1
|
Wei X, Jiang F, Han B, Zhang H, Huang D, Shao X. New insight into the divergent responses of plants to warming in the context of root endophytic bacterial and fungal communities. PeerJ 2021; 9:e11340. [PMID: 34123582 PMCID: PMC8164412 DOI: 10.7717/peerj.11340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
Plant adaptation under climate changes is critical to the maintenance of terrestrial ecosystem structure and function. Studying the response of the endophytic community to climate warming is a novel way to reveal the mechanism of host environmental adaptability because of the prominent role endophytes play in host nutrient acquisition and stress tolerance. However, host performance was generally neglected in previous relevant research, which limits our understanding of the relationships between the endophytic community and host responses to climate warming. The present study selected two plants with different responses to climate warming. Elymus nutans is more suitable for growing in warm environments at low altitude compared to Kobresia pygmaea. K. pygmaea and E. nutans were sampled along an altitude gradient in the natural grassland of Qinghai-Tibet Plateau, China. Root endophytic bacterial and fungal communities were analyzed using high throughput sequencing. The results revealed that hosts growing in more suitable habitats held higher endophytic fungal diversity. Elevation and host identity significantly affected the composition of the root endophytic bacterial and fungal community. 16S rRNA functional prediction demonstrated that hosts that adapted to lower temperatures recruited endophytic communities with higher abundance of genes related to cold resistance. Hosts that were more suitable for warmer and drier environments recruited endophytes with higher abundance of genes associated with nutrient absorption and oxidation resistance. We associated changes in the endophytic community with hosts adaptability to climate warming and suggested a synchronism of endophytic communities and hosts in environmental adaptation.
Collapse
Affiliation(s)
- Xiaoting Wei
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fengyan Jiang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hui Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Ding Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Restoration Ecology of Cold Area in Qinghai province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, China
| |
Collapse
|
2
|
Teheran-Sierra LG, Funnicelli MIG, de Carvalho LAL, Ferro MIT, Soares MA, Pinheiro DG. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol Res 2021; 247:126729. [PMID: 33667983 DOI: 10.1016/j.micres.2021.126729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
Plant-associated microbiomes have been a target of interest for the prospection of microorganisms, which may be acting as effectors to increase agricultural productivity. For years, the search for beneficial microorganisms has been carried out from the characterization of functional traits of growth-promotion using tests with a few isolates. However, eventually, the expectations with positive results may not be realized when the evaluation is performed in association with plants. In our study, we accessed the cultivable sugarcane microbiome under two conditions of agronomic management: organic and conventional. From the use of a new customized culture medium, we recovered 944 endophytic and epiphytic bacterial communities derived from plant roots, stalks, leaves, and rhizospheric soil. This could be accomplished by using a large-scale approach, initially performing an in planta (Cynodon dactylon) screening process of inoculation to avoid early incompatibility. The inoculation was performed using the bacterial communities, considering that in this way, they could act synergistically. This process resulted in 38 candidate communities, 17 of which had higher Indole-3-acetic acid (IAA) production and phosphate solubilization activity and, were submitted to a new in planta test using Brachiaria ruziziensis and quantification of functional traits for growth-promotion and physiological tests. Enrichment analysis of selected communities has shown that they derived mainly from epiphytic populations of sugarcane stalks under conventional management. The sequencing of the V3-V4 region of the 16S rRNA gene revealed 34 genera and 24 species distributed among the phylum Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. We also observed a network of genera in these communities where the genus Chryseobacterium stands out with a greater degree of interaction, indicating a possible direct or indirect role as a keystone taxon in communities with plant-growth promotion capacities. From the results achieved, we can conclude that the approach is useful in the recovery of a set of sugarcane bacterial communities and that there is, evidence of synergistic action providing benefits to plants, and that they are compatible with plants of the same family (Poaceae). Thus, we are reporting the beneficial bacterial communities identified as suitable candidates with rated potential to be exploited as bioinoculants for crops.
Collapse
Affiliation(s)
- Luis Guillermo Teheran-Sierra
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil; Programa de Pós-Graduação em Microbiologia Agropecuária, Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil
| | - Marcos Antônio Soares
- Universidade Federal de Mato Grosso, Instituto de Biociências, Av. Fernando Corrêa, Nº 2367, Cuiabá, MT, Brazil
| | - Daniel Guariz Pinheiro
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Câmpus Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884- 900, SP, Brazil.
| |
Collapse
|