1
|
Fragkopoulou E, Serrão EA, De Clerck O, Assis J. Global intraspecific diversity of marine forests of brown macroalgae predicted by past climate conditions. Commun Biol 2025; 8:726. [PMID: 40348884 PMCID: PMC12065896 DOI: 10.1038/s42003-025-08023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Global patterns of intraspecific genetic diversity are key to understanding evolutionary and ecological processes. However, insights into the distribution and drivers of genetic diversity remain limited, particularly for marine species. Here, we explain and predict the genetic diversity of cold and temperate brown macroalgae using genetic data from 29 species and a machine-learning algorithm that incorporates contemporary and past climate conditions during the Last Glacial Maximum (~20,000 years ago) based on the niche centroid hypothesis. We apply this model to the distribution of 280 species and predict their global genetic diversity. Our results show reduced genetic diversity away from the niche centroid, identifying past climate conditions as key drivers of contemporary genetic diversity. Regions with high genetic diversity for multiple species emerge, matching biogeographic patterns of species richness. The mapped diversity hotspots establish timely baselines for brown macroalgae biogeography, evolutionary potential and conservation, contributing to the Post-2020 Global Biodiversity Framework.
Collapse
Affiliation(s)
- Eliza Fragkopoulou
- Centro de Ciências do Mar do Algarve (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Ester A Serrão
- Centro de Ciências do Mar do Algarve (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, Faro, Portugal
| | - Olivier De Clerck
- Phycology Research Group, Biology Department, Ghent University, Ghent, Belgium
| | - Jorge Assis
- Centro de Ciências do Mar do Algarve (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, Faro, Portugal
- Faculty of Biosciences and Aquaculture, Nord University, Bodo, Norway
| |
Collapse
|
2
|
Bemmels JB, Starko S, Weigel BL, Hirabayashi K, Pinch A, Elphinstone C, Dethier MN, Rieseberg LH, Page JE, Neufeld CJ, Owens GL. Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp. Curr Biol 2025; 35:688-698.e8. [PMID: 39826555 DOI: 10.1016/j.cub.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests are declining in many parts of the northeast Pacific.1,2,3,4 In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles,5,6,7 but natural selection may purge harmful variants.8,9,10 To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.) from the coastlines of British Columbia and Washington. We identified 6 to 7 geographically and genetically distinct clusters in each species. Low effective population size was associated with low genetic diversity and high inbreeding coefficients (including increased selfing rates), with extreme variation in these genetic health indices among bull kelp populations but more moderate variation in giant kelp. We found no evidence that natural selection is purging putative recessive deleterious alleles in either species. Instead, genetic drift has fixed many such alleles in small populations of bull kelp, leading us to predict (1) reduced within-population inbreeding depression in small populations, which may be associated with an observed shift toward increased selfing rate, and (2) hybrid vigor in crosses between small populations. Our genomic findings imply several strategies for optimal sourcing and crossing of populations for restoration and aquaculture, but these require experimental validation. Overall, our work reveals strong genetic structure and suggests that conservation strategies should consider the multiple health risks faced by small populations whose evolutionary dynamics are dominated by genetic drift.
Collapse
Affiliation(s)
- Jordan B Bemmels
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Samuel Starko
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of Western Australia, School of Biological Sciences, Stirling Highway, Crawley, WA 6009, Australia
| | - Brooke L Weigel
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA; Western Washington University, College of the Environment, High Street, Bellingham, WA 98225, USA
| | - Kaede Hirabayashi
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; University of British Columbia, Michael Smith Laboratories, East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alex Pinch
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Cassandra Elphinstone
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Megan N Dethier
- University of Washington, Friday Harbor Laboratories, University Road, Friday Harbor, WA 98250, USA
| | - Loren H Rieseberg
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan E Page
- University of British Columbia, Department of Botany, University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Christopher J Neufeld
- The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada; University of British Columbia Okanagan, Department of Biology, University Way, Kelowna, BC V1V 1V7, Canada
| | - Gregory L Owens
- University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
3
|
Diesel JF, Molano G, Nuzhdin SV. The mutation atlas of giant kelp ( Macrocystis pyrifera): a mutation database resource for natural knockouts. FRONTIERS IN PLANT SCIENCE 2025; 15:1338572. [PMID: 39931339 PMCID: PMC11808146 DOI: 10.3389/fpls.2024.1338572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
Giant kelp (Macrocystis pyrifera) is a paramount species of immense ecological and economic importance. It forms dense underwater forests, providing crucial habitat and serving as a foundation species for diverse marine ecosystems. Understanding the genetics of giant kelp is essential for conservation and sustainable farming, safeguarding these valuable ecosystems and their benefits. By analyzing mutations based on their impact, we can gain insights into the potential functional consequences and implications for the organism, helping to identify critical genes or regions that may play a significant role in adaptation, development, and environmental response. To achieve this, we annotated the effects and impact of spontaneous mutations in 559 giant kelp individuals from four different populations. We found over 15.9 million mutations in genes of giant kelp, and classified them into modifier, low, moderate, and high impact depending on their predicted effects. The creation of this mutation effect database, attached to the seedbank of these individuals, offers several applications, including enhancing breeding programs, aiding genetic engineering with naturally occurring mutations, and developing strategies to mitigate the impact of environmental changes.
Collapse
Affiliation(s)
| | | | - Sergey V. Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Álvarez-Canali D, Sansón M, Sangil C, Tronholm A. Multigene phylogenetics of Sargassum (Phaeophyceae) revealed low molecular diversity in contrast to high morphological variability in the NE Atlantic Ocean. JOURNAL OF PHYCOLOGY 2024; 60:1528-1556. [PMID: 39462156 DOI: 10.1111/jpy.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Sargassum species play a key role in habitat formation in tropical and subtropical regions; however, species identification has been hampered by the phenological plasticity exhibited in response to environmental conditions and life history. Molecular phylogenetics has challenged taxa circumscriptions and proven critical in delimiting species in this genus. Yet, the Atlantic species of Sargassum remain poorly understood, and recent studies have shown low molecular diversity between the species in the NW Atlantic. Here, we expand the taxon sampling to the NE Atlantic to assess the diversity of Sargassum in the Atlantic basin, based on a comprehensive morphological and multigene approach. We selected genes commonly used in delineating species in this genus (ITS2, rbcLS, cox3, mtsp) and explored additional markers (cox2, nad6, psbC, clpC, atpB) to infer the phylogenetic relationships between the morphospecies observed in the NE Atlantic. Phylogenetic analyses using single-gene and multigene alignments including 185 new sequences confirmed the low molecular diversity and supported the distinction of a single clade in Sargassum section Sargassum of N Atlantic benthic species. In contrast, morphological analysis resulted in the identification of 10 species and three new morphospecies that we described here but opt not to equate to species until further molecular evidence is available. Our results were congruent with previous findings from the NW Atlantic and highlight the morphological and ecological diversity of Sargassum in the Atlantic. These results suggest a recent colonization and incipient speciation of Sargassum in the Atlantic basin and showcase the need of further high-throughput analyses.
Collapse
Affiliation(s)
- Daniel Álvarez-Canali
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Spain
| | - Marta Sansón
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Spain
| | - Carlos Sangil
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, La Laguna, Spain
| | - Ana Tronholm
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
5
|
Bajwa B, Xing X, Serin SC, Hayes M, Terry SA, Gruninger RJ, Abbott DW. Characterization of Unfractionated Polysaccharides in Brown Seaweed by Methylation-GC-MS-Based Linkage Analysis. Mar Drugs 2024; 22:464. [PMID: 39452872 PMCID: PMC11509683 DOI: 10.3390/md22100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study introduces a novel approach to analyze glycosidic linkages in unfractionated polysaccharides from alcohol-insoluble residues (AIRs) of five brown seaweed species. GC-MS analysis of partially methylated alditol acetates (PMAAs) enables monitoring and comparison of structural variations across different species, harvest years, and tissues with and without blanching treatments. The method detects a wide array of fucose linkages, highlighting the structural diversity in glycosidic linkages and sulfation position in fucose-containing sulfated polysaccharides. Additionally, this technique enhances cellulose quantitation, overcoming the limitations of traditional monosaccharide composition analysis that typically underestimates cellulose abundance due to incomplete hydrolysis of crystalline cellulose. The introduction of a weak methanolysis-sodium borodeuteride reduction pretreatment allows for the detection and quantitation of uronic acid linkages in alginates.
Collapse
Affiliation(s)
- Barinder Bajwa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Spencer C. Serin
- Spoitz Enterprises Inc., 215-1610 Pandora Street, Vancouver, BC V5L 1L6, Canada;
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Stephanie A. Terry
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| |
Collapse
|
6
|
Gonzalez‐Aragon D, Rivadeneira MM, Lara C, Torres FI, Vásquez JA, Broitman BR. A species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific. Ecol Evol 2024; 14:e10901. [PMID: 38435006 PMCID: PMC10905252 DOI: 10.1002/ece3.10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024] Open
Abstract
Worldwide climate-driven shifts in the distribution of species is of special concern when it involves habitat-forming species. In the coastal environment, large Laminarian algae-kelps-form key coastal ecosystems that support complex and diverse food webs. Among kelps, Macrocystis pyrifera is the most widely distributed habitat-forming species and provides essential ecosystem services. This study aimed to establish the main drivers of future distributional changes on a global scale and use them to predict future habitat suitability. Using species distribution models (SDM), we examined the changes in global distribution of M. pyrifera under different emission scenarios with a focus on the Southeast Pacific shores. To constrain the drivers of our simulations to the most important factors controlling kelp forest distribution across spatial scales, we explored a suite of environmental variables and validated the predictions derived from the SDMs. Minimum sea surface temperature was the single most important variable explaining the global distribution of suitable habitat for M. pyrifera. Under different climate change scenarios, we always observed a decrease of suitable habitat at low latitudes, while an increase was detected in other regions, mostly at high latitudes. Along the Southeast Pacific, we observed an upper range contraction of -17.08° S of latitude for 2090-2100 under the RCP8.5 scenario, implying a loss of habitat suitability throughout the coast of Peru and poleward to -27.83° S in Chile. Along the area of Northern Chile where a complete habitat loss is predicted by our model, natural stands are under heavy exploitation. The loss of habitat suitability will take place worldwide: Significant impacts on marine biodiversity and ecosystem functioning are likely. Furthermore, changes in habitat suitability are a harbinger of massive impacts in the socio-ecological systems of the Southeast Pacific.
Collapse
Affiliation(s)
- Daniel Gonzalez‐Aragon
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
| | - Marcelo M. Rivadeneira
- Centro de Estudios Avanzados en Zonas ÁridasCoquimboChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Carlos Lara
- Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo O'HigginsSantiagoChile
| | - Felipe I. Torres
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Data Observatory Foundation, ANID Technology Center No. DO210001SantiagoChile
| | - Julio A. Vásquez
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA)CoquimboChile
| | - Bernardo R. Broitman
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
- Facultad de Artes LiberalesUniversidad Adolfo IbañezViña Del MarChile
| |
Collapse
|
7
|
Diesel J, Molano G, Montecinos GJ, DeWeese K, Calhoun S, Kuo A, Lipzen A, Salamov A, Grigoriev IV, Reed DC, Miller RJ, Nuzhdin SV, Alberto F. A scaffolded and annotated reference genome of giant kelp (Macrocystis pyrifera). BMC Genomics 2023; 24:543. [PMID: 37704968 PMCID: PMC10498591 DOI: 10.1186/s12864-023-09658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.
Collapse
Affiliation(s)
- Jose Diesel
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gabriel J Montecinos
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kelly DeWeese
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sara Calhoun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Daniel C Reed
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sergey V Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|