1
|
Dominguez-Gomez P, Zingaro A, Baldo-Canut L, Balzotti C, Darpo B, Morton C, Vázquez M, Aguado-Sierra J. Fast and accurate prediction of drug induced proarrhythmic risk with sex specific cardiac emulators. NPJ Digit Med 2024; 7:380. [PMID: 39725693 DOI: 10.1038/s41746-024-01370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
In silico trials for drug safety assessment require many high-fidelity 3D cardiac simulations to predict drug-induced QT interval prolongation, which is often computationally prohibitive. To streamline this process, we developed sex-specific emulators for a fast prediction of QT interval, trained on a dataset of 900 simulations. Our results show significant differences between 3D and 0D single-cell models as risk levels increase, underscoring the ability of 3D modeling to capture more complex cardiac responses. The emulators demonstrated an average error of 4% compared to simulations, allowing for efficient global sensitivity analysis and fast replication of in silico clinical trials. This approach enables rapid, multi-dose drug testing on standard hardware, addressing critical industry challenges around trial design, assay variability, and cost-effective safety evaluations. By integrating these emulators into drug development, we can improve preclinical reliability and advance the practical application of digital twins in biomedicine.
Collapse
Affiliation(s)
- Paula Dominguez-Gomez
- ELEM Biotech S.L., Pier 07, Via Laietana, 26, Barcelona, 08003, Spain.
- University Pompeu Fabra, Carrer de Tànger, 122-140, Barcelona, 08018, Spain.
| | - Alberto Zingaro
- ELEM Biotech S.L., Pier 07, Via Laietana, 26, Barcelona, 08003, Spain
| | - Laura Baldo-Canut
- ELEM Biotech S.L., Pier 07, Via Laietana, 26, Barcelona, 08003, Spain
| | - Caterina Balzotti
- ELEM Biotech S.L., Pier 07, Via Laietana, 26, Barcelona, 08003, Spain
| | - Borje Darpo
- Clario, 1818 Market St Suite 2600, Philadelphia, 19103, USA
| | | | - Mariano Vázquez
- ELEM Biotech S.L., Pier 07, Via Laietana, 26, Barcelona, 08003, Spain
- Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, Barcelona, 08034, Spain
| | | |
Collapse
|
2
|
Zeng M, Huang L, Zheng X, Weng L, Weng CF. Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life (Basel) 2024; 14:1047. [PMID: 39202788 PMCID: PMC11355614 DOI: 10.3390/life14081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
AIM Cardiac arrhythmias are among the most important pathologies that cause sudden death. The exploration of new therapeutic options against arrhythmias with low undesirable effects is of paramount importance. METHODS However, the convenient and typical animal model for screening the potential lead compound becomes a very critical modality, particularly in anti-arrhythmia. In this study, mice were intraperitoneally (i.p.) injected with BaCl2, CaCl2, and adrenaline to induce arrhythmia, and simultaneously compared with BaCl2-induced rats. RESULTS Electrocardiogram (ECG) showed that the majority of mice repeatedly developed ventricular bigeminy, ventricular tachycardia (VT), and ventricular fibrillation (VF) after BaCl2-injection as seen in rats. The ECG of mice developed ventricular bigeminy and VT after CaCl2 and AT after adrenaline i.p. injection. Additionally, acute cardiac arrhythmia after BaCl2 i.p. injection could be reverted by drugs (lidocaine and amiodarone) administration. Additionally, the different routes of administration for various chemical-induced arrhythmia in both mice and rats were also retrieved from PubMed and summarized. Comparing this approach with previous studies after the literature review reveals that arrhythmia of BaCl2-induced i.p. mice is compatible with the induction of other routes. CONCLUSIONS This study brings an alternative experimental model to investigate antiarrhythmic theories and provides a promising approach to discovering new interventions for acute arrhythmias.
Collapse
Affiliation(s)
- Mengting Zeng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Liyue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Xiaohui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Lebin Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- LEADTEK Research, Inc., New Taipei City 235603, Taiwan
| |
Collapse
|
3
|
Zaniboni M. The electrical restitution of the non-propagated cardiac ventricular action potential. Pflugers Arch 2024; 476:9-37. [PMID: 37783868 PMCID: PMC10758374 DOI: 10.1007/s00424-023-02866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Sudden changes in pacing cycle length are frequently associated with repolarization abnormalities initiating cardiac arrhythmias, and physiologists have long been interested in measuring the likelihood of these events before their manifestation. A marker of repolarization stability has been found in the electrical restitution (ER), the response of the ventricular action potential duration to a pre- or post-mature stimulation, graphically represented by the so-called ER curve. According to the restitution hypothesis (ERH), the slope of this curve provides a quantitative discrimination between stable repolarization and proneness to arrhythmias. ER has been studied at the body surface, whole organ, and tissue level, and ERH has soon become a key reference point in theoretical, clinical, and pharmacological studies concerning arrhythmia development, and, despite criticisms, it is still widely adopted. The ionic mechanism of ER and cellular applications of ERH are covered in the present review. The main criticism on ERH concerns its dependence from the way ER is measured. Over the years, in fact, several different experimental protocols have been established to measure ER, which are also described in this article. In reviewing the state-of-the art on cardiac cellular ER, I have introduced a notation specifying protocols and graphical representations, with the aim of unifying a sometime confusing nomenclature, and providing a physiological tool, better defined in its scope and limitations, to meet the growing expectations of clinical and pharmacological research.
Collapse
Affiliation(s)
- Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma (Italy), Parco Area Delle Scienze, 11/A, 43124, Parma, Italy.
| |
Collapse
|
4
|
Peirlinck M, Sahli Costabal F, Kuhl E. Sex Differences in Drug-Induced Arrhythmogenesis. Front Physiol 2021; 12:708435. [PMID: 34489728 PMCID: PMC8417068 DOI: 10.3389/fphys.2021.708435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The electrical activity in the heart varies significantly between men and women and results in a sex-specific response to drugs. Recent evidence suggests that women are more than twice as likely as men to develop drug-induced arrhythmia with potentially fatal consequences. Yet, the sex-specific differences in drug-induced arrhythmogenesis remain poorly understood. Here we integrate multiscale modeling and machine learning to gain mechanistic insight into the sex-specific origin of drug-induced cardiac arrhythmia at differing drug concentrations. To quantify critical drug concentrations in male and female hearts, we identify the most important ion channels that trigger male and female arrhythmogenesis, and create and train a sex-specific multi-fidelity arrhythmogenic risk classifier. Our study reveals that sex differences in ion channel activity, tissue conductivity, and heart dimensions trigger longer QT-intervals in women than in men. We quantify the critical drug concentration for dofetilide, a high risk drug, to be seven times lower for women than for men. Our results emphasize the importance of including sex as an independent biological variable in risk assessment during drug development. Acknowledging and understanding sex differences in drug safety evaluation is critical when developing novel therapeutic treatments on a personalized basis. The general trends of this study have significant implications on the development of safe and efficacious new drugs and the prescription of existing drugs in combination with other drugs.
Collapse
Affiliation(s)
- Mathias Peirlinck
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Abstract
Computer modeling of the electrophysiology of the heart has undergone significant progress. A healthy heart can be modeled starting from the ion channels via the spread of a depolarization wave on a realistic geometry of the human heart up to the potentials on the body surface and the ECG. Research is advancing regarding modeling diseases of the heart. This article reviews progress in calculating and analyzing the corresponding electrocardiogram (ECG) from simulated depolarization and repolarization waves. First, we describe modeling of the P-wave, the QRS complex and the T-wave of a healthy heart. Then, both the modeling and the corresponding ECGs of several important diseases and arrhythmias are delineated: ischemia and infarction, ectopic beats and extrasystoles, ventricular tachycardia, bundle branch blocks, atrial tachycardia, flutter and fibrillation, genetic diseases and channelopathies, imbalance of electrolytes and drug-induced changes. Finally, we outline the potential impact of computer modeling on ECG interpretation. Computer modeling can contribute to a better comprehension of the relation between features in the ECG and the underlying cardiac condition and disease. It can pave the way for a quantitative analysis of the ECG and can support the cardiologist in identifying events or non-invasively localizing diseased areas. Finally, it can deliver very large databases of reliably labeled ECGs as training data for machine learning.
Collapse
|
6
|
Hwang M, Lim CH, Leem CH, Shim EB. In silico models for evaluating proarrhythmic risk of drugs. APL Bioeng 2020; 4:021502. [PMID: 32548538 PMCID: PMC7274812 DOI: 10.1063/1.5132618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Safety evaluation of drugs requires examination of the risk of generating Torsade de Pointes (TdP) because it can lead to sudden cardiac death. Until recently, the QT interval in the electrocardiogram (ECG) has been used in the evaluation of TdP risk because the QT interval is known to be associated with the development of TdP. Although TdP risk evaluation based on QT interval has been successful in removing drugs with TdP risk from the market, some safe drugs may have also been affected due to the low specificity of QT interval-based evaluation. For more accurate evaluation of drug safety, the comprehensive in vitro proarrhythmia assay (CiPA) has been proposed by regulatory agencies, industry, and academia. Although the CiPA initiative includes in silico evaluation of cellular action potential as a component, attempts to utilize in silico simulation in drug safety evaluation are expanding, even to simulating human ECG using biophysical three-dimensional models of the heart and torso under the effects of drugs. Here, we review recent developments in the use of in silico models for the evaluation of the proarrhythmic risk of drugs. We review the single cell, one-dimensional, two-dimensional, and three-dimensional models and their applications reported in the literature and discuss the possibility of utilizing ECG simulation in drug safety evaluation.
Collapse
Affiliation(s)
- Minki Hwang
- SiliconSapiens Inc., Seoul 06097, South Korea
| | - Chul-Hyun Lim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, South Korea
| | - Chae Hun Leem
- Department of Physiology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | | |
Collapse
|
7
|
Shalaby N, Zemzemi N, Elkhodary K. Simulating the effect of sodium channel blockage on cardiac electromechanics. Proc Inst Mech Eng H 2019; 234:16-27. [PMID: 31625448 DOI: 10.1177/0954411919882514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is growing interest to better understand drug-induced cardiovascular complications and to predict undesirable side effects at as early a stage in the drug development process as possible. The purpose of this paper is to investigate computationally the influence of sodium ion channel blockage on cardiac electromechanics. To do so, we implement a myofiber orientation dependent passive stress model (Holzapfel-Ogden) in the multiphysics solver Chaste to simulate an imaged physiological model of the human ventricles. A dosage of a sodium channel blocker was then applied and its inhibitory effects on the electrical propagation across ventricles were modeled. We employ the Kerckhoffs active stress model to generate electrically excited contractile behavior of myofibers. Our predictions indicate that a delay in the electrical activation of ventricular tissue caused by the sodium channel blockage translates to a delay in the mechanical biomarkers that were investigated. Moreover, sodium channel blockage was found to increase left ventricular twist. A multiphysics computational framework from the cell level to the organ level was thus used to predict the effect of sodium channel blocking drugs on cardiac electromechanics.
Collapse
Affiliation(s)
- Noha Shalaby
- Mechanical Engineering Department, The American University in Cairo, New Cairo, Egypt
| | - Nejib Zemzemi
- INRIA Bordeaux Sud-Ouest, Carmen Group, Talence, France.,IHU-LIRYC, Pessac, France
| | - Khalil Elkhodary
- Mechanical Engineering Department, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
8
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Cardone-Noott L, Rodriguez B, Bueno-Orovio A. Strategies of data layout and cache writing for input-output optimization in high performance scientific computing: Applications to the forward electrocardiographic problem. PLoS One 2018; 13:e0202410. [PMID: 30138401 PMCID: PMC6107169 DOI: 10.1371/journal.pone.0202410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022] Open
Abstract
Input-output (I/O) optimization at the low-level design of data layout on disk drastically impacts the efficiency of high performance computing (HPC) applications. However, such a low-level optimization is in general challenging, especially when using popular scientific file formats designed with an emphasis on portability and flexibility. To reconcile these two aspects, we present a novel low-level data layout for HPC applications, fully independent of the number of dimensions in the dataset. The new data layout improves reading and writing efficiency in large HPC applications using many processors, and in particular during parallel post-processing. Furthermore, its combination with a cached write mode, in order to aggregate multiple writes into larger ones, substantially decreased the writing times of the proposed strategy. When applied to our simulation framework for the forward calculation of the human electrocardiogram, the combined strategy resulted in drastic improvements in I/O performance, of up to 40% in writing and 93–98% in reading for post-processing tasks. Given the generality of the proposed strategies and scientific file formats used, our results may represent significant improvements in I/O performance of HPC applications across multiple disciplines, reducing execution and post-processing times and leading to a more efficient use of HPC resource envelopes.
Collapse
Affiliation(s)
- Louie Cardone-Noott
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Modelling the effects of chloroquine on KCNJ2-linked short QT syndrome. Oncotarget 2017; 8:106511-106526. [PMID: 29290967 PMCID: PMC5739752 DOI: 10.18632/oncotarget.22490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
A gain-of-function KCNJ2 D172N mutation in KCNJ2-encoded Kir2.1 channels underlies one form of short QT syndrome (SQT3), which is associated with increased susceptibility to arrhythmias and sudden death. Anti-malarial drug chloroquine was reported as an effective inhibitor of Kir2.1 channels. Using biophysically-detailed human ventricle computer models, this study assessed the effects of chloroquine on SQT3. The ten Tusscher et al. model of human ventricular cell action potential was modified to recapitulate functional changes in the inward rectifier K+ current (IK1) due to heterozygous and homozygous forms of the D172N mutation. Mutant formulations were incorporated into multi-scale models. The blocking effects of chloroquine on ionic currents were modelled using IC50 and Hill coefficient values from literatures. Effects of chloroquine on action potential duration (APD), effective refractory period (ERP) and pseudo-ECGs were quantified. It was shown that chloroquine caused a dose-dependent reduction in IK1, prolonged APD, and decreased the maximum voltage heterogeneity. Chloroquine prolonged QT interval and declined the T-wave amplitude. Although chloroquine reduced tissue’s temporal vulnerability, it increased the minimum substrate size necessary for sustaining re-entry. The actions of chloroquine decreased arrhythmia risk, due to the reduced tissue vulnerability, prolonged ERP and wavelength of re-entrant excitation waves, which in combination prevented and terminated re-entry in the tissue models. In conclusion, the results of this study provide new evidence that the anti-arrhythmic effects of chloroquine on SQT3 and, by extension, to the possibility that chloroquine may be a potential therapeutic agent for SQT3 treatment.
Collapse
|
11
|
Luo C, Wang K, Zhang H. In silico assessment of the effects of quinidine, disopyramide and E-4031 on short QT syndrome variant 1 in the human ventricles. PLoS One 2017. [PMID: 28632743 PMCID: PMC5478111 DOI: 10.1371/journal.pone.0179515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims Short QT syndrome (SQTS) is an inherited disorder associated with abnormally abbreviated QT intervals and an increased incidence of atrial and ventricular arrhythmias. SQT1 variant (linked to the rapid delayed rectifier potassium channel current, IKr) of SQTS, results from an inactivation-attenuated, gain-of-function mutation (N588K) in the KCNH2-encoded potassium channels. Pro-arrhythmogenic effects of SQT1 have been well characterized, but less is known about the possible pharmacological antiarrhythmic treatment of SQT1. Therefore, this study aimed to assess the potential effects of E-4031, disopyramide and quinidine on SQT1 using a mathematical model of human ventricular electrophysiology. Methods The ten Tusscher et al. biophysically detailed model of the human ventricular action potential (AP) was modified to incorporate IKr Markov chain (MC) formulations based on experimental data of the kinetics of the N588K mutation of the KCNH2-encoded subunit of the IKr channels. The modified ventricular cell model was then integrated into one-dimensional (1D) strand, 2D regular and realistic tissues with transmural heterogeneities. The channel-blocking effect of the drugs on ion currents in healthy and SQT1 cells was modeled using half-maximal inhibitory concentration (IC50) and Hill coefficient (nH) values from literatures. Effects of drugs on cell AP duration (APD), effective refractory period (ERP) and pseudo-ECG traces were calculated. Effects of drugs on the ventricular temporal and spatial vulnerability to re-entrant excitation waves were measured. Re-entry was simulated in both 2D regular and realistic ventricular tissue. Results At the single cell level, the drugs E-4031 and disopyramide had hardly noticeable effects on the ventricular cell APD at 90% repolarization (APD90), whereas quinidine caused a significant prolongation of APD90. Quinidine prolonged and decreased the maximal transmural AP heterogeneity (δV); this led to the decreased transmural heterogeneity of APD across the 1D strand. Quinidine caused QT prolongation and a decrease in the T-wave amplitude, and increased ERP and decreased temporal susceptibility of the tissue to the initiation of re-entry and increased the minimum substrate size necessary to prevent re-entry in the 2D regular model, and further terminated re-entrant waves in the 2D realistic model. Quinidine exhibited significantly better therapeutic effects on SQT1 than E-4031 and disopyramide. Conclusions The simulated pharmacological actions of quinidine exhibited antiarrhythmic effects on SQT1. This study substantiates a causal link between quinidine and QT interval prolongation in SQT1 and suggests that quinidine may be a potential pharmacological agent for treating SQT1 patients.
Collapse
Affiliation(s)
- Cunjin Luo
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
- * E-mail: (KW); (HZ)
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- * E-mail: (KW); (HZ)
| |
Collapse
|
12
|
Yang F, Zhang L, Lu W, Liu L, Zhang Y, Zuo W, Wang K, Zhang H. Depth Attenuation Degree Based Visualization for Cardiac Ischemic Electrophysiological Feature Exploration. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2979081. [PMID: 28004002 PMCID: PMC5150122 DOI: 10.1155/2016/2979081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 01/23/2023]
Abstract
Although heart researches and acquirement of clinical and experimental data are progressively open to public use, cardiac biophysical functions are still not well understood. Due to the complex and fine structures of the heart, cardiac electrophysiological features of interest may be occluded when there is a necessity to demonstrate cardiac electrophysiological behaviors. To investigate cardiac abnormal electrophysiological features under the pathological condition, in this paper, we implement a human cardiac ischemic model and acquire the electrophysiological data of excitation propagation. A visualization framework is then proposed which integrates a novel depth weighted optic attenuation model into the pathological electrophysiological model. The hidden feature of interest in pathological tissue can be revealed from sophisticated overlapping biophysical information. Experiment results verify the effectiveness of the proposed method for intuitively exploring and inspecting cardiac electrophysiological activities, which is fundamental in analyzing and explaining biophysical mechanisms of cardiac functions for doctors and medical staff.
Collapse
Affiliation(s)
- Fei Yang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264200, China
| | - Lei Zhang
- School of Art and Design, Harbin University, Harbin 150086, China
| | - Weigang Lu
- Department of Educational Technology, Ocean University of China, Qingdao 266100, China
| | - Lei Liu
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Wangmeng Zuo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- School of Physics and Astronomy, University of Manchester, Manchester M139PL, UK
| |
Collapse
|
13
|
Trayanova NA, Chang KC. How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 2016; 594:2483-502. [PMID: 26621489 DOI: 10.1113/jp270532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023] Open
Abstract
Over the last decade, the state-of-the-art in cardiac computational modelling has progressed rapidly. The electrophysiological function of the heart can now be simulated with a high degree of detail and accuracy, opening the doors for simulation-guided approaches to anti-arrhythmic drug development and patient-specific therapeutic interventions. In this review, we outline the basic methodology for cardiac modelling, which has been developed and validated over decades of research. In addition, we present several recent examples of how computational models of the human heart have been used to address current clinical problems in cardiac electrophysiology. We will explore the use of simulations to improve anti-arrhythmic pacing and defibrillation interventions; to predict optimal sites for clinical ablation procedures; and to aid in the understanding and selection of arrhythmia risk markers. Together, these studies illustrate how the tremendous advances in cardiac modelling are poised to revolutionize medical treatment and prevention of arrhythmia.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kelly C Chang
- Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
14
|
Cardiotoxicity screening: a review of rapid-throughput in vitro approaches. Arch Toxicol 2015; 90:1803-16. [PMID: 26676948 DOI: 10.1007/s00204-015-1651-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
Collapse
|
15
|
Yuan Y, Bai X, Luo C, Wang K, Zhang H. The virtual heart as a platform for screening drug cardiotoxicity. Br J Pharmacol 2015; 172:5531-5547. [PMID: 25363597 PMCID: PMC4667856 DOI: 10.1111/bph.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023] Open
Abstract
To predict the safety of a drug at an early stage in its development is a major challenge as there is a lack of in vitro heart models that correlate data from preclinical toxicity screening assays with clinical results. A biophysically detailed computer model of the heart, the virtual heart, provides a powerful tool for simulating drug-ion channel interactions and cardiac functions during normal and disease conditions and, therefore, provides a powerful platform for drug cardiotoxicity screening. In this article, we first review recent progress in the development of theory on drug-ion channel interactions and mathematical modelling. Then we propose a family of biomarkers that can quantitatively characterize the actions of a drug on the electrical activity of the heart at multi-physical scales including cellular and tissue levels. We also conducted some simulations to demonstrate the application of the virtual heart to assess the pro-arrhythmic effects of cisapride and amiodarone. Using the model we investigated the mechanisms responsible for the differences between the two drugs on pro-arrhythmogenesis, even though both prolong the QT interval of ECGs. Several challenges for further development of a virtual heart as a platform for screening drug cardiotoxicity are discussed.
Collapse
Affiliation(s)
- Yongfeng Yuan
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiangyun Bai
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cunjin Luo
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Kuanquan Wang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Henggui Zhang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Biological Physics GroupSchool of Physics and AstronomyThe University of ManchesterManchesterUK
| |
Collapse
|
16
|
Collins TA, Bergenholm L, Abdulla T, Yates J, Evans N, Chappell MJ, Mettetal JT. Modeling and Simulation Approaches for Cardiovascular Function and Their Role in Safety Assessment. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015. [PMID: 26225237 PMCID: PMC4394617 DOI: 10.1002/psp4.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Systems pharmacology modeling and pharmacokinetic-pharmacodynamic (PK/PD) analysis of drug-induced effects on cardiovascular (CV) function plays a crucial role in understanding the safety risk of new drugs. The aim of this review is to outline the current modeling and simulation (M&S) approaches to describe and translate drug-induced CV effects, with an emphasis on how this impacts drug safety assessment. Current limitations are highlighted and recommendations are made for future effort in this vital area of drug research.
Collapse
Affiliation(s)
- T A Collins
- Drug Safety and Metabolism, AstraZeneca Alderley Park, Macclesfield, UK
| | | | - T Abdulla
- School of Engineering, University of Warwick UK
| | - Jwt Yates
- Oncology, AstraZeneca Alderley Park, Macclesfield, UK
| | - N Evans
- School of Engineering, University of Warwick UK
| | | | - J T Mettetal
- Drug Safety and Metabolism, AstraZeneca Waltham, Massachusetts, USA
| |
Collapse
|
17
|
Rodriguez B. In Silico Organ Modelling in Predicting Efficacy and Safety of New Medicines. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of new medicines faces important challenges due to difficulties in the assessment of their efficacy and their safety in the targeted human population. In silico approaches through the use of mathematical modelling and computer simulations are increasingly being used to overcome some of the limitations of current experimental methods used in the development of new medicines. This chapter describes state-of-the-art in silico approaches for the evaluation of the safety and efficacy of medicines targeting important causes of mortality such as cardiovascular disease. Firstly, we describe the in silico multi-scale mathematical models and simulation techniques required to describe drug-induced effects on physiological systems such as the heart from the subcellular to the whole organ level. Then we illustrate the power of in silico approaches used to augment experimental and clinical investigations, by providing the framework to unravel multi-scale mechanisms underlying variability in the response to medicines and to focus on effects in human rather than animal models. We devote the last part of the chapter to discussing the process of validation of in silico models and simulations, which is key in building up their credibility.
Collapse
Affiliation(s)
- Blanca Rodriguez
- Department of Computer Science, University of Oxford Parks Road Oxford OX1 3QD UK
| |
Collapse
|
18
|
LIU BAOXIN, LI SHUANG, SU YANG, XIONG MENGTING, XU YAWEI. Comparative study of the protective effects of terfenadine and amiodarone on barium chloride/aconitine-induced ventricular arrhythmias in rats: A potential role of terfenadine. Mol Med Rep 2014; 10:3217-26. [DOI: 10.3892/mmr.2014.2640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
|
19
|
Majumder R, Pandit R, Panfilov AV. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue. Am J Physiol Heart Circ Physiol 2014; 307:H1024-35. [DOI: 10.1152/ajpheart.00593.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na+ current ( INa), L—type slow inward Ca2+ current ( ICaL), slow delayed-rectifier current ( IKs), rapid delayed-rectifier current ( IKr), inward rectifier K+ current ( IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.
Collapse
Affiliation(s)
- Rupamanjari Majumder
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - A. V. Panfilov
- Department of Physics and Astronomy, Gent University, Ghent, Belgium; and
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
20
|
Zemzemi N, Rodriguez B. Effects of L-type calcium channel and human ether-a-go-go related gene blockers on the electrical activity of the human heart: a simulation study. Europace 2014; 17:326-33. [PMID: 25228500 PMCID: PMC4309991 DOI: 10.1093/europace/euu122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims Class III and IV drugs affect cardiac human ether-a-go-go related gene (IKr) and L-type calcium (ICaL) channels, resulting in complex alterations in repolarization with both anti- and pro-arrhythmic consequences. Interpretation of their effects on cellular and electrocardiogram (ECG)-based biomarkers for risk stratification is challenging. As pharmaceutical compounds often exhibit multiple ion channel effects, our goal is to investigate the simultaneous effect of ICaL and IKr block on human ventricular electrophysiology from ionic to ECG level. Methods and results Simulations are conducted using a human body torso bidomain model, which includes realistic representation of human membrane kinetics, anatomy, and fibre orientation. A simple block pore model is incorporated to simulate drug-induced ICaL and IKr blocks, for drug dose = 0, IC50, 2× IC50, 10× IC50, and 30× IC50. Drug effects on human ventricular activity are quantified for different degrees and combinations of ICaL and IKr blocks from the ionic to the body surface ECG level. Electrocardiogram simulations show that ICaL block results in shortening of the QT interval, ST elevation, and reduced T-wave amplitude, caused by reduction in action potential duration and action potential amplitude during the plateau phase, and in repolarization times. In contrast, IKr block results in QT prolongation and reduced T-wave amplitude. When ICaL and IKr blocks are combined, the degree of ICaL block strongly determines QT interval whereas the effect of IKr block is more pronounced on the T-wave amplitude. Conclusion Our simulation study provides new insights into the combined effect of ICaL and IKr blocks on human ventricular activity using a multiscale computational human torso model.
Collapse
Affiliation(s)
- Nejib Zemzemi
- Carmen team, INRIA Bordeaux Sud-Ouest, 200 avenue de la vieille tour, Talence Cedex 33405, France
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| |
Collapse
|
21
|
Fijorek K, Tanner FC, Stähli BE, Gielerak G, Krzesinski P, Uzieblo-Zyczkowska B, Smurzynski P, Stanczyk A, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Jastrzebski M, Podolec M, Kopec G, Stanula B, Kocowska M, Tylutki Z, Polak S. Model of the distribution of diastolic left ventricular posterior wall thickness in healthy adults and its impact on the behavior of a string of virtual cardiomyocytes. J Cardiovasc Transl Res 2014; 7:507-17. [PMID: 24676501 PMCID: PMC4098050 DOI: 10.1007/s12265-014-9558-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Correlation of the thickness of the left ventricular posterior wall (LVPWd) with various parameters, including age, gender, weight and height, was investigated in this study using regression models. Multicenter derived database comprised over 4,000 healthy individuals. The developed models were further utilized in the in vitro-in vivo (IVIV) translation of the drug cardiac safety data with use of the mathematical model of human cardiomyocytes operating at the virtual healthy population level. LVPWd was assumed to be equivalent to the length of one-dimensional string of virtual cardiomyocyte cells which was presented, as other physiological factors, to be a parameter influencing the simulated pseudo-ECG (pseudoelectrocardiogram), QTcF and ∆QTcF, both native and modified by exemplar drug (disopyramide) after I Kr current disruption. Simulation results support positive correlation between the LVPWd and QTcF/∆QTc. Developed models allow more detailed description of the virtual population and thus inter-individual variability influence on the drug cardiac safety.
Collapse
Affiliation(s)
- Kamil Fijorek
- Department of Statistics, Cracow University of Economics, Krakow, Poland
| | - Felix C. Tanner
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Barbara E. Stähli
- Cardiology, Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | - Grzegorz Gielerak
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Pawel Krzesinski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | | | - Pawel Smurzynski
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stanczyk
- Department of Cardiology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Kalina Kawecka-Jaszcz
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Jastrzebski
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, University Hospital, Krakow, Krakow, Poland
| | - Mateusz Podolec
- Department of Coronary Artery Disease, Jagiellonian University Medical College at the John Paul II Hospital, Krakow, Poland
| | - Grzegorz Kopec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College and Centre for Rare Cardiovascular Diseases at the John Paul II Hospital, Krakow, Poland
| | | | | | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
22
|
Glicksman JT, Mick PT, Fung K, Carroll TL. Prokinetic agents and laryngopharyngeal reflux disease: Prokinetic agents and laryngopharyngeal reflux disease: a systematic review. Laryngoscope 2014; 124:2375-9. [PMID: 24782414 DOI: 10.1002/lary.24738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/14/2014] [Accepted: 04/26/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Our objective was to systematically identify and evaluate prospective studies providing evidence for and against the use of prokinetic agents in the treatment of laryngopharyngeal reflux (LPR) disease. DATA SOURCES Our data sources were PubMed, Embase, BIOSIS, and Web of Science databases. REVIEW METHODS A systematic literature review was conducted to identify studies prospectively evaluating the effectiveness of prokinetic agents in the treatment of LPR. Data from eligible studies were independently extracted from each study by two authors. The primary outcome of interest was the improvement of LPR symptoms among study participants. Secondary outcomes included resolution of LPR physical signs and the development of side effects from therapy. RESULTS Among 724 unique articles identified, four studies met inclusion criteria. These four investigations provided mixed evidence about the effectiveness of prokinetic agents in the treatment of LPR. The studies included in the review were deemed to be at high risk of bias. Three of the four investigations demonstrated a statistically significant difference in patient symptoms that favored the use of prokinetics in the management of LPR. The investigations were mixed in their report of improvement in physical examination findings among patients receiving and those not receiving prokinetic medical therapy. No significant adverse effects were described in any of these trials. CONCLUSIONS Prokinetic agents may be a viable treatment option for LPR. The current body of literature is inadequate to make a recommendation for their use in this disease process. Further research should be conducted to assess the use of prokinetic medications in the management of LPR.
Collapse
Affiliation(s)
- Jordan T Glicksman
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Loewe A, Wilhelms M, Fischer F, Scholz EP, Dössel O, Seemann G. Arrhythmic potency of human ether-à-go-go-related gene mutations L532P and N588K in a computational model of human atrial myocytes. ACTA ACUST UNITED AC 2014; 16:435-43. [DOI: 10.1093/europace/eut375] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
24
|
Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022]
Abstract
Modern cardiovascular research has increasingly recognized that heart models and simulation can help interpret an array of experimental data and dissect important mechanisms and interrelationships, with developments rooted in the iterative interaction between modeling and experimentation. This article reviews the progress made in simulating cardiac electrical behavior at the level of the organ and, specifically, in the development of models of ventricular arrhythmias and fibrillation, as well as their termination (defibrillation). The ability to construct multiscale models of ventricular arrhythmias, representing integrative behavior from the molecule to the entire organ, has enabled mechanistic inquiry into the dynamics of ventricular arrhythmias in the diseased myocardium, in understanding drug-induced proarrhythmia, and in the development of new modalities for defibrillation, to name a few. In this article, we also review the initial use of ventricular models of arrhythmia in personalized diagnosis, treatment planning, and prevention of sudden cardiac death. Implementing individualized cardiac simulations at the patient bedside is poised to become one of the most thrilling examples of computational science and engineering approaches in translational medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|