1
|
Hale B, Watts C, Conatser M, Brown E, Wijeratne AJ. Fine-scale characterization of the soybean rhizosphere microbiome via synthetic long reads and avidity sequencing. ENVIRONMENTAL MICROBIOME 2024; 19:46. [PMID: 38997772 PMCID: PMC11241880 DOI: 10.1186/s40793-024-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The rhizosphere microbiome displays structural and functional dynamism driven by plant, microbial, and environmental factors. While such plasticity is a well-evidenced determinant of host health, individual and community-level microbial activity within the rhizosphere remain poorly understood, due in part to the insufficient taxonomic resolution achieved through traditional marker gene amplicon sequencing. This limitation necessitates more advanced approaches (e.g., long-read sequencing) to derive ecological inferences with practical application. To this end, the present study coupled synthetic long-read technology with avidity sequencing to investigate eukaryotic and prokaryotic microbiome dynamics within the soybean (Glycine max) rhizosphere under field conditions. RESULTS Synthetic long-read sequencing permitted de novo reconstruction of the entire 18S-ITS1-ITS2 region of the eukaryotic rRNA operon as well as all nine hypervariable regions of the 16S rRNA gene. All full-length, mapped eukaryotic amplicon sequence variants displayed genus-level classification, and 44.77% achieved species-level classification. The resultant eukaryotic microbiome encompassed five kingdoms (19 genera) of protists in addition to fungi - a depth unattainable with conventional short-read methods. In the prokaryotic fraction, every full-length, mapped amplicon sequence variant was resolved at the species level, and 23.13% at the strain level. Thirteen species of Bradyrhizobium were thereby distinguished in the prokaryotic microbiome, with strain-level identification of the two Bradyrhizobium species most reported to nodulate soybean. Moreover, the applied methodology delineated structural and compositional dynamism in response to experimental parameters (i.e., growth stage, cultivar, and biostimulant application), unveiled a saprotroph-rich core microbiome, provided empirical evidence for host selection of mutualistic taxa, and identified key microbial co-occurrence network members likely associated with edaphic and agronomic properties. CONCLUSIONS This study is the first to combine synthetic long-read technology and avidity sequencing to profile both eukaryotic and prokaryotic fractions of a plant-associated microbiome. Findings herein provide an unparalleled taxonomic resolution of the soybean rhizosphere microbiota and represent significant biological and technological advancements in crop microbiome research.
Collapse
Affiliation(s)
- Brett Hale
- AgriGro Incorporated, Doniphan, MO, USA
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA
- College of Science and Mathematics, Arkansas State University, State University, AR, USA
| | - Caitlin Watts
- College of Agriculture, Arkansas State University, State University, AR, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew Conatser
- College of Agriculture, Arkansas State University, State University, AR, USA
| | - Edward Brown
- College of Agriculture, Arkansas State University, State University, AR, USA
| | - Asela J Wijeratne
- Arkansas Biosciences Institute, Arkansas State University, State University, AR, USA.
- College of Science and Mathematics, Arkansas State University, State University, AR, USA.
| |
Collapse
|
2
|
Olanipon D, Boeraeve M, Jacquemyn H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. MYCORRHIZA 2024; 34:271-282. [PMID: 38850289 DOI: 10.1007/s00572-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Collapse
Affiliation(s)
- Damilola Olanipon
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
| | - Margaux Boeraeve
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, UAntwerpen, Antwerpen, Belgium
| | - Hans Jacquemyn
- Biology Department, KU Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium
| |
Collapse
|
3
|
Kosmopoulos JC, Batstone-Doyle RT, Heath KD. Co-inoculation with novel nodule-inhabiting bacteria reduces the benefits of legume-rhizobium symbiosis. Can J Microbiol 2024; 70:275-288. [PMID: 38507780 DOI: 10.1139/cjm-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.
Collapse
Affiliation(s)
- James C Kosmopoulos
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, WI, USA
| | - Rebecca T Batstone-Doyle
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Katy D Heath
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Wang T, Gao M, Shao W, Wang L, Yang C, Wang X, Yao S, Zhang B. Dissecting the role of soybean rhizosphere-enriched bacterial taxa in modulating nitrogen-cycling functions. Appl Microbiol Biotechnol 2024; 108:347. [PMID: 38805033 PMCID: PMC11133221 DOI: 10.1007/s00253-024-13184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Crop roots selectively recruit certain microbial taxa that are essential for supporting their growth. Within the recruited microbes, some taxa are consistently enriched in the rhizosphere across various locations and crop genotypes, while others are unique to specific planting sites or genotypes. Whether these differentially enriched taxa are different in community composition and how they interact with nutrient cycling need further investigation. Here, we sampled bulk soil and the rhizosphere soil of five soybean varieties grown in Shijiazhuang and Xuzhou, categorized the rhizosphere-enriched microbes into shared, site-specific, and variety-specific taxa, and analyzed their correlation with the diazotrophic communities and microbial genes involved in nitrogen (N) cycling. The shared taxa were dominated by Actinobacteria and Thaumarchaeota, the site-specific taxa were dominated by Actinobacteria in Shijiazhuang and by Nitrospirae in Xuzhou, while the variety-specific taxa were more evenly distributed in several phyla and contained many rare operational taxonomic units (OTUs). The rhizosphere-enriched taxa correlated with most diazotroph orders negatively but with eight orders including Rhizobiales positively. Each group within the shared, site-specific, and variety-specific taxa negatively correlated with bacterial amoA and narG in Shijiazhuang and positively correlated with archaeal amoA in Xuzhou. These results revealed that the shared, site-specific, and variety-specific taxa are distinct in community compositions but similar in associations with rhizosphere N-cycling functions. They exhibited potential in regulating the soybean roots' selection for high-efficiency diazotrophs and the ammonia-oxidizing and denitrification processes. This study provides new insights into soybean rhizosphere-enriched microbes and their association with N cycling. KEY POINTS: • Soybean rhizosphere affected diazotroph community and enriched nifH, amoA, and nosZ. • Shared and site- and variety-specific taxa were dominated by different phyla. • Rhizosphere-enriched taxa were similarly associated with N-cycle functions.
Collapse
Affiliation(s)
- Tianshu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miao Gao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyan Yang
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Shuihong Yao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
6
|
Petrushin IS, Vasilev IA, Markova YA. Drought Tolerance of Legumes: Physiology and the Role of the Microbiome. Curr Issues Mol Biol 2023; 45:6311-6324. [PMID: 37623217 PMCID: PMC10453936 DOI: 10.3390/cimb45080398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Water scarcity and global warming make drought-tolerant plant species more in-demand than ever. The most drastic damage exerted by drought occurs during the critical growth stages of seed development and reproduction. In the course of their evolution, plants form a variety of drought-tolerance mechanisms, including recruiting beneficial microorganisms. Legumes (one of the three largest groups of higher plants) have unique features and the potential to adapt to abiotic stress. The available literature discusses the genetic (breeding) and physiological aspects of drought tolerance in legumes, neglecting the role of the microbiome. Our review aims to fill this gap: starting with the physiological mechanisms of legume drought adaptation, we describe the symbiotic relationship of the plant host with the microbial community and its role in facing drought. We consider two types of studies related to microbiomes in low-water conditions: comparisons and microbiome engineering (modulation). The first type of research includes diversity shifts and the isolation of microorganisms from the various plant niches to which they belong. The second type focuses on manipulating the plant holobiont through microbiome engineering-a promising biotech strategy to improve the yield and stress-resistance of legumes.
Collapse
Affiliation(s)
- Ivan S. Petrushin
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (I.A.V.); (Y.A.M.)
| | | | | |
Collapse
|
7
|
Monteoliva MI, Ruiz OA, Li F. Editorial: Legumes and their microbiome in climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1220535. [PMID: 37377800 PMCID: PMC10291733 DOI: 10.3389/fpls.2023.1220535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Affiliation(s)
- Mariela I. Monteoliva
- Instituto de Fisiología y Recursos genéticos Vegetales, Unidad de Estudios Agropecuarios (IFRGV-UDEA), Instituto Nacional de Tecnología Agropecuaria (INTA), Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Oscar A. Ruiz
- Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
- Instituto Tecnológico de Chascomús (INTECH), CONICET, Chascomús, Argentina
| | - Fadong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kalapchieva S, Tringovska I, Bozhinova R, Kosev V, Hristeva T. Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2023; 24:1119. [PMID: 36674632 PMCID: PMC9866347 DOI: 10.3390/ijms24021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
This study of a legume's rhizosphere in tripartite symbiosis focused on the relationships between the symbionts and less on the overall rhizosphere microbiome. We used an experimental model with different garden pea genotypes inoculated with AM fungi (Rhizophagus irregularis and with a mix of AM species) to study their influence on the population levels of main trophic groups of soil microorganisms as well as their structure and functional relationships in the rhizosphere microbial community. The experiments were carried out at two phenological cycles of the plants. Analyzes were performed according to classical methods: microbial population density defined as CUF/g a.d.s. and root colonization rate with AMF (%). We found a proven dominant effect of AMF on the densities of micromycetes and actinomycetes in the direction of reduction, suggesting antagonism, and on ammonifying, phosphate-solubilizing and free-living diazotrophic Azotobacter bacteria in the direction of stimulation, an indicator of mutualistic relationships. We determined that the genotype was decisive for the formation of populations of bacteria immobilizing mineral NH4+-N and bacteria Rhizobium. We reported significant two-way relationships between trophic groups related associated with soil nitrogen and phosphorus ions availability. The preserved proportions between trophic groups in the microbial communities were indicative of structural and functional stability.
Collapse
Affiliation(s)
- Slavka Kalapchieva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 4003 Plovdiv, Bulgaria
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 4003 Plovdiv, Bulgaria
| | - Radka Bozhinova
- Tobacco and Tobacco Products Institute, Agricultural Academy, 4108 Plovdiv, Bulgaria
| | - Valentin Kosev
- Institute of Forage Crops, Agricultural Academy, 5800 Pleven, Bulgaria
| | - Tsveta Hristeva
- Tobacco and Tobacco Products Institute, Agricultural Academy, 4108 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Kochkina GA, Ivanushkina NE, Pinchuk IP, Ozerskaya SM. Endophytic Fungi Pezicula radicicola in the Root Nodules of Actinorhizal Plants. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Schaedel M, Hidrobo G, Grossman J. From Microns to Meters: Exploring Advances in Legume Microbiome Diversity for Agroecosystem Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.668195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Legumes are of primary importance for agroecosystems because they provide protein-rich foods and enhance soil fertility through fixed atmospheric nitrogen. The legume-rhizobia symbiosis that makes this possible has been extensively studied, from basic research on biochemical signaling to practical applications in cropping systems. While rhizobia are the most-studied group of associated microorganisms, the functional benefit they confer to their legume hosts by fixing nitrogen is not performed in isolation. Indeed, non-rhizobia members of the rhizosphere and nodule microbiome are now understood to contribute in multiple ways to nodule formation, legume fitness, and other agroecosystem services. In this review, we summarize advances contributing to our understanding of the diversity and composition of bacterial members of the belowground legume microbiome. We also highlight applied work in legume food and forage crops that link microbial community composition with plant functional benefits. Ultimately, further research will assist in the development of multi-species microbial inoculants and cropping systems that maximize plant nutrient benefits, while reducing sources of agricultural pollution.
Collapse
|
11
|
da Silva SIA, de Souza TAF, de Lucena EO, da Silva LJR, Laurindo LK, dos Santos Nascimento G, Santos D. High phosphorus availability promotes the diversity of arbuscular mycorrhizal spores’ community in different tropical crop systems. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Babin D, Leoni C, Neal AL, Sessitsch A, Smalla K. Editorial to the Thematic Topic "Towards a more sustainable agriculture through managing soil microbiomes". FEMS Microbiol Ecol 2021; 97:6321563. [PMID: 34263312 DOI: 10.1093/femsec/fiab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Andrew L Neal
- Department of Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Devon EX20 2SB, United Kingdom
| | - Angela Sessitsch
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
13
|
Impact of Application of Abscisic Acid, Benzothiadiazole and Chitosan on Berry Quality Characteristics and Plant Associated Microbial Communities of Vitis vinifera L var. Mouhtaro Plants. SUSTAINABILITY 2021. [DOI: 10.3390/su13115802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The phenolic profile of the grape berries is a key quality factor for the red grapevine varieties and several techniques have been applied to improve it. An innovative technique is the application of resistance elicitors and phytohormones. In the present study, leaves and berries of a Greek red indigenous variety (Mouhtaro) sprayed with two elicitors, benzothiadiazole and chitosan and a plant hormone abscisic acid, during veraison. Physicochemical and phenolic characteristics of the berries and microbial communities of rhizosphere, phyllosphere and carposphere were analyzed at harvest. Differences in the microbial communities on different plant compartments were observed after the application of the plant activators. Chitosan treatment increased the abundance of the beneficial lactic acid bacteria, while the abscisic acid treatment decreased the presence of spoilage fungi on the carposphere. Treatments differentiate total phenolics, anthocyanins and in the chemical characteristics of grape must with chitosan treated grapes had increased anthocyanins and skin-derived phenolics that correlated positively with the microbial taxa that was discriminant by LefSe analysis. This research provides an overview of the effect of plant activators on the microbial ecology and grape quality of the Greek variety Mouhtaro and presents the potential of new and innovative approaches in the field of sustainable viticulture.
Collapse
|