1
|
Miralles‐Lorenzo J, Picazo A, Rochera C, Morant D, Casamayor EO, Menéndez‐Serra M, Camacho A. Environmental Gradients and Conservation Status Determine the Structure and Carbon-Related Metabolic Potential of the Prokaryotic Communities of Mediterranean Inland Saline Shallow Lakes. Ecol Evol 2025; 15:e71286. [PMID: 40421065 PMCID: PMC12104873 DOI: 10.1002/ece3.71286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/28/2025] Open
Abstract
Mediterranean inland saline lakes may play an important role in the carbon cycle due to the metabolic capacities of their prokaryotic communities. However, these lakes are not homogeneous and have different environmental characteristics. In this work, the structure and both actual activity and predicted function of the prokaryotic communities inhabiting water and sediments of 15 Mediterranean inland saline shallow lakes have been studied. These lakes are grouped in categories according to their salinity, conservation statuses, and alterations, which determine the structuration of the prokaryotic communities and their carbon-related metabolisms. Each salinity category and conservation status showed characteristic prokaryotic taxa. The relative abundance of methanogenic archaea tended to increase along the salinity gradient, but this did not result in increased methane emissions. The relationship between metabolic rates and the predicted abundance of their marker genes depended on the type of metabolism. Archaea played a relevant role in the organization of interactions between community members and were markers of good conservation status. Water communities were shaped by the salinity gradient, conservation status, and seasonality, while sediment communities were mostly determined by the salinity gradient. This work highlights the importance of combining molecular studies with in situ metabolic measurements to better understand carbon fluxes in inland saline aquatic ecosystems.
Collapse
Affiliation(s)
- Javier Miralles‐Lorenzo
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain
| | - Carlos Rochera
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain
| | - Daniel Morant
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain
| | | | | | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaterna, ValenciaSpain
| |
Collapse
|
2
|
Lin L, Li C, Chang CC, Du R, Ji J, Kuo LY, Chen KH. Phyllosphere mycobiome in two Lycopodiaceae plant species: unraveling potential HupA-producing fungi and fungal interactions. FRONTIERS IN PLANT SCIENCE 2025; 16:1426540. [PMID: 40161220 PMCID: PMC11949897 DOI: 10.3389/fpls.2025.1426540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Huperzine A (HupA), a lycopodium alkaloid with therapeutic potential for neurodegenerative diseases such as Alzheimer's disease, is found exclusively in some species of the Huperzioideae subfamily of Lycopodiaceae. Fungi associated with Huperzioideae species are potential contributors to HupA biosynthesis, offering promising prospects for HupA production. Despite its medical significance, limited knowledge of fungal diversity in lycophytes and the variability of HupA production in fungal strains have impeded the discovery and applications of HupA-producing fungi. Here, we investigated HupA concentrations and the mycobiome across various tissues of two Lycopodiaceae species, Huperzia asiatica (a HupA producer) and Diphasiastrum complanatum (a non-HupA producer). We aim to unveil the distribution of potential HupA-producing fungi in different plant tissues and elucidate fungal interactions within the mycobiome, aiming to uncover the role of HupA-producing fungi and pinpoint their potential fungal facilitators. Among the tissues, H. asiatica exhibited the highest HupA concentration in apical shoots (360.27 μg/g fresh weight) whereas D. complanatum showed no HupA presence in any tissue. We obtained 441 amplicon sequence variants (ASVs) from H. asiatica and 497 ASVs from D. complanatum. The fungal communities in bulbils and apical shoots of H. asiatica were low in diversity and dominated by Sordariomycetes, a fungal class harboring the majority of reported HupA-producing fungi. Integrating bioinformatics with published experimental reports, we identified 27 potential HupA-producing fungal ASVs, primarily in H. asiatica, with 12 ASVs identified as hubs in the fungal interaction network, underscoring their pivotal roles in mycobiome stability. Members of certain fungal genera, such as Penicillium, Trichoderma, Dioszegia, Exobasidium, Lycoperdon, and Cladosporium, exhibited strong connections with the potential HupA producers in H. asiatica's network rather than in D. complanatum's. This study advances our knowledge of fungal diversity in Lycopodiaceae and provides insights into the search for potential HupA-producing fungi and fungal facilitators. It highlights the importance of exploring young tissues and emphasizes the ecological interactions that may promote the fungi-mediated production of complex bioactive compounds, offering new directions for research in fungal ecology and secondary metabolite production.
Collapse
Affiliation(s)
- Liqun Lin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Ran Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Yasen M, Li M, Wang J. The diversity pattern of soil bacteria in the rhizosphere of different plants in mountain ecosystems. World J Microbiol Biotechnol 2025; 41:88. [PMID: 40011276 DOI: 10.1007/s11274-025-04299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Research on the composition and diversity of rhizosphere microbial communities of different plant species can help to identify important microbial functional groups or functional potentials, which is of great significance for vegetation restoration and ecological reconstruction. To provide scientific basis for the management of mountain ecosystem, the diversity pattern of rhizosphere bacterial community was investigated using 16 S rRNA high-throughput sequencing method among different host plants (Cirsium japonicum, Artemisia annua, Descurainia sophia, Lepidium apetalum, Phlomis umbrosa, and Carum carvi) in Tomur Peak National Nature Reserve, China. The results showed that the richness and diversity of rhizosphere bacteria were highest in Descurainia sophia, and lowest in Lepidium apetalum. Pseudomonadota, Acidobacteriota, and Actinomycetota were the common dominant phyla, and Sphingomonas was the predominant genus. Furthermore, there were some specific genera in different plants. The relative abundance of non-dominant genera varied among the plant species. Canonical correspondence analysis indicated that available potassium (AK), total phosphorus (TP), total potassium (TK), and soil organic matter (SOM) were the main drivers of bacterial community structure. Based on PICRUSt functional prediction, the bacterial communities in all samples encompass six primary metabolic pathways and 47 secondary metabolic pathways. The major secondary metabolic pathways (with a relative abundance of functional gene sequences > 3%) include 15 categories. Co-occurrence network analysis revealed differences in bacterial composition and interactions among different modules, with rhizosphere microorganisms of different plants exhibiting distinct functional advantages. This study elucidates the distribution patterns of rhizosphere microbial community diversity in mountain ecosystems, which provides theoretical guidance for the ecological protection of mountain soil based on the microbiome.
Collapse
Affiliation(s)
- Maryamgul Yasen
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, 844006, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, 844006, China
| | - Mingyuan Li
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, 844006, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, 844006, China
| | - Jilian Wang
- Department of Biologic and Geographic Sciences, Kashi University, Kashi, 844006, China.
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi, 844006, China.
| |
Collapse
|
4
|
Mao YL, Dong XY, Tao CQ, Wu ZP, Shi XW, Hou J, Cui HL. Natronorarus salvus gen. nov., sp. nov., Halalkalicoccus ordinarius sp. nov., and Halalkalicoccus salilacus sp. nov., halophilic archaea from a soda lake and two saline lakes, and proposal to classify the genera Halalkalicoccus and Natronorarus into Halalkalicoccaceae fam. nov. in the order Halobacteriales within the class Halobacteria. Syst Appl Microbiol 2025; 48:126577. [PMID: 39700724 DOI: 10.1016/j.syapm.2024.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Four novel halophilic archaeal strains CGA53T, CG83T, FCH27T, and SEDH24 were isolated from a soda lake and two saline lakes in China, respectively. Strain CGA53T showed the highest 16S rRNA gene similarity (92.6%) to Salinilacihabitans rarus AD-4T, and the other three strains were found to be related to Halalkalicoccus species with similarities of 97.6-98.3%. Metagenomic studies indicated that these four strains are low abundant inhabitants detected in these hypersaline environments, and only one MAG of Chagannuoer Soda Lake (CG) could be assigned to the genus Halalkalicoccus. Their growth occurred at 20-60 °C (optima, 42, 37, 37-42, and 35 °C), 0.9-5.1 M NaCl (optima, 3.9, 2.6, 3.5, and 3 M), and 0-1.0 M MgCl2 (optima, 0.5, 0.7, and 0.1) and pH 5.5-10.5 (optima, 9.0, 7.5, 7.0, and 7.0), respectively. Phylogenetic and phylogenomic analyses revealed that strains CG83T, FCH27T, and SEDH24 cluster with the current species of the genus Halalkalicoccus, and strain CGA53T forms an independent branch separated from this genus. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) values among strains CGA53T, CG83T, FCH27T, SEDH24, and the type species of the current genera within the class Halobacteria were 67.4-81.6%, 16.5-28.6% and 49.7-74.1%, respectively, clearly lower than the cutoff values for species demarcation. Strain CGA53T may represent a novel species of a new genus according to the cutoff value for genus demarcation of 65% AAI. Diverse differential phenotypic characteristics, such as nutrition, biochemical activities, antibiotic sensitivity, and H2S formation, were found among these four strains and Halalkalicoccus species. Genome-based classification supported that strains CGA53T, CG83T, FCH27T, SEDH24, and the current species of Halalkalicoccus represent a novel family of the order Halobacteriales within the class Halobacteria.
Collapse
Affiliation(s)
- Ya-Ling Mao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yue Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cong-Qi Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhang-Ping Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiao-Wei Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
5
|
Feng X, Xing P, Tao Y, Wang X, Wu QL, Liu Y, Luo H. Functional traits and adaptation of lake microbiomes on the Tibetan Plateau. MICROBIOME 2024; 12:264. [PMID: 39707567 DOI: 10.1186/s40168-024-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change. RESULTS Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty. The microbiomes of freshwater lakes are enriched with genes involved in recalcitrant carbon degradation, carbon fixation, and energy transformation, whereas those of saline lakes possess more genes that encode osmolyte transport and synthesis and enable anaerobic metabolism. These distinct metabolic features match well with the geochemical properties including dissolved organic carbon, dissolved oxygen, and salinity that distinguish between these lakes. Population genomic analysis suggests that microbial populations in saline lakes are under stronger functional constraints than those in freshwater lakes. Although microbiomes in the Tibet lakes, particularly the saline lakes, may be subject to changing selective regimes due to ongoing warming, they may also benefit from the drainage reorganization and metapopulation reconnection. CONCLUSIONS Altogether, the Tibetan Plateau Lake Microbiome atlas serves as a valuable microbial genetic resource for biodiversity conservation and climate research. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Ye Tao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaojun Wang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
6
|
Han M, Yu H, Huang J, Wang C, Li X, Wang X, Xu L, Zhao J, Jiang H. Limited Microbial Contribution in Salt Lake Sediment and Water to Each Other's Microbial Communities. Microorganisms 2024; 12:2534. [PMID: 39770736 PMCID: PMC11676918 DOI: 10.3390/microorganisms12122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Climate change and human activities have led to frequent exchanges of sedimentary and aquatic microorganisms in lakes. However, the ability of these microorganisms to survive in their respective habitats between saline lake sediment and water remains unclear. In this study, we investigated microbial sources and community composition and metabolic functions in sediments and water in Yuncheng Salt Lake using a combination of source tracking and Illumina MiSeq sequencing. The results showed that 0.10-8.47% of the microbial communities in the sediment came from the corresponding water bodies, while 0.12-10.78% of the sedimentary microorganisms contributed to the aquatic microbial populations, and the microbial contributions depended on the salinity difference between sediment and water. Habitat heterogeneity and salinity variations led to the differences in microbial diversity, community composition, and assembly between sediment and water communities. The assembly of sedimentary communities was mainly controlled by stochastic processes (>59%), whereas the assembly of aquatic communities was mainly controlled by deterministic processes (>88%). Furthermore, sediments had a higher potential for metabolic pathways related to specific biogeochemical functions than lake water. These results provide insights into the survival ability of microorganisms and the mechanisms of microbial community assembly under frequent exchange conditions in saline lakes.
Collapse
Affiliation(s)
- Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Huiying Yu
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Chuanxu Wang
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Xiaodong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Liu Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Jingjing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| |
Collapse
|
7
|
Shi Y, Li W, Guo X. Exploring environment-specific regulation: Characterizing bacterioplankton community dynamics in a typical lake of Inner Mongolia, China. ENVIRONMENTAL RESEARCH 2024; 253:119154. [PMID: 38754616 DOI: 10.1016/j.envres.2024.119154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Lakes serve as heterogeneous ecosystems with rich microbiota. Although previous studies on bacterioplankton have advanced our understanding, there are gaps in our knowledge concerning variations in the taxonomic composition and community assembly processes of bacterioplankton across different environment conditions. This study explored the spatial dynamics, assembly processes, and co-occurrence relationships among bacterioplankton communities in 35 surface water samples collected from Hulun Lake (a grassland-type lake), Wuliangsuhai Lake (an irrigated agricultural recession type lake), and Daihai Lake (an inland lake with mixed farming and grazing) in the Inner Mongolia Plateau, China. The results indicated a significant geographical distance decay pattern, with biomarkers (Proteobacteria and Bacteroidota) exhibiting differences in the contributions of different bacteria branches to the lakes. The relative abundance of Proteobacteria (42.23%) were high in Hulun Lake and Wuliangsuhai Lake. Despite Actinobacteriota was most dominant, Firmicutes accounted for approximately 17.07% in Daihai Lake, suggested the potential detection of anthropogenic impacts on bacteria within the agro-pastoral inland lake. Lake heterogeneity caused bacterioplankton responses to phosphorus, chlorophyll a, and salinity in Hulun Lake, Wuliangsuhai Lake, and Daihai Lake. Although bacterioplankton community assembly processes in irrigated agricultural recession type lake were more affected by dispersal limitation than those in grassland-type lake and inland lake with mixed farming and grazing (approximately 52.7% in Hulun Lake), dispersal limitation and undominated processes were key modes of bacterioplankton community assembly in three lakes. This suggested stochastic processes exerted a greater impact on bacterioplankton community assembly in a typical Inner Mongolia Lake than deterministic processes. Overall, the bacterioplankton communities displayed the potential for collaboration, with lowest connectivity observed in irrigated agricultural recession type lake, which reflected the complex dynamic patterns of aquatic bacteria in typical Inner Mongolia Plateau lakes. These findings enhanced our understanding of the interspecific relationships and assembly processes among microorganisms in lakes with distinct habitats.
Collapse
Affiliation(s)
- Yujiao Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenbao Li
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, 010018, China.
| | - Xin Guo
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
8
|
Cai M, Wang B, Han J, Yang J, Zhang X, Guan X, Jiang H. Microbial difference and its influencing factors in ice-covered lakes on the three poles. ENVIRONMENTAL RESEARCH 2024; 252:118753. [PMID: 38527718 DOI: 10.1016/j.envres.2024.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Most lakes in the world are permanently or seasonally covered with ice. However, little is known about the distribution of microbes and their influencing factors in ice-covered lakes worldwide. Here we analyzed the microbial community composition in the waters of 14 ice-covered lakes in the Hoh Xil region of northern Qing-Tibetan Plateau (QTP), and conducted a meta-analysis by integrating published microbial community data of ice-covered lakes in the tripolar regions (the Arctic, Antarctica and QTP). The results showed that there were significant differences in microbial diversity, community composition and distribution patterns in the ice-covered tripolar lakes. Microbial diversity and richness were lower in the ice-covered QTP lakes (including the studied lakes in the Hoh Xil region) than those in the Arctic and Antarctica. In the ice-covered lakes of Hoh Xil, prokaryotes are mainly involved in S-metabolic processes, making them more adaptable to extreme environmental conditions. In contrast, prokaryotes in the ice-covered lakes of the Arctic and Antarctica were predominantly involved in carbon/nitrogen metabolic processes. Deterministic (salinity and nutrients) and stochastic processes (dispersal limitation, homogenizing dispersal and drift) jointly determine the geographical distribution patterns of microorganisms in ice-covered lakes, with stochastic processes dominating. These results expand the understanding of microbial diversity, distribution patterns, and metabolic processes in polar ice-covered lakes.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jibin Han
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiying Zhang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
9
|
Zhang Q, Zhao J, Wang G, Guan H, Wang S, Yang J, Zhang J, Jian S, Ouyang L, Wu Z, Li A. Differences of bacterioplankton communities between the source and upstream regions of the Yangtze River: microbial structure, co-occurrence pattern, and environmental influencing factors. Braz J Microbiol 2024; 55:571-586. [PMID: 38302737 PMCID: PMC10920563 DOI: 10.1007/s42770-024-01265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
The source area of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau, which is known as the "Earth's third pole." It is the water conservation area and the natural barrier of the ecosystem of the Yangtze River basin. It is also the most sensitive area of the natural ecosystem, and the ecological environment is very fragile. Microorganisms play key roles in the biogeochemical processes of water. In this paper, the bacterioplankton communities in the source and upstream regions of the Yangtze River were studied based on 16S rRNA high-throughput sequencing, and their environmental influencing factors were further analyzed. Results showed that the upstream region had higher richness and diversity than the source region. The predominant bacterial phyla in the source and upstream regions were Proteobacteria, Firmicutes, and Actinobacteriota. The bacterial phyla associated with municipal pollution and opportunistic pathogen, such as Firmicutes and Actinobacteriota, were more abundant in the upstream. By contrast, distinct planktonic bacterial genera associated with mining pollution, such as Acidiphilium and Acidithiobacillus, were more abundant in the source region. The co-occurrence network showed that the interaction of bacterioplankton community is more frequent in the upstream. The bacterioplankton community compositions, richness, and functional profiles were affected by the spatial heterogeneity. Moreover, variation partitioning analysis further confirmed that the amount of variation in the source region independently explained by variables of altitude was the largest, followed by water nutrient. This paper revealed the spatial distribution of planktonic bacterial communities in the source and upstream regions of the Yangtze River and its correlation with environmental factors, providing information support for ensuring the health and safety of aquatic ecosystems in the Yangtze River Basin.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Juan Zhao
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Hongtao Guan
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jicheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, China
| | - Shenglong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Lijian Ouyang
- Ecological Engineering College, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Deng W, Lu Y, Lyu M, Deng C, Li X, Jiang Y, Zhu H, Yang Y, Xie J. Chemical composition of soil carbon is governed by microbial diversity during understory fern removal in subtropical pine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169904. [PMID: 38185157 DOI: 10.1016/j.scitotenv.2024.169904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Understory vegetation has an important impact on soil organic carbon (SOC) accumulation. However, little is known about how understory vegetation alters soil microbial community composition and how microbial diversity contributes to SOC chemical composition and persistence during subtropical forest restoration. In this study, removal treatments of an understory fern (Dicranopteris dichotoma) were carried out within pine (Pinus massoniana) plantations restored in different years in subtropical China. Soil microbial community composition and microbial diversity were measured using phospholipid fatty acids (PLFAs) biomarkers and high-throughput sequencing, respectively. The chemical composition of SOC was also measured via solid-state 13C nuclear magnetic resonance (13C NMR). Our results showed that fern removal decreased alkyl C by 4.2 % but increased O-alkyl C by 15.6 % on average, leading to a decline of alkyl C/O-alkyl C ratio, suggesting altered chemical composition of SOC and lowered SOC recalcitrance without fern. Fern removal significantly lowered the fungi-to-bacteria ratio, and it also reduced fungal and bacterial diversity. Partial correlation analysis revealed that soil nitrogen availability was a key factor influencing microbial diversity. Bacterial diversity showed a close relationship with the Alkyl C/O-alkyl C ratio following fern removal. Furthermore, the microbial community structure and bacterial diversity were responsible for 18 % and 55 % of the explained variance in the chemical composition of SOC, respectively. Taken together, these analyses jointly suggest that bacterial diversity exerts a greater role than microbial community structure in supporting SOC persistence during understory fern removal. Our study emphasizes the significance of understory ferns in supporting microbial abundance and diversity as a means of altering SOC persistence during subtropical forest restoration.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yuming Lu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Maokui Lyu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| | - Cui Deng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xiaojie Li
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yongmeng Jiang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Hongru Zhu
- Fujian Province Forestry Survey and Planning Institute, Fuzhou 350003, China
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China
| | - Jinsheng Xie
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China; Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Sanming 365002, China.
| |
Collapse
|
11
|
Wang D, Huang Y, Jia H, Yang H. Bacterial and Microeukaryotic Community Compositions and Their Assembly Processes in Lakes on the Eastern Qinghai-Tibet Plateau. Microorganisms 2023; 12:32. [PMID: 38257859 PMCID: PMC10821157 DOI: 10.3390/microorganisms12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bacterial and microeukaryotic community compositions and their assembly processes have remained challenging and remained unclear in lake ecosystems on the Qinghai-Tibet Plateau (QTP). We revealed the diversity and community compositions, driving factors, ecological assembly processes, and co-occurrence networks of bacterial and microeukaryotic communities in water bodies of the eight lake ecosystems across the Eastern QTP. The results demonstrated that the predominant bacteria in most samples were Proteobacteria, with an average relative abundance of 41.78%, whereas the most abundant of microeukaryotes differed among the sample sites. The redundancy analysis revealed that latitude and pH were the most important driving factors in shaping the bacterial and microeukaryotic community compositions. Homogeneous selection (56.40%) was the dominant process in assembling the bacterial communities, whereas dispersal limitation (67.24%) was the major process in governing the microeukaryotic communities. Furthermore, dissolved organic carbon and salinity were the major factors mediating the balance of deterministic and stochastic assembly processes in the bacterial and microeukaryotic communities. Both the bacterial and microeukaryotic community co-occurrence networks exhibited topological features of modularity and non-random topological features. The results offer insights into the mechanisms underpinning bacterial and microeukaryotic diversities and communities in the lake ecosystems on the QTP.
Collapse
Affiliation(s)
- Dandan Wang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
| | - Yuefei Huang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Haichao Jia
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
| | - Haijiao Yang
- School of Civil Engineering and Water Resources, Qinghai University, Xining 810016, China; (D.W.); (H.J.); (H.Y.)
- Key Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, China
- Key Laboratory of Water Ecological Remediation and Protection at Headwater Regions of Big Rivers, Qinghai University, Xining 810016, China
| |
Collapse
|
12
|
Sun X, Tan E, Wang B, Gan Z, Yang J, Han J, Zhang X, Kao SJ, King G, Dong H, Jiang H. Salinity change induces distinct climate feedbacks of nitrogen removal in saline lakes. WATER RESEARCH 2023; 245:120668. [PMID: 37776589 DOI: 10.1016/j.watres.2023.120668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Current estimations of nitrogen biogeochemical cycling and N2O emissions in global lakes as well as predictions of their future changes are overrepresented by freshwater datasets, while less consideration is given to widespread saline lakes with different salinity (representing salinization or desalinization). Here, we show that N2O production by denitrification is the main process of reactive nitrogen (Nr, the general abbreviations of NH4+-N, NO2--N and NO3--N) removal in hypersaline lake sediments (e.g. Lake Chaka). The integration of our field measurements and literature data shows that in response to natural salinity decrease, potential Nr removal increases while N2O production decreases. Furthermore, denitrification-induced N2 production exhibits higher salinity sensitivity than denitrification-induced N2O production, suggesting that the contribution of N2O to Nr removal decreases with decreasing salinity. This field-investigation-based salinity response model of Nr removal indicates that under global climate change, saline lakes in the process of salinization or desalination may have distinct Nr removal and climate feedback effects: salinized lakes tend to generate a positive climate feedback, while desalinated lakes show a negative feedback. Therefore, salinity change should be considered as an important factor in assessing future trend of N2O emissions from lakes under climate change.
Collapse
Affiliation(s)
- Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zixuan Gan
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616-5270, United States of America
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Gary King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 810008, China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
13
|
Li X, Liu Q, Yu X, Zhang C, Liu M, Zhou X, Gu C, Wang M, Shao H, Li J, Jiang Y. Spatial pattern and co-occurrence network of microbial community in response to extreme environment of salt lakes on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20615-20630. [PMID: 36255574 DOI: 10.1007/s11356-022-23572-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities are important components of alpine lakes, especially in extreme environments such as salt lakes. However, few studies have examined the co-occurrence network of microbial communities and various environmental factors in the water of salt lakes on the Qinghai-Tibet Plateau. From May to June 2019, nine samples from seven salt lakes with water salinity ranges from 13 to 267‰ on the Qinghai-Tibet Plateau were collected. There were great differences between low-salinity samples and high-salinity samples in the inorganic salt ion concentration, pH, and biodiversity. In addition, the microbial community sturcture in low-salinity samples and high-salinity samples differed, suggesting that each sample has its own specific species. The co-occurrence network suggests that salinity was the most important forcing factor. We believe that salinity and inorganic salt ions can result in differences in microbial community in different salt lakes. This sequencing survey of multiple salt lakes with various salinities on the Qinghai-Tibet Plateau enhances our understanding of the response of microbial communities to environmental heterogeneity.
Collapse
Affiliation(s)
- Xianrong Li
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xiaowen Yu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chenru Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinhao Zhou
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 2661000, China
| | - Hongbing Shao
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jiansen Li
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Liu C, Wu F, Jiang X, Hu Y, Shao K, Tang X, Qin B, Gao G. Salinity Is a Key Determinant for the Microeukaryotic Community in Lake Ecosystems of the Inner Mongolia Plateau, China. Front Microbiol 2022; 13:841686. [PMID: 35495662 PMCID: PMC9039746 DOI: 10.3389/fmicb.2022.841686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
The arid and semiarid areas experienced remarkable lake shrinkage during recent decades due to intensive human activities and climate change, which would result in unprecedented changes of microeukaryotic communities. However, little is known about how climate change affects the structure and ecological mechanisms of microeukaryotic communities in this area. Here, we used an 18S rRNA gene-based high-throughput sequencing approach to explore the structure, interspecies interaction, and assembly processes of the microeukaryotic community in lake ecosystems of the Inner Mongolia Plateau. As a direct result of climate change, salinity has become the key determinant of the lacustrine microeukaryotic community in this region. The microeukaryotic community in this ecosystem can be divided into three groups: salt (Lake Daihai), brackish (Lake Dalinuoer) and freshwater lakes. Co-occurrence network analysis revealed that salinity shapes the interspecies interactions of the microeukaryotic community. This causes interspecies interactions to change from antagonistic to cooperative with an increase in salinity. Phylogenetic-based β-nearest taxon distance analyses revealed that stochastic processes mainly dominated the microeukaryotic community assembly in lake ecosystems of the Inner Mongolia Plateau, and salinity stress drove the assembly processes of the microeukaryotic community from stochastic to deterministic. Overall, these findings expand the current understanding of interspecies interactions and assembly processes of microeukaryotic communities during climate change in lake ecosystems of the Inner Mongolia Plateau.
Collapse
Affiliation(s)
- Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, China
| |
Collapse
|
15
|
Yang J, Han M, Zhao Z, Han J, Zhang X, Xie Z, Jiang H. Microbial response to multiple-level addition of grass organic matter in lake sediments with different salinity. FEMS Microbiol Ecol 2022; 98:6568899. [DOI: 10.1093/femsec/fiac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Water surface expansion of saline lakes usually causes the inundation of surrounding grassland, leading to the increase of terrestrial grass organic matter (OM) input to the lakes and the decrease of lake salinity. However, the influence of terrestrial grass OM input increase and salinity decrease on organic carbon mineralization and microbial community composition remains unknown in saline lakes. Here, microbial mineralization of terrestrial grass (Achnatherum splendens) OM at different quantity levels in lake sediments with different salinity was investigated by performing microcosm experiments. The results showed that the CO2 production rates increased with the increase of grass OM supply in the studied sediments with different salinity, which may be driven by certain microbial groups (e.g., Bacteroidota, Firmicutes and Ascomycota). The increase of grass OM supply reduced the richness of prokaryotic community, which will decrease the size and complexity of the studied microbial networks, but increase the interaction between prokaryotic and fungal taxa. Taken together, our results suggest that the increase of terrestrial grass OM input caused by lake expansion would enhance the mineralization of organic carbon and affect the community composition and interactions of related microorganisms in lake sediments with different salinity.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhuoli Zhao
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Jinbin Han
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Xiying Zhang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
16
|
Functional Metabolic Diversity of Bacterioplankton in Maritime Antarctic Lakes. Microorganisms 2021; 9:microorganisms9102077. [PMID: 34683398 PMCID: PMC8539522 DOI: 10.3390/microorganisms9102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
A summer survey was conducted on the bacterioplankton communities of seven lakes from Byers Peninsula (Maritime Antarctica), differing in trophic and morphological characteristics. Predictions of the metabolic capabilities of these communities were performed with FAPROTAX using 16S rRNA sequencing data. The versatility for metabolizing carbon sources was also assessed in three of the lakes using Biolog Ecoplates. Relevant differences among lakes and within lake depths were observed. A total of 23 metabolic activities associated to the main biogeochemical cycles were foreseen, namely, carbon (11), nitrogen (4), sulfur (5), iron (2), and hydrogen (1). The aerobic metabolisms dominated, although anaerobic respiration was also relevant near the lakes’ bottom as well as in shallow eutrophic lakes with higher nutrient and organic matter contents. Capacity for using carbon sources further than those derived from the fresh autochthonous primary production was detected. Clustering of the lakes based on metabolic capabilities of their microbial communities was determined by their trophic status, with functional diversity increasing with trophic status. Data were also examined using a co-occurrence network approach, indicating that the lakes and their catchments have to be perceived as connected and interacting macrosystems, where either stochastic or deterministic mechanisms for the assembling of communities may occur depending on the lake’s isolation. The hydrological processes within catchments and the potential metabolic plasticity of these biological communities must be considered for future climate scenarios in the region, which may extend the growing season and increase biomass circulation.
Collapse
|
17
|
Diversity and abundance of diazotrophic communities of seagrass Halophila ovalis based on genomic and transcript level in Daya Bay, South China Sea. Arch Microbiol 2021; 203:5577-5589. [PMID: 34436633 DOI: 10.1007/s00203-021-02544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.
Collapse
|