1
|
Noirmain F, Baray JL, Deguillaume L, Van Baelen J, Latour D. Exploring the size-dependent dynamics of photosynthetic cells in rainwater: The influence of atmospheric variables and rain characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167746. [PMID: 37827319 DOI: 10.1016/j.scitotenv.2023.167746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The presence of microalgae in the atmosphere raises health and environmental concerns. Despite recent scientific advances, our knowledge of the origins and dynamics of photosynthetic cells in relation to atmospheric processes is limited due to a lack of empirical data. To address this gap, we conducted a one-year survey, collecting and analyzing rainwater samples. This study proposes to investigate the temporal dynamics of photosynthetic cells based on their size in combination with a unique dataset of variables of interest: type of rain and its characteristics, local meteorology, concentrations of inorganic chemical species, and long-range air mass transport. The analysis of the biochemical composition of rainwater, along with its correlation with the origin of air masses using ions as tracers, provides evidence of the long-range transport of photosynthetic cells. Additionally, our study reveals distinct removal mechanisms from the atmosphere for photosynthetic cells depending on their size. Our results suggest that convective events with high-intensity rainfall led to the efficient removal of medium-sized photosynthetic cells (4-15 μm) from the atmosphere. However, removal mechanisms for small (<4 μm) and large-sized cells (>15 μm) are not influenced by microphysical rainfall characteristics and seem to be governed by different atmospheric processes: dry deposition is proposed to be a significant mechanism for the removal of large-sized photosynthetic cells, while small-sized cells detected in rain are correlated with the horizontal wind speed and duration of rainfall, particularly during stratiform events. This implies that the removal of photosynthetic cells from the atmosphere is strongly influenced by environmental variables, which are expected to vary in response to global change. Therefore, it is crucial to enhance the monitoring of photosynthetic cells in relation to atmospheric processes and investigate the potential impact of the dissemination of genetic material from distant sources on recipient ecosystems.
Collapse
Affiliation(s)
- Fanny Noirmain
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome, Environnement (LMGE), UMR6023, Clermont-Ferrand, France.
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), UMR6016, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont Ferrand (OPGC), UAR833, Clermont-Ferrand, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), UMR6016, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont Ferrand (OPGC), UAR833, Clermont-Ferrand, France
| | - Joël Van Baelen
- Université de La Réunion, CNRS, Météo-France, Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR8105, St Denis de la Réunion, France
| | - Delphine Latour
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome, Environnement (LMGE), UMR6023, Clermont-Ferrand, France
| |
Collapse
|
2
|
Rahlff J, Esser SP, Plewka J, Heinrichs ME, Soares A, Scarchilli C, Grigioni P, Wex H, Giebel HA, Probst AJ. Marine viruses disperse bidirectionally along the natural water cycle. Nat Commun 2023; 14:6354. [PMID: 37816747 PMCID: PMC10564846 DOI: 10.1038/s41467-023-42125-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Marine viruses in seawater have frequently been studied, yet their dispersal from neuston ecosystems at the air-sea interface towards the atmosphere remains a knowledge gap. Here, we show that 6.2% of the studied virus population were shared between air-sea interface ecosystems and rainwater. Virus enrichment in the 1-mm thin surface microlayer and sea foams happened selectively, and variant analysis proved virus transfer to aerosols collected at ~2 m height above sea level and rain. Viruses detected in rain and these aerosols showed a significantly higher percent G/C base content compared to marine viruses. CRISPR spacer matches of marine prokaryotes to foreign viruses from rainwater prove regular virus-host encounters at the air-sea interface. Our findings on aerosolization, adaptations, and dispersal support transmission of viruses along the natural water cycle.
Collapse
Affiliation(s)
- Janina Rahlff
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany.
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Sarah P Esser
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Julia Plewka
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - André Soares
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
| | - Claudio Scarchilli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Paolo Grigioni
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123, Rome, Italy
| | - Heike Wex
- Atmospheric Microphysics, Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Center for Marine Sensors (ZfMarS), Carl von Ossietzky University of Oldenburg, 26382, Wilhelmshaven, Germany
| | - Alexander J Probst
- Group for Aquatic Microbial Ecology, Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, 45141, Essen, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
3
|
Amato P, Mathonat F, Nuñez Lopez L, Péguilhan R, Bourhane Z, Rossi F, Vyskocil J, Joly M, Ervens B. The aeromicrobiome: the selective and dynamic outer-layer of the Earth's microbiome. Front Microbiol 2023; 14:1186847. [PMID: 37260685 PMCID: PMC10227452 DOI: 10.3389/fmicb.2023.1186847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Péguilhan R, Besaury L, Rossi F, Enault F, Baray JL, Deguillaume L, Amato P. Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiol Ecol 2021; 97:6420242. [PMID: 34734249 DOI: 10.1093/femsec/fiab144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.
Collapse
Affiliation(s)
- Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Florent Rossi
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - François Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 CLERMONT-FERRAND, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| |
Collapse
|
5
|
Indirect Selection against Antibiotic Resistance via Specialized Plasmid-Dependent Bacteriophages. Microorganisms 2021; 9:microorganisms9020280. [PMID: 33572937 PMCID: PMC7911639 DOI: 10.3390/microorganisms9020280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance genes of important Gram-negative bacterial pathogens are residing in mobile genetic elements such as conjugative plasmids. These elements rapidly disperse between cells when antibiotics are present and hence our continuous use of antimicrobials selects for elements that often harbor multiple resistance genes. Plasmid-dependent (or male-specific or, in some cases, pilus-dependent) bacteriophages are bacterial viruses that infect specifically bacteria that carry certain plasmids. The introduction of these specialized phages into a plasmid-abundant bacterial community has many beneficial effects from an anthropocentric viewpoint: the majority of the plasmids are lost while the remaining plasmids acquire mutations that make them untransferable between pathogens. Recently, bacteriophage-based therapies have become a more acceptable choice to treat multi-resistant bacterial infections. Accordingly, there is a possibility to utilize these specialized phages, which are not dependent on any particular pathogenic species or strain but rather on the resistance-providing elements, in order to improve or enlengthen the lifespan of conventional antibiotic approaches. Here, we take a snapshot of the current knowledge of plasmid-dependent bacteriophages.
Collapse
|