as electropathology and it increases with the progression of AF. The severity of electropathology, thus, defines the stage of AF and is a major determinant of effectiveness of AF therapy. As specific features of AF-related electropathology are still unknown, it is essential to first quantify the electrophysiological properties of atrial tissue and then to examine the inter- and intra-individual variation during normal sinus rhythm. Comparison of these parameters between patients with and without a history of AF unravels quantified electrophysiological features that are specific to AF patients. This can help to identify patients at risk for early onset or progression of AF. This review summarises current knowledge on quantified features of atrial electrophysiological properties during sinus rhythm and discusses its relevance in identifying AF-related electropathology.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja MS de Groot
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
van Schie MS, Veen D, Kharbanda RK, Heida A, Starreveld R, van Schaagen FRN, Bogers AJJC, Taverne YJHJ, de Groot NMS. Characterization of pre-existing arrhythmogenic substrate associated with de novo early and late postoperative atrial fibrillation. Int J Cardiol 2022; 363:71-79. [PMID: 35705170 DOI: 10.1016/j.ijcard.2022.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND PoAF is the most common complication after cardiac surgery and may occur in patients with pre-existing arrhythmogenic substrate. Characterization of this substrate could aid in identifying patients at risk for PoAF. We therefore compared intra-atrial conduction parameters and electrogram morphology between patients without and with early- (≤5 days after surgery) and late- (up to 5 years) postoperative atrial fibrillation (PoAF). METHODS AND RESULTS Epicardial mapping of the right and left atrium and Bachmann's Bundle (BB) was performed during sinus rhythm (SR) in 263 patients (207male, 67 ± 11 years). Unipolar potentials were classified as single, short or long double and fractionated potentials. Unipolar voltage, fractionation delay (time difference between the first and last deflection), conduction velocity (CV) and conduction block (CB) prevalence were measured. Comparing patients without (N = 166) and with PoAF (N = 97), PoAF was associated with lower CV and more CB at BB. Unipolar voltages were lower and more low-voltage areas were found at the left and right atrium and BB in PoAF patients. These differences were more pronounced in patients with late-PoAF (6%), which could even occur up to 5 years after surgery. Although several electrophysiological parameters were related to PoAF, age was the only independent predictor. CONCLUSIONS Patients with de novo PoAF have more extensive arrhythmogenic substrate prior to cardiac surgery compared to those who remained in SR, which is even more pronounced in late-PoAF patients. Future studies should evaluate whether intra-operative electrophysiological examination enables identification of patients at risk for developing PoAF and hence (preventive) therapy.
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Danny Veen
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annejet Heida
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roeliene Starreveld
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank R N van Schaagen
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
21
|
Nayir S, Lacour SP, Kucera JP. Active force generation contributes to the complexity of spontaneous activity and to the response to stretch of murine cardiomyocyte cultures. J Physiol 2022; 600:3287-3312. [PMID: 35679256 PMCID: PMC9541716 DOI: 10.1113/jp283083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract Cardiomyocyte cultures exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. In such preparations, beat rate variability exhibits features similar to those of heart rate variability in vivo. Mechanical deformations and forces feed back on the electrical properties of cardiomyocytes, but it is not fully elucidated how this mechano‐electrical interplay affects beating variability in such preparations. Using stretchable microelectrode arrays, we assessed the effects of the myosin inhibitor blebbistatin and the non‐selective stretch‐activated channel blocker streptomycin on beating variability and on the response of neonatal or fetal murine ventricular cell cultures against deformation. Spontaneous electrical activity was recorded without stretch and upon predefined deformation protocols (5% uniaxial and 2% equibiaxial strain, applied repeatedly for 1 min every 3 min). Without stretch, spontaneous activity originated from the edge of the preparations, and its site of origin switched frequently in a complex manner across the cultures. Blebbistatin did not change mean beat rate, but it decreased the spatial complexity of spontaneous activity. In contrast, streptomycin did not exert any manifest effects. During the deformation protocols, beat rate increased transiently upon stretch but, paradoxically, also upon release. Blebbistatin attenuated the response to stretch, whereas this response was not affected by streptomycin. Therefore, our data support the notion that in a spontaneously firing network of cardiomyocytes, active force generation, rather than stretch‐activated channels, is involved mechanistically in the complexity of the spatiotemporal patterns of spontaneous activity and in the stretch‐induced acceleration of beating.
![]() Key points Monolayer cultures of cardiac cells exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. Beating variability in these preparations recapitulates the power‐law behaviour of heart rate variability in vivo. However, the effects of mechano‐electrical feedback on beating variability are not yet fully understood. Using stretchable microelectrode arrays, we examined the effects of the contraction uncoupler blebbistatin and the non‐specific stretch‐activated channel blocker streptomycin on beating variability and on stretch‐induced changes of beat rate. Without stretch, blebbistatin decreased the spatial complexity of beating variability, whereas streptomycin had no effects. Both stretch and release increased beat rate transiently; blebbistatin attenuated the increase of beat rate upon stretch, whereas streptomycin had no effects. Active force generation contributes to the complexity of spatiotemporal patterns of beating variability and to the increase of beat rate upon mechanical deformation. Our study contributes to the understanding of how mechano‐electrical feedback influences heart rate variability.
Collapse
Affiliation(s)
- Seyma Nayir
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Sun M, de Groot NMS, Hendriks RC. Joint cardiac tissue conductivity and activation time estimation using confirmatory factor analysis. Comput Biol Med 2022; 144:105393. [PMID: 35299040 DOI: 10.1016/j.compbiomed.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Mathematical models of the electrophysiology of cardiac tissue play an important role when studying heart rhythm disorders like atrial fibrillation. Model parameters such as conductivity, activation time, and anisotropy ratio are useful parameters to determine the arrhythmogenic substrate that causes abnormalities in the atrial tissue. Existing methods often estimate the model parameters separately and assume some of the parameters to be known as a priori knowledge. In this work, we propose an efficient method to jointly estimate the parameters of interest from the cross power spectral density matrix (CPSDM) model of the electrograms. By applying confirmatory factor analysis (CFA) to the CPSDMs of multi-electrode electrograms, we can make use of the spatial information of the data and analyze the relationship between the desired resolution and the required amount of data. With the reasonable assumptions that the conductivity parameters and the anisotropy parameters are constant across different frequencies and heart beats, we estimate these parameters using multiple frequencies and multiple heart beats simultaneously to easier satisfy the identifiability conditions in the CFA problem. Results on the simulated data show that using multiple heart beats decreases the estimation errors of the conductivity and the estimated activation time parameters. The experimental results on clinical data show that using multiple heart beats for parameter estimation can reduce the reconstruction errors of the clinical electrograms, which further demonstrates the robustness of the proposed method.
Collapse
Affiliation(s)
- Miao Sun
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands.
| | | | - Richard C Hendriks
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands
| |
Collapse
|
23
|
S. Ramos K, Pool L, van Schie MS, Wijdeveld LFJM, van der Does WFB, Baks L, Sultan HMD, van Wijk SW, Bogers AJJC, Verheule S, de Groot NMS, Brundel BJJM. Degree of Fibrosis in Human Atrial Tissue Is Not the Hallmark Driving AF. Cells 2022; 11:cells11030427. [PMID: 35159236 PMCID: PMC8834228 DOI: 10.3390/cells11030427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Background: The current paradigm is that fibrosis promotes electrophysiological disorders and drives atrial fibrillation (AF). In this current study, we investigated the relation between the degree of fibrosis in human atrial tissue samples of controls and patients in various stages of AF and the degree of electrophysiological abnormalities. Methods: The degree of fibrosis was measured in the atrial tissue and serum of patients in various stages of AF and the controls. Hereto, picrosirius and H&E staining were performed to quantify degree of total, endo-perimysial fibrosis, and cardiomyocyte diameter. Western blot quantified fibrosis markers: neural cell adhesion molecule, tissue inhibitor of metalloproteinase, lysyl oxidase, and α-smooth muscle actin. In serum, the ratio carboxyl-terminal telopeptide of collagen/matrix-metalloproteinase1 was determined. High-resolution epicardial mapping evaluated low-voltage areas and conduction abnormalities. Results: No significant differences were observed in the degree of fibrosis between the groups. Finally, no significant correlation—absolute nor spatial—was observed between all electrophysiological parameters and histological fibrosis markers. Conclusions: No differences in the degree of fibrosis were observed in patients from various stages of AF compared to the controls. Moreover, electrophysiological abnormalities did not correlate with any of the fibrosis markers. The findings indicate that fibrosis is not the hallmark of structural remodeling in AF.
Collapse
Affiliation(s)
- Kennedy S. Ramos
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
- Department Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.v.S.); (W.F.B.v.d.D.); (N.M.S.d.G.)
- Correspondence: (K.S.R.); (B.J.J.M.B.)
| | - Lisa Pool
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
- Department Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.v.S.); (W.F.B.v.d.D.); (N.M.S.d.G.)
| | - Mathijs S. van Schie
- Department Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.v.S.); (W.F.B.v.d.D.); (N.M.S.d.G.)
| | - Leonoor F. J. M. Wijdeveld
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
| | - Willemijn F. B. van der Does
- Department Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.v.S.); (W.F.B.v.d.D.); (N.M.S.d.G.)
| | - Luciënne Baks
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
| | - H. M. Danish Sultan
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
| | - Stan W. van Wijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
| | - Ad J. J. C. Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Sander Verheule
- Department of Physiology, University Maastricht, 6211 LK Maastricht, The Netherlands;
| | - Natasja M. S. de Groot
- Department Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (M.S.v.S.); (W.F.B.v.d.D.); (N.M.S.d.G.)
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (L.P.); (L.F.J.M.W.); (L.B.); (H.M.D.S.); (S.W.v.W.)
- Correspondence: (K.S.R.); (B.J.J.M.B.)
| |
Collapse
|
24
|
van Schie MS, Kharbanda RK, Houck CA, Lanters EAH, Taverne YJHJ, Bogers AJJC, de Groot NMS. Identification of Low-Voltage Areas: A Unipolar, Bipolar, and Omnipolar Perspective. Circ Arrhythm Electrophysiol 2021; 14:e009912. [PMID: 34143644 PMCID: PMC8294660 DOI: 10.1161/circep.121.009912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-voltage areas (LVAs) are commonly considered surrogate markers for an arrhythmogenic substrate underlying tachyarrhythmias. It remains challenging to define a proper threshold to classify LVA, and it is unknown whether unipolar, bipolar, and the recently introduced omnipolar voltage mapping techniques are complementary or contradictory in classifying LVAs. Therefore, this study examined similarities and dissimilarities in unipolar, bipolar, and omnipolar voltage mapping and explored the relation between various types of voltages and conduction velocity (CV).
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rohit K Kharbanda
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Charlotte A Houck
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eva A H Lanters
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Reduction of Conduction Velocity in Patients with Atrial Fibrillation. J Clin Med 2021; 10:jcm10122614. [PMID: 34198544 PMCID: PMC8231908 DOI: 10.3390/jcm10122614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
It is unknown to what extent atrial fibrillation (AF) episodes affect intra-atrial conduction velocity (CV) and whether regional differences in local CV heterogeneities exist during sinus rhythm. This case-control study aims to compare CV assessed throughout both atria between patients with and without AF. Patients (n = 34) underwent intra-operative epicardial mapping of the right atrium (RA), Bachmann’s bundle (BB), left atrium (LA) and pulmonary vein area (PVA). CV vectors were constructed to calculate median CV in addition to total activation times (TAT) and unipolar voltages. Biatrial median CV did not differ between patients with and without AF (90 ± 8 cm/s vs. 92 ± 6 cm/s, p = 0.56); only BB showed a CV reduction in the AF group (79 ± 12 cm/s vs. 88 ± 11 cm/s, p = 0.02). In patients without AF, there was no predilection site for the lowest CV (P5) (RA: 12%; BB: 29%; LA: 29%; PVA: 29%). In patients with AF, lowest CV was most often measured at BB (53%) and ranged between 15 to 22 cm/s (median: 20 cm/s). Lowest CVs were also measured at the LA (18%) and PVA (29%), but not at the RA. AF was associated with a prolonged TAT (p = 0.03) and decreased voltages (P5) at BB (p = 0.02). BB was a predilection site for slowing of conduction in patients with AF. Prolonged TAT and decreased voltages were also found at this site. The next step will be to determine the relevance of a reduced CV at BB in relation to AF development and maintenance.
Collapse
|