1
|
Yu Y, Iatsenko I. Drosophila symbionts in infection: when a friend becomes an enemy. Infect Immun 2025; 93:e0051124. [PMID: 40172541 PMCID: PMC12070757 DOI: 10.1128/iai.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
The insect microbiome is comprised of extracellular microbial communities that colonize the host surfaces and endosymbionts that reside inside host cells and tissues. Both of these communities participate in essential aspects of host biology, including the immune response and interactions with pathogens. In recent years, our knowledge about the role of the insect microbiome in infection has increased tremendously. While many studies have highlighted the microbiome's protective effect against various natural enemies of insects, unexpected discoveries have shown that some members of the microbiota can facilitate pathogenic infections. Here, we summarize studies in the fruit fly, Drosophila melanogaster, that have substantially progressed our understanding of host-pathogen-microbiome interactions during infection. We summarize studies on the protective mechanisms of Drosophila gut microbiota, highlight examples of microbiome exploitation by pathogens, and detail the mechanisms of endosymbiont-mediated host protection. In addition, we delve into a previously neglected topic in Drosophila microbiome research-the crosstalk between endosymbionts and gut microbiota. Finally, we address how endosymbionts and gut microbiota remain resilient to host immune responses and stably colonize the host during infection. By examining how the microbiome is influenced by and reciprocally affects infection outcomes, this review provides timely and cohesive coverage of the roles of Drosophila endosymbionts and gut microbiota during infections.
Collapse
Affiliation(s)
- Yi Yu
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Igor Iatsenko
- Research Group Genetics of Host-Microbe Interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
2
|
Hubert J, Glowska-Patyniak E, Dowd SE, Klimov PB. A novel Erwiniaceae gut symbiont modulates gene expression of the intracellular bacterium Cardinium in the stored product mite Tyrophagus putrescentiae. mSphere 2025; 10:e0087924. [PMID: 40126013 PMCID: PMC12039267 DOI: 10.1128/msphere.00879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
We examined host and bacterial gene expression profiles in the stored product mite Tyrophagus putrescentiae co-infected with Wolbachia (wTPut) and Cardinium (cTPut) while varying the presence of the Erwiniaceae symbiont (SLS). SLS, a novel symbiont in the family Erwiniaceae, with a genome size of 1.7 Mb, is found in 16% of mite species in infected cultures. In addition, SLS was detected in mite feces but not in their eggs. Although Wolbachia expression remained unchanged, the presence or absence of SLS significantly affected Cardinium expression. It indicated that the effect of Wolbachia on SLS was neutral. In SLS-positive samples, Cardinium exhibited 29 upregulated and 48 downregulated genes compared to SLS-negative samples. Furthermore, Cardinium gene expression strongly correlated with mite KEGG gene expression in SLS-positive samples. Positive Spearman's correlations between Cardinium gene expression and mite KEGG immune and regulatory pathways were doubled in SLS-positive compared to SLS-negative samples. The diversity of expressed genes in the mite host decreased in the presence of SLS. Cardinium had more interacting genes to mite host in SLS-positive samples than without SLS. Transposases are the most affected Cardinium genes, showing upregulation in the presence of SLS. Correlation analyses revealed interactions between Cardinium and SLS via mite immune and regulatory pathways, including lysosome, ubiquitin-mediated proteolysis, PIK3_Akt, and cGMP-PKG. The results showed that Cardinium indirectly affects the gut symbionts of mites.IMPORTANCEThis study introduces a new model to analyze interactions between intracellular bacterial symbionts, gut bacterial symbionts, and their mite hosts. Using gene expression correlations, we investigated how the intracellular Cardinium responds to the novel Erwiniaceae gut symbiont in the mold mite Tyrophagus putrescentiae. The data showed that both mite and Cardinium gene expression are different in the samples with and without Erwiniaceae symbionts. In the presence of Erwiniaceae symbionts, Cardinium increased the interaction with the mite host in terms of changes in gene expression. The mite immune and regulatory pathway gene expression is differently correlated to Cardinium genes in relation to Erwiniaceae symbionts. As a well-known producer of allergens, T. putrescentiae physiology and thus its allergen production are influenced by both symbionts, potentially affecting the release of allergens into human environments.
Collapse
Affiliation(s)
- Jan Hubert
- Czech Agrifood Research Center, Prague, Czechia
| | - Eliza Glowska-Patyniak
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Scot E. Dowd
- MR DNA (Molecular Research LP), Shallowater, Texas, USA
| | - Pavel B. Klimov
- Purdue University, Lilly Hall of Life Sciences, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Li TP, Xie JC, Wang CH, Zhao LQ, Hao DJ. Diffusive Phyllosphere Microbiome Potentially Regulates Harm and Defence Interactions Between Stephanitis nashi and Its Crabapple Host. PLANT, CELL & ENVIRONMENT 2025; 48:1311-1328. [PMID: 39440590 DOI: 10.1111/pce.15235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Pear lace bug (Stephanitis nashi) is a significant herbivorous pest, harbouring a diverse microbiome crucial for crabapple (Malus sp.) host adaptation. However, the mutual influence of S. nashi- and plant-associated microbiomes on plant responses to pest damage remains unclear. This study found that S. nashi damage significantly altered bacterial community structure and reduced bacterial evenness in the crabapple phyllosphere. Notably, bacterial diversity within S. nashi was significantly lower than that in the environment, potentially influenced by insect developmental stage, bacterial diffusion stage and endosymbiont species number and abundance. Extensive bacterial correlation and diffusion effect between S. nashi and adjacent plant environments were observed, evident in a gradual decrease in bacterial diversity and an increase in bacterial acquisition ratio from soil to phyllosphere to S. nashi. Correspondingly, S. nashi significantly impacted the metabolic response of crabapple leaves, altering pathways involved in vitamin, amino acid and lipid metabolism and so forth. Furthermore, association analysis linked these metabolic changes to phyllosphere bacterial alterations, emphasizing the important role of diffusive phyllosphere microbiome in regulating S. nashi-crabapple interactions. This study highlights bacterial diffusion effect between insect and plants and their potential role in regulating insect adaptability and plant defence responses, providing new insights into plant-insect-microbiome interactions.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lv-Quan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Duan YX, Zhuang YH, Wu YX, Huang TW, Song ZR, Du YZ, Zhu YX. Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae). Microorganisms 2025; 13:302. [PMID: 40005669 PMCID: PMC11858490 DOI: 10.3390/microorganisms13020302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Microbe-microbe interactions within a host drive shifts in the host's microbiota composition, profoundly influencing host physiology, ecology, and evolution. Among these microbes, the maternally inherited endosymbiont Wolbachia is widespread in the invasive pest Liriomyza huidorbrensis (Diptera: Agromyzidae). However, its influence on the host microbiota remains largely unexplored. In the study presented herein, we investigated the bacterial communities of Wolbachia wLhui-infected (wLhui+) and -uninfected lines (wLhui-) of L. huidorbrensis using 16S rRNA gene high-throughput sequencing. For both leaf-miner lines, Bacteroidota was the dominant phylum (relative abundance: 59.18%), followed by Pseudomonadota (36.63%), Actinomycetota (2.42%), and Bacillota (0.93%). We found no significant differences in alpha-diversity indices between the wLhui+ and wLhui- lines (p > 0.05). However, principal coordinates analysis revealed significant differences in microbiota composition between the wLhui+ and wLhui- lines (PERMANOVA: p < 0.001), explaining 76.70% of the variance in microbiota composition. Correlation network analysis identified robust negative and positive associations between Wolbachia and several genera, suggesting that Wolbachia shapes microbial composition through competitive or cooperative interactions with specific taxa. Overall, our study suggests that Wolbachia plays a key role in shaping the leaf-miner microbiome, potentially affecting host fitness.
Collapse
Affiliation(s)
- Ya-Xin Duan
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| | - Ying-Hua Zhuang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| | - Yu-Xin Wu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| | - Tian-Wei Huang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| | - Zhang-Rong Song
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Yu-Zhou Du
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.-X.D.); (Y.-H.Z.); (Y.-X.W.); (T.-W.H.)
| |
Collapse
|
5
|
Li TP, Wang CH, Xie JC, Wang MK, Chen J, Zhu YX, Hao DJ, Hong XY. Microbial changes and associated metabolic responses modify host plant adaptation in Stephanitis nashi. INSECT SCIENCE 2024; 31:1789-1809. [PMID: 38369568 DOI: 10.1111/1744-7917.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zhao J, Guan G, Li D, Yu X, Shentu X. Study on the gut symbiotic microbiota in long- and short-winged brown planthopper, Nilaparvata lugens (Stål). Sci Rep 2024; 14:11306. [PMID: 38760487 PMCID: PMC11101650 DOI: 10.1038/s41598-024-62350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Guangxiang Guan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M. One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus. Microb Genom 2023; 9:mgen000943. [PMID: 36757767 PMCID: PMC9997750 DOI: 10.1099/mgen.0.000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/04/2022] [Indexed: 02/10/2023] Open
Abstract
Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
- Current address: Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH Wageningen, The Netherlands
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences. Rue Vautier/Vautierstraat 29,, 1000 Brussels, Belgium
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
8
|
Mansour A, Mannaa M, Hewedy O, Ali MG, Jung H, Seo YS. Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. THE PLANT PATHOLOGY JOURNAL 2022; 38:432-448. [PMID: 36221916 PMCID: PMC9561162 DOI: 10.5423/ppj.rw.07.2022.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.
Collapse
Affiliation(s)
- Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613,
Egypt
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Plant Pathology, Cairo University, Giza 12613,
Egypt
| | - Omar Hewedy
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1,
Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514,
Egypt
| | - Mostafa G. Ali
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha 13518,
Egypt
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
9
|
Ren Z, Zhang Y, Cai T, Mao K, Xu Y, Li C, He S, Li J, Wan H. Dynamics of Microbial Communities across the Life Stages of Nilaparvata lugens (Stål). MICROBIAL ECOLOGY 2022; 83:1049-1058. [PMID: 34302509 DOI: 10.1007/s00248-021-01820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding the composition of microorganismal communities hosted by insect pests is an important prerequisite for revealing their functions and developing new pest control strategies. Although studies of the structure of the microbiome of Nilaparvata lugens have been published, little is known about the dynamic changes in this microbiome across different developmental stages, and an understanding of the core microbiota is still lacking. In this study, we investigated the dynamic changes in bacteria and fungi in different developmental stages of N. lugens using high-throughput sequencing technology. We observed that the microbial diversity in eggs and mated adults was higher than that in nymphs and unmated adults. We also observed a notable strong correlation between fungal and bacterial α-diversity, which suggests that fungi and bacteria are closely linked and may perform functions collaboratively during the whole developmental period. Arsenophonus and Hirsutella were the predominant bacterial and fungal taxa, respectively. Bacteria were more conserved than fungi during the transmission of the microbiota between developmental stages. Compared with that in the nymph and unmated adult stages of N. lugens, the correlation between bacterial and fungal communities in the mated adult and egg stages was stronger. Moreover, the core microbiota across all developmental stages in N. lugens was identified, and there were more bacterial genera than fungal genera; notably, the core microbiota of eggs, nymphs, and mated and unmated adults showed distinctive functional enrichment. These findings highlight the potential value of further exploring microbial functions during different developmental stages and developing new pest management strategies.
Collapse
Affiliation(s)
- Zhijie Ren
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yao Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chengyue Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Li TP, Zhou CY, Gong JT, Xi Z, Hong XY. Recently introduced Wolbachia reduces bacterial species richness and reshapes bacterial community structure in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2022; 78:1881-1894. [PMID: 35064627 DOI: 10.1002/ps.6806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wolbachia has been developed as an effective tool to suppress insect pests and arbovirus transmission. Recently, the brown planthopper Nilaparvata lugens, a serious agricultural pest, has been successfully transinfected with Wolbachia wStri strain from Laodelphax striatellus. However, before conducting the field experiments, the impacts of wStri on the bacterial microbiota in N. lugens and how it differs from native Wolbachia wLug strain have not been clarified. RESULTS Here, we found that wStri reduced bacterial diversity and shaped bacterial community structure more than wLug in both developmental stage and different adult tissues. Overall, the relative abundance of Wolbachia was negatively correlated with bacterial diversity, but the bacterial diversity gradually decreased only when the relative abundance of Wolbachia was higher than 60%. Further analysis found that wStri reduced species richness of other bacteria but not their evenness. wStri infection also affected many bacterial functions (e.g., amino acid metabolism & signaling and cellular processes) in the developmental stages, with a stronger effect than wLug in nymphs. Moreover, although Wolbachia occupied a high relative abundance in infected individuals, Acinetobacter was consistently a core part of microbiome. CONCLUSION These results showed the significant impacts of recently introduced wStri on bacterial microbiota in N. lugens, with the effects differing from native wLug. This study will aid in understanding the relationship between Wolbachia, its host and the host's microbiota, and provide a reference for future field experiments.
Collapse
Affiliation(s)
- Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chun-Ying Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Endosymbionts Reduce Microbiome Diversity and Modify Host Metabolism and Fecundity in the Planthopper Sogatella furcifera. mSystems 2022; 7:e0151621. [PMID: 35353007 PMCID: PMC9040572 DOI: 10.1128/msystems.01516-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endosymbionts can strongly affect bacterial microbiota in pests. The white-backed planthopper Sogatella furcifera, a notorious pest in rice, is usually co-infected with Cardinium and Wolbachia, but the effects of these endosymbionts together or individually on the host microbiome and fecundity are unclear. Here, we established three S. furcifera lines (Cardinium and Wolbachia double-infected, Cardinium single-infected, and both-uninfected lines) backcrossed to a common nuclear background and found that single and double infections reduced bacterial diversity and changed bacterial community structure across nymph and adult stages and across adult tissues. The endosymbionts differed in densities between adults and nymphs as well as across adult tissues, with the distribution of Cardinium affected by Wolbachia. Both the single infection and particularly the double infection reduced host fecundity. Lines also differed in levels of metabolites, some of which may influence fecundity (e.g., arginine biosynthesis and nicotinamide metabolism). Cardinium in the single-infected line upregulated metabolic levels, while Wolbachia in the double-infected line appeared to mainly downregulate them. Association analysis pointed to possible connections between various bacteria and differential metabolites. These results reveal that Cardinium by itself and in combination with Wolbachia affect bacterial microbiota and levels of metabolites, with likely effects on host fecundity. Many of the effects of these metabolically limited endosymbionts that are dependent on the hosts may be exerted through manipulation of the microbiome. IMPORTANCE Endosymbionts can profoundly affect the nutrition, immunity, development, and reproduction of insect hosts, but the effects of multiple endosymbiont infections on microbiota and the interaction of these effects with insect host fitness are not well known. By establishing S. furcifera lines with different endosymbiont infection status, we found that Cardinium and the combined Cardinium + Wolbachia infections differentially reduced bacterial diversity as well as changing bacterial community structure and affecting metabolism, which may connect to negative fitness effects of the endosymbionts on their host. These results established the connections between reduced bacterial diversity, decreased fecundity and metabolic responses in S. furcifera.
Collapse
|
12
|
Two Newly Introduced Wolbachia Endosymbionts Induce Cell Host Differences in Competitiveness and Metabolic Responses. Appl Environ Microbiol 2021; 87:e0147921. [PMID: 34495683 DOI: 10.1128/aem.01479-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia endosymbionts can induce multiple reproductive manipulations in their hosts, with cytoplasmic incompatibility (CI) being one of the most common manipulations. Two important agricultural pests, the white-backed planthopper (Sogatella furcifera) and the brown planthopper (Nilaparvata lugens), are usually infected with CI-inducing Wolbachia strain wFur and non-CI-inducing Wolbachia strain wLug, respectively. The biological effects of these infections when present in a host cell are unknown. Here, we introduced the two Wolbachia strains into an Aedes albopictus cell line to stably establish a wFur-infected cell line (WFI) and a wLug-infected cell line (WLI). In a mixed culture, WFI cells were completely replaced by WLI cells, pointing to a stronger competitiveness of the WLI cell line. We found that infection by both Wolbachia strains reduced cell growth rates, but WLI had a higher cell growth rate than WFI, and this difference in cell growth rate combined with possible Wolbachia differences in diffusivity may have affected cell competitiveness. By examining gene expression and metabolites in the two lines, we found that some genes and key metabolites responded to differences in cell competitiveness. These results point to potential mechanisms that could contribute to the relative performance of hosts infected by these strains and also highlight the substantial impact of a non-CI Wolbachia on metabolism, which may in turn influence the fitness of its native host. IMPORTANCE Wolbachia transinfection in insects can be used to suppress pests and block virus transmission. We stably introduced two Wolbachia strains from rice planthoppers into cell lines of an important arbovirus mosquito vector, Aedes albopictus. The levels of competitiveness of host cells from the lines infected by the two Wolbachia strains were different, as were metabolic responses of the cell lines. These results suggest potential metabolic effects of Wolbachia on native hosts that could be exploited when they are transinfected into novel hosts for pest control.
Collapse
|
13
|
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 2021; 97:6358523. [PMID: 34448854 DOI: 10.1093/femsec/fiab123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia.,Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague 6-Suchdol, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czechia
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL 60612, USA
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor, LL57 2 UW, UK.,Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| |
Collapse
|