1
|
Kou Y, Feng Z, Li H, Liu Y, Xu L, Li X. Assembly mechanisms, not species pool, shape β-diversity of soil methanotrophic communities in steppes of China. Front Microbiol 2025; 15:1522319. [PMID: 39902288 PMCID: PMC11788413 DOI: 10.3389/fmicb.2024.1522319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction One of the central aims in ecology is elucidating the mechanisms that shape community diversity. While biodiversity patterns across geographical gradients are often attributed both to local assembly processes and regional species pools, the distinct roles of these factors in shaping soil aerobic methanotrophic diversity remain underexplored. Methods Using amplicon sequencing and bioinformatics analysis, this study focuses on comparing the relative importance of species pool and community assembly processes in shaping soil methanotrophic communities across three distinct plateaus in China: the Loess Plateau, the Qinghai-Tibetan Plateau, and the Inner Mongolian Plateau. Each of these plateaus includes three distinct steppe habitats: desert, meadow, and typical steppe. Results Our findings reveal that pmoA beta (β)-diversity followed a distance-decay pattern, which declined with geographical distance at different rates depending on the steppe type and area, potentially due to diverse mechanisms of community assembly. Moreover, a decoupling between β-diversity and gamma-diversity observed, suggesting that local community assembly mechanisms primarily account for variations in β-diversity patterns. Furthermore, the relative significance of these assembly processes (e.g., dispersal limitation, drift, environmental filtering, and biotic interactions) varies according to spatial scales and steppe types. Notably, the differential environmental conditions (such as soil pH, yearly average temperature, and precipitation) across scales and steppe habitats primarily modulate the intensity of these assembly processes, thereby influencing β-diversity. Conclusion In summary, our study emphasizes the crucial role of local community assembly in changing soil methanotrophic β-diversity's geographical patterns, highlighting the significance of a nuanced understanding of these processes for effective conservation and management strategies.
Collapse
Affiliation(s)
- Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yanjiao Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Lin Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation, Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Lei S, Wang X, Wang J, Zhang L, Liao L, Liu G, Wang G, Song Z, Zhang C. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns. mSystems 2024; 9:e0104223. [PMID: 38059620 PMCID: PMC10804954 DOI: 10.1128/msystems.01042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the β-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and β-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic β-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic β-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with β-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the β-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities.IMPORTANCERecent studies have shown that community assembly processes and species pools are the main drivers of β-diversity in grassland microbial communities. However, co-occurrence patterns can also drive β-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on β-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on β-diversity and combines the drivers of community β-diversity with drought variation, revealing that drought indirectly affects β-diversity by influencing diazotrophic co-occurrence patterns and community assembly.
Collapse
Affiliation(s)
- Shilong Lei
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangtao Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang, China
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Lirong Liao
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobin Liu
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Jiang G, Zhang Y, Chen M, Ramoneda J, Han L, Shi Y, Peyraud R, Wang Y, Shi X, Chen X, Ding W, Jousset A, Hikichi Y, Ohnishi K, Zhao FJ, Xu Y, Shen Q, Dini-Andreote F, Zhang Y, Wei Z. Effects of plant tissue permeability on invasion and population bottlenecks of a phytopathogen. Nat Commun 2024; 15:62. [PMID: 38167266 PMCID: PMC10762237 DOI: 10.1038/s41467-023-44234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Pathogen genetic diversity varies in response to environmental changes. However, it remains unclear whether plant barriers to invasion could be considered a genetic bottleneck for phytopathogen populations. Here, we implement a barcoding approach to generate a pool of 90 isogenic and individually barcoded Ralstonia solanacearum strains. We used 90 of these strains to inoculate tomato plants with different degrees of physical permeability to invasion (intact roots, wounded roots and xylem inoculation) and quantify the phytopathogen population dynamics during invasion. Our results reveal that the permeability of plant roots impacts the degree of population bottleneck, genetic diversity, and composition of Ralstonia populations. We also find that selection is the main driver structuring pathogen populations when barriers to infection are less permeable, i.e., intact roots, the removal of root physical and immune barriers results in the predominance of stochasticity in population assembly. Taken together, our study suggests that plant root permeability constitutes a bottleneck for phytopathogen invasion and genetic diversity.
Collapse
Affiliation(s)
- Gaofei Jiang
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yuling Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Min Chen
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Josep Ramoneda
- Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Liangliang Han
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Rémi Peyraud
- iMEAN, Ramonville Saint Agne, Occitanie, FR, France
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Xiaojun Shi
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Wei Ding
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Fang-Jie Zhao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yong Zhang
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China.
| | - Zhong Wei
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
5
|
Wen T, Xie P, Penton CR, Hale L, Thomashow LS, Yang S, Ding Z, Su Y, Yuan J, Shen Q. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin. MICROBIOME 2022; 10:177. [PMID: 36271396 PMCID: PMC9587672 DOI: 10.1186/s40168-022-01375-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Process and function that underlie the assembly of a rhizosphere microbial community may be strongly linked to the maintenance of plant health. However, their assembly processes and functional changes in the deterioration of soilborne disease remain unclear. Here, we investigated features of rhizosphere microbiomes related to Fusarium wilt disease and assessed their assembly by comparison pair of diseased/healthy sequencing data. The untargeted metabolomics was employed to explore potential community assembly drivers, and shotgun metagenome sequencing was used to reveal the mechanisms of metabolite-mediated process after soil conditioning. RESULTS Results showed the deterministic assembly process associated with diseased rhizosphere microbiomes, and this process was significantly correlated to five metabolites (tocopherol acetate, citrulline, galactitol, octadecylglycerol, and behenic acid). Application of the metabolites resulted in a deterministic assembly of microbiome with the high morbidity of watermelon. Furthermore, metabolite conditioning was found to weaken the function of autotoxin degradation undertaken by specific bacterial group (Bradyrhizobium, Streptomyces, Variovorax, Pseudomonas, and Sphingomonas) while promoting the metabolism of small-molecule sugars and acids initiated from another bacterial group (Anaeromyxobacter, Bdellovibrio, Conexibacter, Flavobacterium, and Gemmatimonas). Video Abstract CONCLUSION: These findings strongly suggest that shifts in a metabolite-mediated microbial community assembly process underpin the deterministic establishment of soilborne Fusarium wilt disease and reveal avenues for future research focusing on ameliorating crop loss due to this pathogen.
Collapse
Affiliation(s)
- Tao Wen
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghao Xie
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - C Ryan Penton
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Faculty of Science and Mathematics, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, USA
| | - Lauren Hale
- Agricultural Research Service, USDA, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648, USA
| | - Linda S Thomashow
- Agricultural Research Service, US Department of Agriculture, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164, USA
| | - Shengdie Yang
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhexu Ding
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaqi Su
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yuan
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qirong Shen
- The Key Laboratory of Plant ImmunityJiangsu Provincial Key Lab for Organic Solid Waste UtilizationJiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Xing L, Zhi Q, Hu X, Liu L, Xu H, Zhou T, Yin H, Yi Z, Li J. Influence of Association Network Properties and Ecological Assembly of the Foliar Fugal Community on Crop Quality. Front Microbiol 2022; 13:783923. [PMID: 35479639 PMCID: PMC9037085 DOI: 10.3389/fmicb.2022.783923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Revealing community assembly and their impacts on ecosystem service is a core issue in microbial ecology. However, what ecological factors play dominant roles in phyllosphere fungal community assembly and how they link to crop quality are largely unknown. Here, we applied internal transcriptional spacer high-throughput sequencing to investigate foliar fungal community assembly across three cultivars of a Solanaceae crop (tobacco) and two planting regions with different climatic conditions. Network analyses were used to reveal the pattern in foliar fungal co-occurrence, and phylogenetic null model analysis was used to elucidate the ecological assembly of foliar fungal communities. We found that the sensory quality of crop leaves and the composition of foliar fungal community varied significantly across planting regions and cultivars. In Guangcun (GC), a region with relatively high humidity and low precipitation, there was a higher diversity and more unique fungal species than the region of Wuzhishan (WZS). Further, we found that the association network of foliar fungal communities in GC was more complex than that in WZS, and the network properties were closely related to the sensory quality of crop. Finally, the results of the phylogenetic analyses show that the stochastic processes played important roles in the foliar fungal community assembly, and their relative importance was significantly correlated with the sensory quality of crop leaves, which implies that ecological assembly processes could affect crop quality. Taken together, our results highlight that climatic conditions, and plant cultivars play key roles in the assembly of foliar fungal communities and crop quality, which enhances our understanding of the connections between the phyllosphere microbiome and ecosystem services, especially in agricultural production.
Collapse
Affiliation(s)
- Lei Xing
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Qiqi Zhi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xi Hu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Lulu Liu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Heng Xu
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Ting Zhou
- Great Wall Cigar Factory, China Tobacco Sichuan Industrial Co., Ltd, Shifang, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Warrington S, Ellis AG, Keet JH, Le Roux JJ. How does familiarity in rhizobial interactions impact the performance of invasive and native legumes? NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.79620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutualisms can be disrupted when non-native plants are introduced into novel environments, potentially impacting their establishment success. Introduced species can reassemble mutualisms by forming novel associations with resident biota or by maintaining familiar associations when they are co-introduced with their mutualists. Invasive Australian Acacia species in South Africa have formed nitrogen-fixing rhizobium mutualisms using both pathways.
Here we examined the contributions of novel vs familiar rhizobial associations to the performance of Acacia saligna across different soils within South Africa’s Core Cape Subregion (CCR), and the concomitant impacts of exotic rhizobia on the endemic legume, Psoralea pinnata. We grew each legume with and without Australian Bradyrhizobium strains across various CCR soil types in a glasshouse. We identified root nodule rhizobium communities associating with seedlings grown in each treatment combination using next-generation sequencing (NGS) techniques.
Our results show that different CCR soils affected growth performances of seedlings for both species while the addition of Australian bradyrhizobia affected growth performances of A. saligna, but not P. pinnata. NGS data revealed that each legume associated mostly with their familiar rhizobial partners, regardless of soil conditions or inoculum treatment. Acacia saligna predominantly associated with Australian bradyrhizobia, even when grown in soils without inoculum, while P. pinnata largely associated with native South African Mesorhizobium strains.
Our study suggests that exotic Australian bradyrhizobia are already present and widespread in pristine CCR soils, and that mutualist limitation is not an impediment to further acacia invasion in the region. The ability of P. pinnata to sanction Australian Bradyrhizobium strains suggests that this species may be a good candidate for restoration efforts following the removal of acacias in CCR habitats.
Collapse
|
8
|
Beule L, Karlovsky P. Early response of soil fungal communities to the conversion of monoculture cropland to a temperate agroforestry system. PeerJ 2021; 9:e12236. [PMID: 34707934 PMCID: PMC8500075 DOI: 10.7717/peerj.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Alley-cropping systems in the temperate zone are a type of agroforestry in which rows of fast-growing trees are alternated with rows of annual crops. With numerous environmental benefits, temperate agroforestry is considered a promising alternative to conventional agriculture and soil fungi may play a key in maintaining productivity of these systems. Agroforestry systems that are established for more than 10 years have shown to increase the fungal biomass and impact the composition of soil fungal communities. Investigations of soil fungi in younger temperate agroforestry systems are scarce and the temporal dynamic of these changes is not understood. Methods Our study was conducted in a young poplar-based alley cropping and adjacent monoculture cropland system in an Arenosol soil in north-west Germany. We investigated the temporal dynamics of fungal populations after the establishment of agroforestry by collecting soil samples half, one, and one and a half years after conversion of cropland to agroforestry. Samples were collected within the agroforestry tree row, at 1, 7, and 24 m distance from the tree row within the crop row, and in an adjacent conventional monoculture cropland. The biomass of soil fungi, Asco-, and Basidiomycota was determined by real-time PCR. Soil fungal community composition and diversity were obtained from amplicon sequencing. Results Differences in the community composition of soil fungi in the tree row and arable land were detected as early as half a year following the conversion of monoculture cropland to agroforestry. In the tree row, soil fungal communities in the plots strongly diverged with the age of the system. The presence of young trees did not affect the biomass of soil fungi. Conclusions The composition of soil fungal communities responded rapidly to the integration of trees into arable land through agroforestry, whereas the fungal biomass was not affected during the first one and a half years after planting the trees. Fungal communities under the trees gradually diversified. Adaptation to spatially heterogeneous belowground biomass of the trees and understory vegetation or stochastic phenomena due to limited exchange among fungal populations may account for this effect; long-term monitoring might help unravelling the cause.
Collapse
Affiliation(s)
- Lukas Beule
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August Universität Göttingen, Goettingen, Lower Saxony, Germany
| |
Collapse
|
9
|
Ramoneda J, Le Roux J, Stadelmann S, Frossard E, Frey B, Gamper HA. Soil microbial community coalescence and fertilization interact to drive the functioning of the legume–rhizobium symbiosis. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Josep Ramoneda
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Johannes Le Roux
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Stefanie Stadelmann
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Emmanuel Frossard
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Beat Frey
- Rhizosphere Processes Group Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Hannes Andres Gamper
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
- Faculty of Science and Technology Free University of Bozen‐Bolzano Bolzano Italy
| |
Collapse
|
10
|
Tedersoo L, Albertsen M, Anslan S, Callahan B. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology. Appl Environ Microbiol 2021; 87:e0062621. [PMID: 34132589 PMCID: PMC8357291 DOI: 10.1128/aem.00626-21] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Short-read, high-throughput sequencing (HTS) methods have yielded numerous important insights into microbial ecology and function. Yet, in many instances short-read HTS techniques are suboptimal, for example, by providing insufficient phylogenetic resolution or low integrity of assembled genomes. Single-molecule and synthetic long-read (SLR) HTS methods have successfully ameliorated these limitations. In addition, nanopore sequencing has generated a number of unique analysis opportunities, such as rapid molecular diagnostics and direct RNA sequencing, and both Pacific Biosciences (PacBio) and nanopore sequencing support detection of epigenetic modifications. Although initially suffering from relatively low sequence quality, recent advances have greatly improved the accuracy of long-read sequencing technologies. In spite of great technological progress in recent years, the long-read HTS methods (PacBio and nanopore sequencing) are still relatively costly, require large amounts of high-quality starting material, and commonly need specific solutions in various analysis steps. Despite these challenges, long-read sequencing technologies offer high-quality, cutting-edge alternatives for testing hypotheses about microbiome structure and functioning as well as assembly of eukaryote genomes from complex environmental DNA samples.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sten Anslan
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Benjamin Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Schwob G, Segovia NI, González-Wevar C, Cabrol L, Orlando J, Poulin E. Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean. Front Microbiol 2021; 12:703792. [PMID: 34335536 PMCID: PMC8317501 DOI: 10.3389/fmicb.2021.703792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.
Collapse
Affiliation(s)
- Guillaume Schwob
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio González-Wevar
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Facultad de Ciencias, Centro Fondap IDEAL, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Léa Cabrol
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Julieta Orlando
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
12
|
Ramoneda J, Roux JJL, Frossard E, Frey B, Gamper HA. Geographical patterns of root nodule bacterial diversity in cultivated and wild populations of a woody legume crop. FEMS Microbiol Ecol 2021; 96:5874250. [PMID: 32691840 DOI: 10.1093/femsec/fiaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
There is interest in understanding how cultivation, plant genotype, climate and soil conditions influence the biogeography of root nodule bacterial communities of legumes. For crops from regions with relict wild populations, this is of even greater interest because the effects of cultivation on symbiont communities can be revealed, which is of particular interest for bacteria such as rhizobia. Here, we determined the structure of root nodule bacterial communities of rooibos (Aspalathus linearis), a leguminous shrub endemic to South Africa. We related the community dissimilarities of the root nodule bacteria of 18 paired cultivated and wild rooibos populations to pairwise geographical distances, plant ecophysiological characteristics and soil physicochemical parameters. Using next-generation sequencing data, we identified region-, cultivation- and farm-specific operational taxonomic units for four distinct classes of root nodule bacterial communities, dominated by members of the genus Mesorhizobium. We found that while bacterial richness was locally increased by organic cultivation, strong biogeographical differentiation in the bacterial communities of wild rooibos disappeared with cultivation of one single cultivar across its entire cultivation range. This implies that expanding rooibos farming has the potential to endanger wild rooibos populations through the homogenisation of root nodule bacterial diversity.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland.,Faculty of Science and Technology, Free University of Bolzen-Bolzano, Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|