1
|
Vinothini K, Nakkeeran S, Saranya N, Jothi P, Richard JI, Perveen K, Bukhari NA, Glick BR, Sayyed RZ, Mastinu A. Rhizosphere Engineering of Biocontrol Agents Enriches Soil Microbial Diversity and Effectively Controls Root-Knot Nematodes. MICROBIAL ECOLOGY 2024; 87:120. [PMID: 39340684 PMCID: PMC11438712 DOI: 10.1007/s00248-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
The root-knot nematode (RKN) causes significant yield loss in tomatoes. Understanding the interaction of biocontrol agents (BCAs)-nematicides-soil microbiomes and RKNs is essential for enhancing the efficacy of biocontrol agents and nematicides to curb RKN damage to crops. The present study aimed to evaluate the in vitro effectiveness of BACa and nematicide against RKN and to apply the amplicon sequencing to assess the interaction of Bacillus velezensis (VB7) and Trichoderma koningiopsis (TK) against RKNs. Metagenomic analysis revealed the relative abundance of three phyla such as Proteobacteria (42.16%), Firmicutes (19.57%), and Actinobacteria (17.69%) in tomato rhizospheres. Those tomato rhizospheres treated with the combined application of B. velezensis VB7 + T. koningiopsis TK and RKN had a greater frequency of diversity and richness than the control. RKN-infested tomato rhizosphere drenched with bacterial and fungal antagonists had the maximum diversity index of bacterial communities. A strong correlation with a maximum number of interconnection edges in the phyla Proteobacteria, Firmicutes, and Actinobacteria was evident in soils treated with both B. velezensis VB7 and T. koningiopsis TK challenged against RKN in infected soil. The present study determined a much greater diversity of bacterial taxa observed in tomato rhizosphere soils treated with B. velezensis VB7 and T. koningiopsis TK than in untreated soil. It is suggested that the increased diversity and abundance of bacterial communities might be responsible for increased nematicidal properties in tomato plants. Hence, the combined applications of B. velezensis VB7 and T. koningiopsis TK can enhance the nematicidal action to curb RKN infecting tomatoes.
Collapse
Affiliation(s)
- K Vinothini
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - S Nakkeeran
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| | - N Saranya
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - P Jothi
- Department of Nematology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - J Infant Richard
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - R Z Sayyed
- Department of Biological Sciences and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, 616, Sultanate of Oman.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
2
|
Clavero-Camacho I, Ruiz-Cuenca AN, Cantalapiedra-Navarrete C, Castillo P, Palomares-Rius JE. Diversity of microbial, biocontrol agents and nematode abundance on a susceptible Prunus rootstock under a Meloidogyne root gradient infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1386535. [PMID: 39376243 PMCID: PMC11456498 DOI: 10.3389/fpls.2024.1386535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Root-knot nematodes (RKNs) of the genus Meloidogyne are one of the most damaging genera to cultivated woody plants with a worldwide distribution. The knowledge of the soil and rhizosphere microbiota of almonds infested with Meloidogyne could help to establish new sustainable and efficient management strategies. However, the soil microbiota interaction in deciduous woody plants infected with RKNs is scarcely studied. This research was carried out in six commercial almond groves located in southern Spain and infested with different levels of Meloidogyne spp. within each grove. Several parameters were measured: nematode assemblages, levels and biocontrol agents in Meloidogyne's eggs, levels of specific biocontrol agents in rhizoplane and soil, levels of bacteria and fungi in rhizoplane and soil, fungal and bacterial communities by high-throughput sequencing of internal transcribed spacer (ITS), and 16S rRNA gene in soil and rhizosphere of the susceptible almond hybrid rootstock GF-677 infested with Meloidogyne spp. The studied almond groves showed soil degradation by nematode assemblies and fungi:bacterial ratio. Fungal parasites of Meloidogyne eggs were found in 56.25% of the samples. However, the percentage of parasitized eggs by fungi ranged from 1% to 8%. Three fungal species were isolated from Meloidogyne eggs, specifically Pochonia chlamydosporia, Purpureocillium lilacinum, and Trichoderma asperellum. The diversity and composition of the microbial communities were more affected by the sample type (soil vs rhizosphere) and by the geographical location of the samples than by the Meloidogyne density, which could be explained by the vigorous hybrid rootstock GF-677 and a possible dilution effect. However, the saprotrophic function in the functional guilds of the fungal ASV was increased in the highly infected roots vs the low infected roots. These results indicate that the presence of biocontrol agents in almond fields and the development of new management strategies could increase their populations to control partially RKN infection levels.
Collapse
Affiliation(s)
- Ilenia Clavero-Camacho
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
- Instituto de Estudios de Postgrado, Departamento de Agronomía, Universidad de Córdoba, Cordoba, Spain
| | - Alba N. Ruiz-Cuenca
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
- Departament of Animal Plant Biology and Ecology, Universidad de Jaén, Jaén, Spain
| | | | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
| | - Juan E. Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
| |
Collapse
|
3
|
Nimnoi P, Pirankham P, Srimuang K, Ruanpanun P. Insights into soil nematode diversity and bacterial community of Thai jasmine rice rhizosphere from different paddy fields in Thailand. PeerJ 2024; 12:e17289. [PMID: 38680886 PMCID: PMC11048080 DOI: 10.7717/peerj.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Globally, phytonematodes cause significant crop losses. Understanding the functions played by the plant rhizosphere soil microbiome during phytonematodes infection is crucial. This study examined the distribution of phytonematodes in the paddy fields of five provinces in Thailand, as well as determining the keystone microbial taxa in response to environmental factors that could be considered in the development of efficient biocontrol tactics in agriculture. The results demonstrated that Meloidogyne graminicola and Hirschmanniella spp. were the major and dominant phytonematodes distributed across the paddy fields of Thailand. Soil parameters (total P, Cu, Mg, and Zn) were the important factors affecting the abundance of both nematodes. Illumina next-generation sequencing demonstrated that the levels of bacterial diversity among all locations were not significantly different. The Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the most abundant bacterial phyla observed at all sites. The number of classes of the Acidobacteriae, Clostridia, Bacilli, and Bacteroidia influenced the proportions of Hirschmanniella spp., Tylenchorhynchus spp., and free-living nematodes in the sampling dirt, whereas the number of classes of the Polyangia and Actinobacteria affected the amounts of Pratylenchus spp. in both roots and soils. Soil organic matter, N, and Mn were the main factors that influenced the structure of the bacterial community. Correlations among rhizosphere microbiota, soil nematodes, and soil properties will be informative data in considering phytonematode management in a rice production system.
Collapse
Affiliation(s)
- Pongrawee Nimnoi
- Microbiology Division, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Patawee Pirankham
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Kittipong Srimuang
- Prachinburi Rice Research Center, Division of Rice Research and Development, Rice Department, Ban Sang, Prachin Buri, Thailand
| | - Pornthip Ruanpanun
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Kamalanathan V, Sevugapperumal N, Nallusamy S, Ashraf S, Kailasam K, Afzal M. Metagenomic Approach Deciphers the Role of Community Composition of Mycobiome Structured by Bacillus velezensis VB7 and Trichoderma koningiopsis TK in Tomato Rhizosphere to Suppress Root-Knot Nematode Infecting Tomato. Microorganisms 2023; 11:2467. [PMID: 37894125 PMCID: PMC10609121 DOI: 10.3390/microorganisms11102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
The soil microbiome is crucial for maintaining the sustainability of the agricultural environment. Concerning the role of diverse mycobiomes and their abundance toward the suppression of root-knot nematode (RKN) infection in vegetable crops, our understanding is unclear. To unveil this issue, we examined the fungal microbiome in tomato rhizosphere augmented with bioagents challenged against RKN at taxonomic and functional levels. Composition of the mycobiome in tomato rhizosphere treated with Bacillus velezensis VB7 and Trichoderma koningiopsis TK differed significantly from the infected tomato rhizosphere. The abundance and diversity of fungal species, however, were significantly higher in the combined treatments of bioagents than for individual treatments. Fungal microbiome diversity was negatively correlated in the RKN-associated soil. Network analysis of the fungal biome indicated a larger and complex network of fungal biome diversity in bioagent-treated soil than in nematode-associated tomato rhizosphere. The diversity index represented by that challenging the RKN by drenching with consortia of B. velezensis VB7 and T. koningiopsis TK, or applying them individually, constituted the maximum abundance and richness of the mycobiome compared to the untreated control. Thus, the increased diverse nature and relative abundance of the mycobiome in tomato rhizosphere was mediated through the application of either T. koningiopsis TK or B. velezensis VB7, individually or as a consortium comprising both fungal and bacterial antagonists, which facilitated engineering the community composition of fungal bioagents. This in turn inhibited the infestation of RKN in tomato. It would be interesting to explore further the possibility of combined applications of B. velezensis VB7 and T. koningiopsis TK to manage root-knot nematodes as an integrated approach for managing plant parasitic nematodes at the field level.
Collapse
Affiliation(s)
- Vinothini Kamalanathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Nakkeeran Sevugapperumal
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Suhail Ashraf
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Kumanan Kailasam
- Department of Horticulture, Agricultural College & Research Institute, Kudumiyanmalai, TNAU, Pudukottai 622104, Tamil Nadu, India;
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Topalović O, Geisen S. Nematodes as suppressors and facilitators of plant performance. THE NEW PHYTOLOGIST 2023; 238:2305-2312. [PMID: 37010088 DOI: 10.1111/nph.18925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/26/2023] [Indexed: 05/19/2023]
Abstract
Plant-nematode interactions are mainly considered from the negative aspect with a focus on plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by PPNs. Despite the fact that PPNs are outnumbered by nonparasitic free-living nematodes (FLNs), the functional importance of FLNs, especially with regard to plant performance, remains largely unknown. Here, we provide a comprehensive overview and most recent insights into soil nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance. We especially emphasize the knowledge gaps and potential of FLNs as important indirect players in driving plant performance such as stimulating the resistance to pests via improving the disease suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as positive and negative contributors to plant performance, accentuating the positive but underexplored role of FLNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| | - Stefan Geisen
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| |
Collapse
|
6
|
Michl K, Berg G, Cernava T. The microbiome of cereal plants: The current state of knowledge and the potential for future applications. ENVIRONMENTAL MICROBIOME 2023; 18:28. [PMID: 37004087 PMCID: PMC10064690 DOI: 10.1186/s40793-023-00484-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The plant microbiota fulfils various crucial functions related to host health, fitness, and productivity. Over the past years, the number of plant microbiome studies continued to steadily increase. Technological advancements not only allow us to produce constantly increasing datasets, but also to extract more information from them in order to advance our understanding of plant-microbe interactions. The growing knowledge base has an enormous potential to improve microbiome-based, sustainable agricultural practices, which are currently poorly understood and have yet to be further developed. Cereal plants are staple foods for a large proportion of the world's population and are therefore often implemented in microbiome studies. In the present review, we conducted extensive literature research to reflect the current state of knowledge in terms of the microbiome of the four most commonly cultivated cereal plants. We found that currently the majority of available studies are targeting the wheat microbiome, which is closely followed by studies on maize and rice. There is a substantial gap, in terms of published studies, addressing the barley microbiome. Overall, the focus of most microbiome studies on cereal plants is on the below-ground microbial communities, and there is more research on bacteria than on fungi and archaea. A meta-analysis conducted in the frame of this review highlights microbiome similarities across different cereal plants. Our review also provides an outlook on how the plant microbiota could be harnessed to improve sustainability of cereal crop production.
Collapse
Affiliation(s)
- Kristina Michl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Golm, OT Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, 8010 Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Southampton, SO17 1BJ UK
| |
Collapse
|
7
|
Li Y, Lei S, Cheng Z, Jin L, Zhang T, Liang LM, Cheng L, Zhang Q, Xu X, Lan C, Lu C, Mo M, Zhang KQ, Xu J, Tian B. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. MICROBIOME 2023; 11:48. [PMID: 36895023 PMCID: PMC9999639 DOI: 10.1186/s40168-023-01484-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.
Collapse
Affiliation(s)
- Ye Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shaonan Lei
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Zhiqiang Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lingyue Jin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Ting Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Linjie Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Qinyi Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Canhua Lan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Chaojun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Baoyu Tian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
8
|
Arnault G, Mony C, Vandenkoornhuyse P. Plant microbiota dysbiosis and the Anna Karenina Principle. TRENDS IN PLANT SCIENCE 2023; 28:18-30. [PMID: 36127241 DOI: 10.1016/j.tplants.2022.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are associated with all plants, recently leading to the hologenome concept. We reviewed the assembly processes of plant microbiota and analyzed its structure during the emergence of dysbioses. In particular, we discussed the Anna Karenina Principle (AKP) based on Leo Tolstoy's assertion applied to plant microbiota: 'All healthy microbiota are alike; each disease-associated microbiota is sick in its own way.' We propose the AKP to explain how stochastic processes in plant microbiota assembly due to several external stressors could lead to plant diseases. Finally, we propose the AKP to conceptualize plant dysbioses as a transitory loss of host capacity to regulate its microbiota, implying a loss of function that leads to a reduction of the host's fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Campus Beaulieu, 35042 Rennes, France
| | - Cendrine Mony
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Campus Beaulieu, 35042 Rennes, France
| | | |
Collapse
|
9
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|