1
|
Tsai CE, Wang FQ, Yang CW, Yang LL, Nguyen TV, Chen YC, Chen PY, Hwang IS, Ting SY. Surface-mediated bacteriophage defense incurs fitness tradeoffs for interbacterial antagonism. EMBO J 2025; 44:2473-2500. [PMID: 40065098 PMCID: PMC12048535 DOI: 10.1038/s44318-025-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/04/2025] Open
Abstract
Bacteria in polymicrobial habitats are constantly exposed to biotic threats from bacteriophages (or "phages"), antagonistic bacteria, and predatory eukaryotes. These antagonistic interactions play crucial roles in shaping the evolution and physiology of bacteria. To survive, bacteria have evolved mechanisms to protect themselves from such attacks, but the fitness costs of resisting one threat and rendering bacteria susceptible to others remain unappreciated. Here, we examined the fitness consequences of phage resistance in Salmonella enterica, revealing that phage-resistant variants exhibited significant fitness loss upon co-culture with competitor bacteria. These phage-resistant strains display varying degrees of lipopolysaccharide (LPS) deficiency and increased susceptibility to contact-dependent interbacterial antagonism, such as the type VI secretion system (T6SS). Utilizing mutational analyses and atomic force microscopy, we show that the long-modal length O-antigen of LPS serves as a protective barrier against T6SS-mediated intoxication. Notably, this competitive disadvantage can also be triggered independently by phages possessing LPS-targeting endoglycosidase in their tail spike proteins, which actively cleave the O-antigen upon infection. Our findings reveal two distinct mechanisms of phage-mediated LPS modifications that modulate interbacterial competition, shedding light on the dynamic microbial interplay within mixed populations.
Collapse
Affiliation(s)
- Chia-En Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Qi Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Ling-Li Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Thao Vp Nguyen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yung-Chih Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yin Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - See-Yeun Ting
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 11490, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106319, Taiwan.
| |
Collapse
|
2
|
Landor LAI, Tjendra J, Erstad K, Krabberød AK, Töpper JP, Våge S. At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70046. [PMID: 39562842 PMCID: PMC11576411 DOI: 10.1111/1758-2229.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Cost of bacteriophage resistance (COR) is important in explaining processes of diversification and coexistence in microbial communities. COR can be expressed in different traits, and the lack of universally applicable methods to measure fitness trade-offs makes COR challenging to study. Due to its fundamental role in growth, we explored protein synthesis as a target for quantifying COR. In this study, the growth kinetics of three genome-sequenced strains of phage-resistant Escherichia coli, along with the phage-susceptible wild-type, were characterized over a range of glucose concentrations. Bioorthogonal non-canonical amino acid tagging (BONCAT) was used to track differences in protein synthetic activity between the wild-type and phage-resistant E. coli. Two of the resistant strains, with different levels of phage susceptibility, showed mucoid phenotypes corresponding with mutations in genes associated with the Rcs phosphorelay. These mucoid isolates, however, had reduced growth rates and potentially lower protein synthetic activity. Another resistant isolate with a different mutational profile maintained the same growth rate as the wild-type and showed increased BONCAT fluorescence, but its yield was lower. Together, these findings present different patterns of trade-offs resulting from the phage-induced mutations and demonstrate the potential applicability of BONCAT as a tool for measuring COR.
Collapse
Affiliation(s)
- Lotta A. I. Landor
- Department of Biological SciencesUniversity of BergenBergenNorway
- Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark
| | - Jesslyn Tjendra
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Karen Erstad
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | | | - Selina Våge
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Lyu D, Duan Q, Duan R, Qin S, Zheng X, Lu X, Bukai A, Zhang P, Han H, He Z, Sha H, Wu D, Xiao M, Jing H, Wang X. Symbiosis of a lytic bacteriophage and Yersinia pestis and characteristics of plague in Marmota himalayana. Appl Environ Microbiol 2024; 90:e0099524. [PMID: 39023266 PMCID: PMC11337824 DOI: 10.1128/aem.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Surveillance for animal plague was conducted in the Marmota himalayana plague focus of the Qinghai-Tibet Plateau from 2020 to 2023. A 22.89% positive rate of serum F1 antibody was detected in live-caught marmots, alongside a 43.40% incidence of Yersinia pestis isolation from marmot carcasses. Marmot carcasses infected with plague exhibited a significantly higher spleen-somatic index (P < 0.05). Twenty-one Y. pestis-specific phages were isolated, among which one Y. pestis lytic phage (AKS2022HT87GU_phi) was isolated from the bone marrow of a marmot carcass (no. AKS2022HT87) and was found to be symbiotic with Y. pestis. Microscopy revealed the coexistence of lysed and non-lysed colonies of Y. pestis AKS2022HT87. Genome-wide analysis showed that certain strains of the Y. pestis AKS2022HT87 carried phage DNA fragments consistent with phage AKS2022HT87GU_phi. The rare symbiotic relationship between a lytic phage and Y. pestis observed in vitro was highlighted in this study, laying the basis for further exploring the relationship between Y. pestis and its bacteriophages.IMPORTANCEBacteriophages and host bacteria commonly coexist in vivo or in soil environments through complex and interdependent microbial interactions. However, recapitulating this symbiotic state remains challenging in vitro due to limited medium nutrients. In this work, the natural symbiosis between Yersinia pestis and specific phages has been discovered in a Marmota himalayana specimen. Epidemiological analysis presented the characteristics of the Y. pestis and specific phages in the area with a strong plague epidemic. Crucially, comparative genomics has been conducted to analyze the genetic changes in both the Y. pestis and phages over different periods, revealing the dynamic and evolving nature of their symbiosis. These are the critical steps to study the mechanism of the symbiosis.
Collapse
Affiliation(s)
- Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Di Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Burmeister AR, Tewatia H, Skinner C. A tradeoff between bacteriophage resistance and bacterial motility is mediated by the Rcs phosphorelay in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001491. [PMID: 39194382 PMCID: PMC11541549 DOI: 10.1099/mic.0.001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Across the tree of life, pleiotropy is thought to constrain adaptation through evolutionary tradeoffs. However, few examples of pleiotropy exist that are well explained at the genetic level, especially for pleiotropy that is mediated by multiple genes. Here, we describe a set of pleiotropic mutations that mediate two key fitness components in bacteria: parasite resistance and motility. We subjected Escherichia coli to strong selection by phage U136B to obtain 27 independent mucoid mutants. Mucoidy is a phenotype that results from excess exopolysaccharide and can act as a barrier against viral infection but can also interfere with other cellular functions. We quantified the mutants' phage resistance using efficiency of plaquing assays and swimming motility using swim agar plates, and we sequenced the complete genomes of all mutants to identify mucoid-causing mutations. Increased phage resistance co-occurred with decreased motility. This relationship was mediated by highly parallel (27/27) mutations to the Rcs phosphorelay pathway, which senses membrane stress to regulate exopolysaccharide production. Together, these results provide an empirical example of a pleiotropic relationship between two traits with intermediate genetic complexity.
Collapse
Affiliation(s)
- Alita R. Burmeister
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Harleen Tewatia
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| | - Chloé Skinner
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Mason G, Footer MJ, Rojas ER. Mechanosensation induces persistent bacterial growth during bacteriophage predation. mBio 2023; 14:e0276622. [PMID: 37909775 PMCID: PMC10746221 DOI: 10.1128/mbio.02766-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria and bacteriophage form one of the most important predator-prey relationships on earth, yet how the long-term stability of this ecological interaction is achieved is unclear. Here, we demonstrate that Escherichia coli can rapidly grow during bacteriophage predation if they are doing so in spatially confined environments. This discovery revises our understanding of bacteria-bacteriophage population dynamics in many real-world environments where bacteria grow in confinement, such as the gut and the soil. Additionally, this result has clear implications for the potential of bacteriophage therapy and the role of mechanosensation during bacterial pathogenesis.
Collapse
Affiliation(s)
- Guy Mason
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Matthew J. Footer
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Enrique R. Rojas
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
6
|
Luthe T, Kever L, Thormann K, Frunzke J. Bacterial multicellular behavior in antiviral defense. Curr Opin Microbiol 2023; 74:102314. [PMID: 37030144 DOI: 10.1016/j.mib.2023.102314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Multicellular behavior benefits seemingly simple organisms such as bacteria, by improving nutrient uptake, resistance to stresses, or by providing advantages in predatory interactions. Several recent studies have shown that this also extends to the defense against bacteriophages, which are omnipresent in almost all habitats. In this review, we summarize strategies conferring protection against phage infection at the multicellular level, covering secretion of small antiphage molecules or membrane vesicles, the role of quorum sensing in phage defense, the development of transient phage resistance, and the impact of biofilm components and architecture. Recent studies focusing on these topics push the boundaries of our understanding of the bacterial immune system and set the ground for an appreciation of bacterial multicellular behavior in antiviral defense.
Collapse
|
7
|
Burmeister AR, Tzintzun-Tapia E, Roush C, Mangal I, Barahman R, Bjornson RD, Turner PE. Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation. Appl Environ Microbiol 2023:e0007923. [PMID: 37191555 DOI: 10.1128/aem.00079-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections.
Collapse
Affiliation(s)
- Alita R Burmeister
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Eddy Tzintzun-Tapia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Carli Roush
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Ivan Mangal
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | - Roxanna Barahman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
| | | | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- BEACON Center for the Study of Evolution in Action, East Lansing, Michigan, USA
- Microbiology Program, Yale School of Medicine, New Haven, Connecticut, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Winzig F, Gandhi S, Lee A, Würstle S, Stanley GL, Capuano I, Neuringer I, Koff JL, Turner PE, Chan BK. Inhaled Bacteriophage Therapy for Multi-Drug Resistant Achromobacter. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:413-427. [PMID: 36568830 PMCID: PMC9765334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rise of antimicrobial resistant (AMR) bacteria is a global public health threat. AMR Achromobacter bacteria pose a challenging clinical problem, particularly for those with cystic fibrosis (CF) who are predisposed to chronic bacterial lung infections. Lytic bacteriophages (phages) offer a potential alternative to treat AMR infections, with the possible benefit that phage selection for resistance in target bacteria might coincide with reduced pathogenicity. The result is a genetic "trade-off," such as increased sensitivity to chemical antibiotics, and/or decreased virulence of surviving bacteria that are phage resistant. Here, we show that two newly discovered lytic phages against Achromobacter were associated with stabilization of respiratory status when deployed to treat a chronic pulmonary infection in a CF patient using inhaled (nebulized) phage therapy. The two phages demonstrate traits that could be generally useful in their development as therapeutics, especially the possibility that the phages can select for clinically useful trade-offs if bacteria evolve phage resistance following therapy. We discuss the limitations of the current study and suggest further work that should explore whether the phages could be generally useful in targeting pulmonary or other Achromobacter infections in CF patients.
Collapse
Affiliation(s)
- Franziska Winzig
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Technische Universität München, München, Germany
| | - Shiv Gandhi
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious
Disease, Yale School of Medicine, New Haven, CT, USA
| | - Alina Lee
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
| | - Silvia Würstle
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Department of Internal Medicine II, University Hospital
rechts der Isar, School of Medicine, Technische Universität München, München,
Germany
| | - Gail L. Stanley
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary,
Critical Care, & Sleep Medicine, Yale School of Medicine, New Haven, CT,
USA
| | - Isabella Capuano
- Department of Internal Medicine, Section of Pulmonary,
Critical Care, & Sleep Medicine, Yale School of Medicine, New Haven, CT,
USA
- Cornell University, Ithaca, NY, USA
| | | | - Jonathan L. Koff
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary,
Critical Care, & Sleep Medicine, Yale School of Medicine, New Haven, CT,
USA
- To whom all correspondence should be addressed:
Paul E. Turner, ; ORCID:
https://www.orcid.org/0000-0003-3490-7498. Benjamin K. Chan,
. Jonathan L. Koff,
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New
Haven, CT, USA
- To whom all correspondence should be addressed:
Paul E. Turner, ; ORCID:
https://www.orcid.org/0000-0003-3490-7498. Benjamin K. Chan,
. Jonathan L. Koff,
| | - Benjamin K. Chan
- Department of Ecology and Evolutionary Biology, Yale
University, New Haven, CT, USA
- Center for Phage Biology & Therapy, Yale
University, New Haven, CT, USA
- To whom all correspondence should be addressed:
Paul E. Turner, ; ORCID:
https://www.orcid.org/0000-0003-3490-7498. Benjamin K. Chan,
. Jonathan L. Koff,
| |
Collapse
|
10
|
Igler C. Phenotypic flux: The role of physiology in explaining the conundrum of bacterial persistence amid phage attack. Virus Evol 2022; 8:veac086. [PMID: 36225237 PMCID: PMC9547521 DOI: 10.1093/ve/veac086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, the viruses of bacteria, have been studied for over a century. They were not only instrumental in laying the foundations of molecular biology, but they are also likely to play crucial roles in shaping our biosphere and may offer a solution to the control of drug-resistant bacterial infections. However, it remains challenging to predict the conditions for bacterial eradication by phage predation, sometimes even under well-defined laboratory conditions, and, most curiously, if the majority of surviving cells are genetically phage-susceptible. Here, I propose that even clonal phage and bacterial populations are generally in a state of continuous 'phenotypic flux', which is caused by transient and nongenetic variation in phage and bacterial physiology. Phenotypic flux can shape phage infection dynamics by reducing the force of infection to an extent that allows for coexistence between phages and susceptible bacteria. Understanding the mechanisms and impact of phenotypic flux may be key to providing a complete picture of phage-bacteria coexistence. I review the empirical evidence for phenotypic variation in phage and bacterial physiology together with the ways they have been modeled and discuss the potential implications of phenotypic flux for ecological and evolutionary dynamics between phages and bacteria, as well as for phage therapy.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
11
|
You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, Wick LY. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. THE ISME JOURNAL 2022; 16:1275-1283. [PMID: 34903848 PMCID: PMC9039081 DOI: 10.1038/s41396-021-01155-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Nonmotile microorganisms often enter new habitats by co-transport with motile microorganisms. Here, we report that also lytic phages can co-transport with hyphal-riding bacteria and facilitate bacterial colonization of a new habitat. This is comparable to the concept of biological invasions in macroecology. In analogy to invasion frameworks in plant and animal ecology, we tailored spatially organized, water-unsaturated model microcosms using hyphae of Pythium ultimum as invasion paths and flagellated soil-bacterium Pseudomonas putida KT2440 as carrier for co-transport of Escherichia virus T4. P. putida KT2440 efficiently dispersed along P. ultimum to new habitats and dispatched T4 phages across air gaps transporting ≈0.6 phages bacteria−1. No T4 displacement along hyphae was observed in the absence of carrier bacteria. If E. coli occupied the new habitat, T4 co-transport fueled the fitness of invading P. putida KT2440, while the absence of phage co-transport led to poor colonization followed by extinction. Our data emphasize the importance of hyphal transport of bacteria and associated phages in regulating fitness and composition of microbial populations in water-unsaturated systems. As such co-transport seems analogous to macroecological invasion processes, hyphosphere systems with motile bacteria and co-transported phages could be useful models for testing hypotheses in invasion ecology.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ingolf Kühn
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstr. 33, Leipzig, 04103, Germany
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
12
|
Koonjan S, Cardoso Palacios C, Nilsson AS. Population Dynamics of a Two Phages-One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57. Pharmaceuticals (Basel) 2022; 15:268. [PMID: 35337066 PMCID: PMC8953519 DOI: 10.3390/ph15030268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we looked at the population dynamics of a two phages-one host system using phages vB_EcoP_SU10 (SU10) and vB_EcoD_SU57 (SU57) and the bacteria Escherichia coli, strain ECOR57. Phage-specific growth curves were observed where infections by SU10 resulted in a moderate production of phages and infections by SU57 resulted in a fast and extensive production of phage progeny. Sequentially adding SU10 followed by SU57 did not produce a significant change in growth rates, whereas adding SU57 followed by SU10 resulted in a decrease in SU10 titer The efficiency of the plating assays showed that ECOR57 exhibited a resistance spectrum after infection by both the single and combined phages. Phage-resistant bacteria exhibited four different morphotypes (i.e., normal, slimy, edgy, and pointy). The normal and edgy morphotypes had a high frequency of developing resistance. Bacterial growth and biofilm assays indicated that the edgy and pointy morphotypes reached a stationary phase faster and produced more biofilm compared to the wild type. These findings suggest that the dynamic structure of phage-bacteria communities dictate resistance evolution and development. Understanding when and how resistances arise and phage(s)-hosts interactions could aid in the design of phage therapy treatments.
Collapse
Affiliation(s)
- Shazeeda Koonjan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Carlos Cardoso Palacios
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-739 93 Riddarhyttan, Sweden
| | - Anders S. Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
13
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
A New Sugar for an Old Phage: a c-di-GMP-Dependent Polysaccharide Pathway Sensitizes Escherichia coli for Bacteriophage Infection. mBio 2021; 12:e0324621. [PMID: 34903045 PMCID: PMC8669472 DOI: 10.1128/mbio.03246-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bacteriophages are ubiquitous parasites of bacteria and major drivers of bacterial ecology and evolution. Despite an ever-growing interest in their biotechnological and therapeutic applications, detailed knowledge of the molecular mechanisms underlying phage-host interactions remains scarce. Here, we show that bacteriophage N4 exploits a novel surface glycan (NGR) as a receptor to infect its host Escherichia coli. We demonstrate that this process is regulated by the second messenger c-di-GMP and that N4 infection is specifically stimulated by the diguanylate cyclase DgcJ, while the phosphodiesterase PdeL effectively protects E. coli from N4-mediated killing. PdeL-mediated protection requires its catalytic activity to reduce c-di-GMP and includes a secondary role as a transcriptional repressor. We demonstrate that PdeL binds to and represses the promoter of the wec operon, which encodes components of the enterobacterial common antigen (ECA) exopolysaccharide pathway. However, only the acetylglucosamine epimerase WecB but none of the other ECA components is required for N4 infection. Based on this, we postulate that NGR is an N-acetylmannosamine-based carbohydrate polymer that is produced and exported to the cell surface of E. coli in a c-di-GMP-dependent manner, where it serves as a receptor for N4. This novel carbohydrate pathway is conserved in E. coli and other bacterial pathogens, serves as the primary receptor for various bacteriophages, and is induced at elevated temperature and by specific amino acid-based nutrients. These studies provide an entry point into understanding how bacteria use specific regulatory mechanisms to balance costs and benefits of highly conserved surface structures.
Collapse
|
15
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Pirnay JP, Ferry T, Resch G. Recent progress towards the implementation of phage therapy in Western medicine. FEMS Microbiol Rev 2021; 46:6325169. [PMID: 34289033 DOI: 10.1093/femsre/fuab040] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Like the sword of Damocles, the threat of a post-antibiotic era is hanging over humanity's head. The scientific and medical community is thus reconsidering bacteriophage therapy (BT) as a partial but realistic solution for treatment of difficult to eradicate bacterial infections. Here, we summarize the latest developments in clinical BT applications, with a focus on developments in the following areas: i) pharmacology of bacteriophages of major clinical importance and their synergy with antibiotics; ii) production of therapeutic phages; and iii) clinical trials, case studies, and case reports in the field. We address regulatory concerns, which are of paramount importance insofar as they dictate the conduct of clinical trials, which are needed for broader BT application. The increasing amount of new available data confirm the particularities of BT as being innovative and highly personalized. The current circumstances suggest that the immediate future of BT may be advanced within the framework of national BT centers in collaboration with competent authorities, which are urged to adopt incisive initiatives originally launched by some national regulatory authorities.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tristan Ferry
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France.,CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Grégory Resch
- Centre of Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Bond MC, Vidakovic L, Singh PK, Drescher K, Nadell CD. Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells. eLife 2021; 10:65355. [PMID: 34240700 PMCID: PMC8346279 DOI: 10.7554/elife.65355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages can be trapped in the matrix of bacterial biofilms, such that the cells inside them are protected. It is not known whether these phages are still infectious and whether they pose a threat to newly arriving bacteria. Here, we address these questions using Escherichia coli and its lytic phage T7. Prior work has demonstrated that T7 phages are bound in the outermost curli polymer layers of the E. coli biofilm matrix. We show that these phages do remain viable and can kill colonizing cells that are T7-susceptible. If cells colonize a resident biofilm before phages do, we find that they can still be killed by phage exposure if it occurs soon thereafter. However, if colonizing cells are present on the biofilm long enough before phage exposure, they gain phage protection via envelopment within curli-producing clusters of the resident biofilm cells.
Collapse
Affiliation(s)
- Matthew C Bond
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Physics, Philipps University Marburg, Marburg, Germany.,Biozentrum, University of Basel, Basel, Switzerland
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, United States
| |
Collapse
|
18
|
Fiscarelli EV, Rossitto M, Rosati P, Essa N, Crocetta V, Di Giulio A, Lupetti V, Di Bonaventura G, Pompilio A. In Vitro Newly Isolated Environmental Phage Activity against Biofilms Preformed by Pseudomonas aeruginosa from Patients with Cystic Fibrosis. Microorganisms 2021; 9:microorganisms9030478. [PMID: 33668889 PMCID: PMC7996588 DOI: 10.3390/microorganisms9030478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/19/2023] Open
Abstract
As disease worsens in patients with cystic fibrosis (CF), Pseudomonas aeruginosa (PA) colonizes the lungs, causing pulmonary failure and mortality. Progressively, PA forms typical biofilms, and antibiotic treatments determine multidrug-resistant (MDR) PA strains. To advance new therapies against MDR PA, research has reappraised bacteriophages (phages), viruses naturally infecting bacteria. Because few in vitro studies have tested phages on CF PA biofilms, general reliability remains unclear. This study aimed to test in vitro newly isolated environmental phage activity against PA isolates from patients with CF at Bambino Gesù Children’s Hospital (OBG), Rome, Italy. After testing in vitro phage activities, we combined phages with amikacin, meropenem, and tobramycin against CF PA pre-formed biofilms. We also investigated new emerging morphotypes and bacterial regrowth. We obtained 22 newly isolated phages from various environments, including OBG. In about 94% of 32 CF PA isolates tested, these phages showed in vitro PA lysis. Despite poor efficacy against chronic CF PA, five selected-lytic-phages (Φ4_ZP1, Φ9_ZP2, Φ14_OBG, Φ17_OBG, and Φ19_OBG) showed wide host activity. The Φ4_ZP1-meropenem and Φ14_OBG-tobramycin combinations significantly reduced CF PA biofilms (p < 0.001). To advance potential combined phage-antibiotic therapy, we envisage further in vitro test combinations with newly isolated phages, including those from hospital environments, against CF PA biofilms from early and chronic infections.
Collapse
Affiliation(s)
- Ersilia Vita Fiscarelli
- Cystic Fibrosis Diagnostics, Microbiology and Immunology Diagnostics, Bambino Gesù Children’s Hospital (OBG), 00165 Rome, Italy; (E.V.F.); (M.R.); (N.E.)
| | - Martina Rossitto
- Cystic Fibrosis Diagnostics, Microbiology and Immunology Diagnostics, Bambino Gesù Children’s Hospital (OBG), 00165 Rome, Italy; (E.V.F.); (M.R.); (N.E.)
| | - Paola Rosati
- Clinical Pathways and Epidemiology, Bambino Gesù Children’s Hospital OBG, 00165 Rome, Italy
- Correspondence:
| | - Nour Essa
- Cystic Fibrosis Diagnostics, Microbiology and Immunology Diagnostics, Bambino Gesù Children’s Hospital (OBG), 00165 Rome, Italy; (E.V.F.); (M.R.); (N.E.)
| | - Valentina Crocetta
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.C.); (V.L.); (G.D.B.); (A.P.)
| | - Andrea Di Giulio
- Department of Science, Interdepartmental Laboratory of Electron Microscopy, L.I.M.E., Roma Tre University, 00146 Rome, Italy;
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.C.); (V.L.); (G.D.B.); (A.P.)
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.C.); (V.L.); (G.D.B.); (A.P.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.C.); (V.L.); (G.D.B.); (A.P.)
| |
Collapse
|
19
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|