1
|
Zakeri Zafarghandi E, Jacquemet V. Prevalence of endoepicardial asynchrony and breakthrough patterns in a bilayer computational model of heterogeneous endoepicardial dissociation in the left atrium. PLoS One 2024; 19:e0314342. [PMID: 39576793 PMCID: PMC11584087 DOI: 10.1371/journal.pone.0314342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Transmural propagation and endoepicardial delays in activation observed in patients with atrial fibrillation are hypothesized to be associated with structural remodeling and endoepicardial dissociation. We aim to explore in a computational model how the distribution of delays and the rate of endo- and epicardial breakthrough activation patterns are affected by fibrosis and heterogeneous layer dissociation. METHODS A bilayer interconnected cable model of the left atrium was used to simulate a total of 4,800 episodes of atrial fibrillation on 960 different arrhythmogenic substrates with up to 30% epicardium-only diffuse fibrosis. Endoepicardial connections were heterogeneously distributed following random spatial patterns (characteristic length scale from 1.6 to 11.4 mm). Intermediate nodes were introduced in the transmural connections to enable the simulation of weaker coupling. This heterogeneous interlayer dissociation divided the atrial bilayer into connected and disconnected regions (from 27 to 48,000 connected regions). Activation time series were extracted in both layers to compute endoepicardial delays and detect breakthrough patterns. RESULTS Because of epicardial fibrosis, fibrillatory waves were driven by the endocardium, which generated endoepicardial delays. The delays in the connected regions (up to 10 ms, but generally < 5 ms) were prolonged by higher fibrosis density and weaker coupling. Disconnected regions allowed longer delays (> 15 ms) and promoted the occurrence of breakthroughs. These breakthroughs had short lifespan (< 10-20 ms) and were more prevalent with higher fibrosis density and heterogeneous dissociation (larger disconnected regions). Severe remodeling (< 500 connected regions) was needed to produce clinically reported rates (> 0.1 breakthrough/cycle/cm2). CONCLUSION Heterogeneous endoepicardial dissociation aggravates activation delays and increases the prevalence of epicardial breakthroughs.
Collapse
Affiliation(s)
- Elham Zakeri Zafarghandi
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Vincent Jacquemet
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Yamamoto C, Trayanova NA. Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies. EBioMedicine 2022; 85:104310. [PMID: 36309006 PMCID: PMC9619190 DOI: 10.1016/j.ebiom.2022.104310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia, affecting millions of patients worldwide. A combination of risk factors and comorbidities results in complex atrial remodeling, which increases AF vulnerability and persistence. Insights from animal models, clinical studies, and computational modeling have advanced the understanding of the mechanisms and pathophysiology of AF. Areas of heterogeneous pathological remodeling, as well as altered electrophysiological properties, serve as a substrate for AF drivers and spontaneous activations. The complex and individualized presentation of this arrhythmia suggests that mechanisms-based personalized approaches will likely be needed to overcome current challenges in AF management. In this paper, we review the insights on the mechanisms of AF obtained from animal models and clinical studies and how computational models integrate this knowledge to advance AF clinical management. We also assess the challenges that need to be overcome to implement these mechanistic models in clinical practice.
Collapse
Affiliation(s)
- Carolyna Yamamoto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, MD, USA,Corresponding author. Johns Hopkins, Johns Hopkins University, United States.
| |
Collapse
|
3
|
An Evaluation of Phase Analysis to Interpret Atrial Activation Patterns during Persistent Atrial Fibrillation for Targeted Ablation. J Clin Med 2022; 11:jcm11195807. [PMID: 36233675 PMCID: PMC9572396 DOI: 10.3390/jcm11195807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Phase analysis has been used to identify and localize atrial fibrillation (AF) sources for targeted ablation. We previously demonstrated that repetitive wannabe reentry (incomplete reentry) often generated an apparent stable rotor using phase analysis. The misinterpretation caused by phase analysis using atrial electrograms (AEGs) may result from detecting inaccurate time points at phase inversion (π to -π) in the instantaneous phase waveform converted from AEG. The purpose of this study was to evaluate the accuracy of phase analysis to detect atrial activations recorded from the high-density mapping of AF in patients with persistent and long-standing persistent (LSP) AF. METHODS AND RESULTS During open heart surgery, we recorded activation from both atria simultaneously using 512 electrodes in 7 patients with persistent and LSP AF. The phase analysis was compared to manual measurements during 4 s of data. For the accuracy of activation sequence maps, a successful recording site was defined as having ≤4 mismatched activation times during the 4 s. In all AF episodes, the accuracy of the phase analysis was only 82% of the total number of activation times due to either activation time differences (14.7%), under-sensing (2.7%), or over-sensing (0.6%). Only 67.9% of the total recording sites met the requirement of a successful recording site by phase analysis. In unsuccessful recording sites, AEG characteristics were relatively irregular cycle length (CL), complex AEG, and double potential AEG. CONCLUSION The phase analysis was less accurate in recording sites with a relatively irregular CL, complex AEG, or double potential AEG. As a result, phase analysis may lead to the misinterpretation of atrial activation patterns during AF. A visual review of the original AEG is needed to confirm the detected AF sources of phase analysis before performing targeted ablation.
Collapse
|
4
|
Wang H, Jiang W, Hu Y, Wan Z, Bai H, Yang Q, Zheng Q. Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting MiR-135b expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153774. [PMID: 34656066 DOI: 10.1016/j.phymed.2021.153774] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE To investigate the role and mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF). STUDY DESIGN Rat cardiac fibroblasts (RCFs) models and RCFs were used to explore the effect and underlying mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF) in vivo and in vitro by a series of experiments. METHODS Differentially expressed microRNAs were screened from human AF tissues using the GEO2R and RT-qPCR. The expressions of TGF-β/Smads pathway molecules (TGFβ1, TGFBR1, Tgfbr1, Tgfbr2, Smad2, Smad3, Smad4) in AF tissues were detected by RT-qPCR and Western blot. The relationships between miR-135b and genes (Tgfbr1, Tgfbr2, Smad2) were analyzed by Pearson correlation, TargetScan and dual-luciferase activity assay. RCFs induced by ISO were treated with quercetin (20 or 50 μM), miR-135b mimic and inhibitor, siTgfbr1 and their corresponding controls, then the cell viability was determined by MTT and the expressions of cyclin D1, α-SMA, collagen-related molecules, TGF-β/Smads pathway molecules, and miR-135b were measured by RT-qPCR and Western blot. ISO-induced rats were treated with quercetin (25 mg/kg/day) via gavage, miR-135b antagomir, agomir and their corresponding controls. The treated rats were used for the detection of miR-135b expression by RT-qPCR, histopathological observation by HE and Masson staining, and the detection of Col1A1 and fibronectin contents by immunohistochemical technique. RESULTS The expression of miR-135b was downregulated, and those of TGFBR1, TGFBR2, target genes of miR-135b were upregulated in human AF tissues and negatively regulated by miR-135b in RCFs. Through inhibiting TGF-β/Smads pathway via promoting miR-135b expression, quercetin treatment inhibited proliferation, myofibroblast differentiation and collagen deposition in ISO-treated RCFs, as evidenced by reduced expressions of cyclin D1, α-SMA, collagen-related genes and proteins, and alleviated fibrosis and collagen deposition of atrial tissues in ISO-treated rats. CONCLUSION Quercetin may alleviate AF by inhibiting fibrosis of atrial tissues through inhibiting TGF-β/Smads pathway via promoting miR-135b expression.
Collapse
Affiliation(s)
- Hongtao Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Yanchao Hu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Zhaofei Wan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiang Yang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an JiaoTong University, China.
| |
Collapse
|
5
|
Schotten U, Lee S, Zeemering S, Waldo AL. Paradigm shifts in electrophysiological mechanisms of atrial fibrillation. Europace 2021; 23:ii9-ii13. [PMID: 33837750 DOI: 10.1093/europace/euaa384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/12/2022] Open
Abstract
Determining the sequence of activation is a major source of information for understanding the electrophysiological mechanism(s) of atrial fibrillation (AF). However, the complex morphology of the electrograms hampers their analysis, and has stimulated generations of electrophysiologists to develop a large variety of technologies for recording, pre-processing, and analysis of fibrillation electrograms. This variability of approaches is mirrored by a large variability in the interpretation of fibrillation electrograms and, thereby, opinions regarding the basic electrophysiological mechanism(s) of AF vary widely. Multiple wavelets, different types of re-entry including rotors, double layers, multiple focal activation patterns all have been advocated, and a comprehensive and commonly accepted paradigm for the fundamental mechanisms of AF is still lacking. Here, we summarize the Maastricht perspective and Cleveland perspective regarding AF mechanism(s). We also describe some of the key observations in mapping of AF reported over the past decades, and how they changed over the years, often as results of new techniques introduced in the experimental field of AF research.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Universiteitssingel 50 6229 ER, Maastricht, The Netherlands
| | - Seungyup Lee
- Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Stef Zeemering
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Universiteitssingel 50 6229 ER, Maastricht, The Netherlands
| | - Albert L Waldo
- Department of Medicine, Cardiovascular Research Institute, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
6
|
Handa BS, Li X, Baxan N, Roney CH, Shchendrygina A, Mansfield CA, Jabbour RJ, Pitcher DS, Chowdhury RA, Peters NS, Ng FS. Ventricular fibrillation mechanism and global fibrillatory organization are determined by gap junction coupling and fibrosis pattern. Cardiovasc Res 2021; 117:1078-1090. [PMID: 32402067 PMCID: PMC7983010 DOI: 10.1093/cvr/cvaa141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/25/2020] [Accepted: 05/21/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. METHODS AND RESULTS Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. CONCLUSION The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.
Collapse
Affiliation(s)
- Balvinder S Handa
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Xinyang Li
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Nicoleta Baxan
- Biological Imaging Centre, Department of Medicine, Imperial College London, London, UK
| | - Caroline H Roney
- Division of Imaging Sciences and Bioengineering, King’s College London, London, UK
| | - Anastasia Shchendrygina
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Catherine A Mansfield
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Richard J Jabbour
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - David S Pitcher
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Rasheda A Chowdhury
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Nicholas S Peters
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| | - Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, 4th Floor, ICTEM Building, 72 Du Cane Road, London W12 0NN, UK
| |
Collapse
|
7
|
Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. J Clin Med 2020; 9:jcm9103081. [PMID: 32987820 PMCID: PMC7598705 DOI: 10.3390/jcm9103081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and is associated with significant morbidity and mortality. The autonomic nervous system (ANS) plays an important role in the initiation and development of AF, causing alterations in atrial structure and electrophysiological defects. The intrinsic ANS of the heart consists of multiple ganglionated plexi (GP), commonly nestled in epicardial fat pads. These GPs contain both parasympathetic and sympathetic afferent and efferent neuronal circuits that control the electrophysiological properties of the myocardium. Pulmonary vein isolation and other cardiac catheter ablation targets including GP ablation can disrupt the fibers connecting GPs or directly damage the GPs, mediating the benefits of the ablation procedure. Ablation of GPs has been evaluated over the past decade as an adjunctive procedure for the treatment of patients suffering from AF. The success rate of GP ablation is strongly associated with specific ablation sites, surgical techniques, localization techniques, method of access and the incorporation of additional interventions. In this review, we present the current data on the clinical utility of GP ablation and its significance in AF elimination and the restoration of normal sinus rhythm in humans.
Collapse
|
8
|
Ng FS, Handa BS, Li X, Peters NS. Toward Mechanism-Directed Electrophenotype-Based Treatments for Atrial Fibrillation. Front Physiol 2020; 11:987. [PMID: 33013435 PMCID: PMC7493660 DOI: 10.3389/fphys.2020.00987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Current treatment approaches for persistent atrial fibrillation (AF) have a ceiling of success of around 50%. This is despite 15 years of developing adjunctive ablation strategies in addition to pulmonary vein isolation to target the underlying arrhythmogenic substrate in AF. A major shortcoming of our current approach to AF treatment is its predominantly empirical nature. This has in part been due to a lack of consensus on the mechanisms that sustain human AF. In this article, we review evidence suggesting that the previous debates on AF being either an organized arrhythmia with a focal driver or a disorganized rhythm sustained by multiple wavelets, may prove to be a false dichotomy. Instead, a range of fibrillation electrophenotypes exists along a continuous spectrum, and the predominant mechanism in an individual case is determined by the nature and extent of remodeling of the underlying substrate. We propose moving beyond the current empirical approach to AF treatment, highlight the need to prescribe AF treatments based on the underlying AF electrophenotype, and review several possible novel mapping algorithms that may be useful in discerning the AF electrophenotype to guide tailored treatments, including Granger Causality mapping.
Collapse
Affiliation(s)
- Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | |
Collapse
|
9
|
Lee S, Khrestian CM, Sahadevan J, Waldo AL. Reconsidering the multiple wavelet hypothesis of atrial fibrillation. Heart Rhythm 2020; 17:1976-1983. [PMID: 32585192 DOI: 10.1016/j.hrthm.2020.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Moe and Abildskov proposed the multiple wavelet hypothesis of atrial fibrillation (AF) on the basis of observations in the canine vagal nerve stimulation (VNS) AF model. Data from mapping studies in an in vitro canine AF model by Allessie et al (Allessie MA, Lammers WJEP, Bonke FIM, Hollen SJ. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Orlando, FL: Grune & Stratton; 1985:265-275.) were used to evaluate the Moe/Abildskov hypothesis, which revealed that a critical number of wavelets sustained AF. OBJECTIVE The purpose of this study was to reassess VNS mapping data using the same methods used by Allessie to evaluate Moe's multiple wavelet hypothesis. METHODS Using the canine VNS AF model in 6 dogs, 510 unipolar atrial electrograms were recorded simultaneously from both atria. Activation sequence maps were produced from sustained AF during VNS in each dog. Per Allessie, consecutive 10 ms activation windows were analyzed over a period of 300 ms. Repetitive activation analysis was applied to Moe's canine VNS AF model. RESULTS The number of wavefronts in each AF episode was 0-8 in Allessie's studies measured by sequential atrial mapping and 0-10 in our biatrial simultaneous mapping studies. In both studies, an electrically silent period was observed in each atrium and was reactivated by wavefronts emanating from focal sources. Allessie postulated that an electrically silent atrium was reactivated by a wavefront propagating from the other atrium. However, in our biatrial simultaneous mapping studies, each electrically silent atrium was reactivated by a distinct focal source. CONCLUSION Data from both studies showed a similar number of wavefronts, similar AF activation patterns, and periods of electrical atrial silence reactivated by focal sources. Also, in our studies, independent focal sources initiated wavefronts reactivating the atria, thereby explaining the mechanism maintaining AF.
Collapse
Affiliation(s)
- Seungyup Lee
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Celeen M Khrestian
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jayakumar Sahadevan
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Albert L Waldo
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio; Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio.
| |
Collapse
|
10
|
Gagné S, Jacquemet V. Time resolution for wavefront and phase singularity tracking using activation maps in cardiac propagation models. CHAOS (WOODBURY, N.Y.) 2020; 30:033132. [PMID: 32237790 DOI: 10.1063/1.5133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
The dynamics of cardiac fibrillation can be described by the number, the trajectory, the stability, and the lifespan of phase singularities (PSs). Accurate PS tracking is straightforward in simple uniform tissues but becomes more challenging as fibrosis, structural heterogeneity, and strong anisotropy are combined. In this paper, we derive a mathematical formulation for PS tracking in two-dimensional reaction-diffusion models. The method simultaneously tracks wavefronts and PS based on activation maps at full spatiotemporal resolution. PS tracking is formulated as a linear assignment problem solved by the Hungarian algorithm. The cost matrix incorporates information about distances between PS, chirality, and wavefronts. A graph of PS trajectories is generated to represent the creations and annihilations of PS pairs. Structure-preserving graph transformations are applied to provide a simplified description at longer observation time scales. The approach is validated in 180 simulations of fibrillation in four different types of substrates featuring, respectively, wavebreaks, ionic heterogeneities, fibrosis, and breakthrough patterns. The time step of PS tracking is studied in the range from 0.1 to 10 ms. The results show the benefits of improving time resolution from 1 to 0.1 ms. The tracking error rate decreases by an order of magnitude because the occurrence of simultaneous events becomes less likely. As observed on PS survival curves, the graph-based analysis facilitates the identification of macroscopically stable rotors despite wavefront fragmentation by fibrosis.
Collapse
Affiliation(s)
- Samuel Gagné
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Vincent Jacquemet
- Institut de Génie Biomédical, Département de Pharmacologie et Physiologie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
11
|
Roney CH, Wit AL, Peters NS. Challenges Associated with Interpreting Mechanisms of AF. Arrhythm Electrophysiol Rev 2020; 8:273-284. [PMID: 32685158 PMCID: PMC7358959 DOI: 10.15420/aer.2019.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Andrew L Wit
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, US
| | - Nicholas S Peters
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
12
|
Li X, Roney CH, Handa BS, Chowdhury RA, Niederer SA, Peters NS, Ng FS. Standardised Framework for Quantitative Analysis of Fibrillation Dynamics. Sci Rep 2019; 9:16671. [PMID: 31723154 PMCID: PMC6853901 DOI: 10.1038/s41598-019-52976-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The analysis of complex mechanisms underlying ventricular fibrillation (VF) and atrial fibrillation (AF) requires sophisticated tools for studying spatio-temporal action potential (AP) propagation dynamics. However, fibrillation analysis tools are often custom-made or proprietary, and vary between research groups. With no optimal standardised framework for analysis, results from different studies have led to disparate findings. Given the technical gap, here we present a comprehensive framework and set of principles for quantifying properties of wavefront dynamics in phase-processed data recorded during myocardial fibrillation with potentiometric dyes. Phase transformation of the fibrillatory data is particularly useful for identifying self-perpetuating spiral waves or rotational drivers (RDs) rotating around a phase singularity (PS). RDs have been implicated in sustaining fibrillation, and thus accurate localisation and quantification of RDs is crucial for understanding specific fibrillatory mechanisms. In this work, we assess how variation of analysis parameters and thresholds in the tracking of PSs and quantification of RDs could result in different interpretations of the underlying fibrillation mechanism. These techniques have been described and applied to experimental AF and VF data, and AF simulations, and examples are provided from each of these data sets to demonstrate the range of fibrillatory behaviours and adaptability of these tools. The presented methodologies are available as an open source software and offer an off-the-shelf research toolkit for quantifying and analysing fibrillatory mechanisms.
Collapse
Affiliation(s)
- Xinyang Li
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK
| | - Caroline H Roney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Balvinder S Handa
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK
| | - Steven A Niederer
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Nicholas S Peters
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK
| | - Fu Siong Ng
- National Heart and Lung Institute, Hammersmith Campus, Imperial College London, 72 Du Cane Rd, London, W120UQ, UK.
| |
Collapse
|
13
|
Bayer JD, Boukens BJ, Krul SPJ, Roney CH, Driessen AHG, Berger WR, van den Berg NWE, Verkerk AO, Vigmond EJ, Coronel R, de Groot JR. Acetylcholine Delays Atrial Activation to Facilitate Atrial Fibrillation. Front Physiol 2019; 10:1105. [PMID: 31551802 PMCID: PMC6737394 DOI: 10.3389/fphys.2019.01105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background Acetylcholine (ACh) shortens action potential duration (APD) in human atria. APD shortening facilitates atrial fibrillation (AF) by reducing the wavelength for reentry. However, the influence of ACh on electrical conduction in human atria and its contribution to AF are unclear, particularly when combined with impaired conduction from interstitial fibrosis. Objective To investigate the effect of ACh on human atrial conduction and its role in AF with computational, experimental, and clinical approaches. Methods S1S2 pacing (S1 = 600 ms and S2 = variable cycle lengths) was applied to the following human AF computer models: a left atrial appendage (LAA) myocyte to quantify the effects of ACh on APD, maximum upstroke velocity (V max ), and resting membrane potential (RMP); a monolayer of LAA myocytes to quantify the effects of ACh on conduction; and 3) an intact left atrium (LA) to determine the effects of ACh on arrhythmogenicity. Heterogeneous ACh and interstitial fibrosis were applied to the monolayer and LA models. To corroborate the simulations, APD and RMP from isolated human atrial myocytes were recorded before and after 0.1 μM ACh. At the tissue level, LAAs from AF patients were optically mapped ex vivo using Di-4-ANEPPS. The difference in total activation time (AT) was determined between AT initially recorded with S1 pacing, and AT recorded during subsequent S1 pacing without (n = 6) or with (n = 7) 100 μM ACh. Results In LAA myocyte simulations, S1 pacing with 0.1 μM ACh shortened APD by 41 ms, hyperpolarized RMP by 7 mV, and increased V max by 27 mV/ms. In human atrial myocytes, 0.1 μM ACh shortened APD by 48 ms, hyperpolarized RMP by 3 mV, and increased V max by 6 mV/ms. In LAA monolayer simulations, S1 pacing with ACh hyperpolarized RMP to delay total AT by 32 ms without and 35 ms with fibrosis. This led to unidirectional conduction block and sustained reentry in fibrotic LA with heterogeneous ACh during S2 pacing. In AF patient LAAs, S1 pacing with ACh increased total AT from 39.3 ± 26 ms to 71.4 ± 31.2 ms (p = 0.036) compared to no change without ACh (56.7 ± 29.3 ms to 50.0 ± 21.9 ms, p = 0.140). Conclusion In fibrotic atria with heterogeneous parasympathetic activation, ACh facilitates AF by shortening APD and slowing conduction to promote unidirectional conduction block and reentry.
Collapse
Affiliation(s)
- Jason D Bayer
- Electrophysiology and Heart Modeling Institute (IHU-LIRYC), Bordeaux University Foundation, Bordeaux, France.,Institute of Mathematics of Bordeaux (U5251), University of Bordeaux, Bordeaux, France
| | - Bastiaan J Boukens
- Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Sébastien P J Krul
- Department of Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Caroline H Roney
- Division of Imaging Sciences and Bioengineering, King's College London, London, United Kingdom
| | | | - Wouter R Berger
- Department of Cardiology, Academic Medical Center, Amsterdam, Netherlands.,Department of Cardiology, Heart Center, OLVG, Amsterdam, Netherlands
| | | | - Arie O Verkerk
- Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands.,Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Edward J Vigmond
- Electrophysiology and Heart Modeling Institute (IHU-LIRYC), Bordeaux University Foundation, Bordeaux, France.,Institute of Mathematics of Bordeaux (U5251), University of Bordeaux, Bordeaux, France
| | - Ruben Coronel
- Electrophysiology and Heart Modeling Institute (IHU-LIRYC), Bordeaux University Foundation, Bordeaux, France.,Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Joris R de Groot
- Department of Cardiology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
14
|
Virag N, Jacquemet V, Kappenberger L, Krause R, Prinzen F, Auricchio A. 9th Theo Rossi di Montelera forum on computer simulation and experimental assessment of cardiac function: from model to clinical outcome. Europace 2018; 20:iii1-iii2. [PMID: 30476064 DOI: 10.1093/europace/euy256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathalie Virag
- TRM Foundation, Lausanne Switzerland and Medtronic Europe, Tolochenaz, Switzerland
| | - Vincent Jacquemet
- Université de Montréal and Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | | | - Rolf Krause
- Center for Computational Medicine in Cardiology, Università della Svizzera Italiana, Lugano, Switzerland
| | - Frits Prinzen
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Angelo Auricchio
- Center for Computational Medicine in Cardiology, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|