1
|
Bose B, Siva Kumar S. Economic burden of zoonotic and infectious diseases on livestock farmers: a narrative review. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:158. [PMID: 40375347 DOI: 10.1186/s41043-025-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Zoonoses significantly impact human health and agricultural productivity, particularly affecting livestock farmers. In this review, the primary objective was to understand the economic impact of both zoonotic and potential zoonotic diseases. METHODS This narrative review synthesises literature from SCOPUS, Web of Science, PUBMED, and Reports, covering articles published between 1970 and 2024. Inclusion criteria focused on articles discussing economic losses due to zoonotic diseases in livestock, while exclusion criteria eliminated non-peer-reviewed works and studies not in English. RESULTS A total of 37 articles were analysed, revealing substantial economic impacts from various zoonotic diseases. The study uncovers a dramatic decrease in milk consumption, with some areas experiencing a reduction of up to 64 per cent, causing financial hardship for dairy farmers. Moreover, animal-to-human transmissible diseases like bovine tuberculosis, Rift Valley Fever and mastitis result in significant economic setbacks, especially in developing countries. CONCLUSION Addressing economic challenges caused by zoonotic and potential diseases is vital for dairy sector sustainability, particularly in developing nations like India. The study emphasises the need for collaborative efforts from stakeholders, including government officials and researchers. It underlines key challenges and compares economic contexts between countries, advocating increased livestock farmers' awareness of these diseases, improved farming techniques, and training programmes to alleviate the problem.
Collapse
Affiliation(s)
- Bibin Bose
- Department of Social Sciences, School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - S Siva Kumar
- Department of Social Sciences, School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Gerez G, Hernandez LB, Cadona J, Sanso AM, Bustamante AV. Genetic diversity of Streptococcus agalactiae from dairy cattle with mastitis in Argentina. BMC Vet Res 2025; 21:338. [PMID: 40361129 PMCID: PMC12070692 DOI: 10.1186/s12917-025-04584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Bovine mastitis is an important health problem in dairy cattle which affects the quality and yield of milk and causes significant economic losses in the dairy industry. Streptococcus agalactiae is a Gram-positive and zoonotic bacterium that causes clinical and subclinical contagious bovine mastitis. The main strategy for the control of this pathogen in dairy herds is the antimicrobial therapy. The aim of this study was to determine the genetic diversity of S. agalactiae using Multiple Locus Variable number tandem repeat -VNTR- Analysis (MLVA), serotypes, virulence factors (VF) and antimicrobial resistance (AMR) profiles and to compare the discrimination power of these different methods in strains isolated from cattle with mastitis in Argentinian dairy farms. RESULTS Eighty-seven S. agalactiae isolates obtained from dairy cattle with mastitis in Argentina were analyzed. The detected serotypes were III, II and Ia. The most frequent virulence and AMR detected genes were cpsA, hylB, PI-2b, cylE, rib, spb1, and tetO and ermB respectively. A total of 36 VF + AMR profiles were detected with a discriminatory power of the method of Ds = 0.96. The MLVA based on six VNTRs showed 29 profiles with a Ds = 0.90. The analysis of VF + AMR + MLVA data together showed 59 profiles with an increased discriminatory power (Ds = 0.98). CONCLUSION This study highlights that the MLVA is recommended to add to other methodologies in order to study epidemiological relationships in this species Although within each dairy farm there was a predominance of certain serotypes/virulence profiles, the characteristics did not show total homogeneity, as expected due to the contagious nature of the pathogen. This suggests the incorporation of animals from other herds at some point, a practice not uncommon among dairy farms in Argentina. By other hand, the detection of a same clone in the same farm in different periods confirms that S. agalactiae strains can persist on dairy farms for a long time.
Collapse
Affiliation(s)
- Gabriela Gerez
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Buenos Aires, Argentina
| | - Luciana Belén Hernandez
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Buenos Aires, Argentina
| | - Jimena Cadona
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Buenos Aires, Argentina
| | - Andrea Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Buenos Aires, Argentina
| | - Ana Victoria Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Hahaj-Siembida A, Nowakiewicz A, Greguła-Kania M, Bochniarz M, Trościańczyk A, Osińska M. Characteristics of drug-resistant staphylococci isolated from milk of lambed ewes during the perinatal period. J Vet Res 2025; 69:41-50. [PMID: 40144065 PMCID: PMC11936087 DOI: 10.2478/jvetres-2025-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Staphylococci are still a challenge in veterinary medicine, as they are one of the aetiological factors causing clinical and subclinical mastitis in small ruminants. The aim of the study was to analyse the occurrence of staphylococci in milk obtained from Świniarka (SW) and Uhruska (UHR) sheep and to characterise their drug resistance and virulence. Material and Methods In total, 50 milk samples were collected from ewes seven days after parturition. Drug susceptibility analysis was performed based on Clinical and Laboratory Standards Institute standards and demonstration of the presence of resistance genes was attempted. Results Staphylococcus spp. strains were identified in 70% of the samples, and 57.2% of the strains were S. aureus. Most of the tested strains (88.6%) were resistant to at least one antimicrobial, and resistance to tetracycline and erythromycin was the dominant type in S. aureus strains. Coagulase-negative species (CoNS) exhibited resistance predominantly to penicillin, cefoxitin and tetracycline (86.6%, 73.3% and 46.6%, respectively).The presence of the mecC gene was detected in four cefoxitin resistant strains. In tetracycline- and chloramphenicol-resistant strains, phenotypic and genotypic resistance was statistically significantly more common among strains isolated from UHR than SW. Conclusion The present study highlights the problem of potential subclinical mastitis caused by drug-resistant strains of S. aureus and other CoNS species in lambed ewes. However, the occurrence of virulence factors in these strains is very rare.
Collapse
Affiliation(s)
- Agata Hahaj-Siembida
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Aneta Nowakiewicz
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Monika Greguła-Kania
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences, 20-950Lublin, Poland
| | - Mariola Bochniarz
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Aleksandra Trościańczyk
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Marcelina Osińska
- Department ofSub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| |
Collapse
|
4
|
Shah AU, Ali Khan J, Avais M, Zaman SH, Munir Z, Abbas S, Tariq M, Rahman MU, Tariq F, Nawaz S, Fouad D, Anjum AA, Ahmed QI. Prevalence and chemotherapy of Staphylococcus aureus mastitis in dairy cattle. PLoS One 2025; 20:e0315480. [PMID: 39946397 PMCID: PMC11824977 DOI: 10.1371/journal.pone.0315480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 02/16/2025] Open
Abstract
This study aimed to isolate and characterize Staphylococcus aureus (S. aureus) from samples of mastitis milk taken from dairy cattle in Punjab's Narowal District. 200 milk samples were collected aseptically from different dairy herds in the district, including clinical mastitis (CM) and sub-clinical mastitis (SCM) cows. Blood agar and mannitol salt agar were used for S. aureus isolation and identification. Selective media were then used for additional purification. Observations of morphological and biochemical traits verified the existence of S. aureus. Through questionnaire-based surveys, the prevalence of S. aureus mastitis was identified, and risk variables linked to its incidence were evaluated. The findings showed that S. aureus mastitis was prevalent in 42.5% of cases, with sub-clinical cases having a greater incidence (45.8%) than clinical cases (37.5%). Risk factors such as distance from dung pile to stall(m), source of water, dung removal per day, lactation period (weeks), parity, effect of milk yield (L), traumatic injury of udder, housing type, floor type, teat dipping, and bedding type was identified and their relationship to the occurrence of S. aureus mastitis was studied. Tests for antibiotic sensitivity revealed that S. aureus isolates were responsive to gentamycin, ceftiofur, tetracycline, enrofloxacin, and ciprofloxacin but extremely resistant to penicillin and amoxicillin. Additionally, the Somatic Cell Count (SCC) and California Mastitis Test (CMT) were used at different intervals to assess the effectiveness of the medication. Furthermore, compared to other treatment groups, a larger percentage of cure rates was seen in the groups receiving ceftiofur and enrofloxacin. Overall, this study contributes to the development of more effective management methods for S. aureus mastitis in dairy calves by offering insightful information about the condition's prevalence, risk factors, antibiotic sensitivity, and effectiveness of treatment.
Collapse
Affiliation(s)
- Asjad Umair Shah
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Avais
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syed Haider Zaman
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zubir Munir
- Livestock and Dairy Development Department, Government of Punjab, Lahore, Pakistan
| | - Safdar Abbas
- Livestock and Dairy Development Department, Government of Punjab, Lahore, Pakistan
| | - Mahnoor Tariq
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muneeb ur Rahman
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Fiza Tariq
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Shanghai, People’s Republic of China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aftab Ahmad Anjum
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qazi Israr Ahmed
- Livestock and Dairy Development (Extension), Balochistan, Quetta, Pakistan
| |
Collapse
|
5
|
Drugea RI, Siteavu MI, Pitoiu E, Delcaru C, Sârbu EM, Postolache C, Bărăităreanu S. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow's Milk. Microorganisms 2025; 13:209. [PMID: 39858977 PMCID: PMC11767543 DOI: 10.3390/microorganisms13010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Escherichia coli (E. coli) is one of the most common pathogens in both humans and livestock. This study aimed to investigate the prevalence of E. coli isolated from raw cow milk and evaluate its antimicrobial resistance rates. A total of 1696 milk samples were collected from Romanian dairy farms from 2018 to 2022. E. coli was isolated on various selective agar media, such as Cled agar and Columbia Agar with 5% Sheep Blood. The identification of E. coli was performed by MALDI-TOF MS. E. coli isolates were tested for their susceptibility against 18 commonly used antibiotics in a disk diffusion method. The overall prevalence of E. coli was 22.45% of all isolated pathogens. Antibiogram analysis revealed that 27.51% of E. coli isolates from milk were multidrug-resistant. Resistance was highest for penicillin-novobiocin (87.78%), followed by streptomycin (53.7%). Resistance to six drugs (amoxicillin, streptomycin, kanamycin-cephalexin, marbofloxacin, ampicillin) showed a significant increasing trend over time, while for two drugs (penicillin G-framycetin, doxycycline), a significant decrease was observed. Our results suggest that milk can be a reservoir of bacteria with the potential for infection in humans via the food chain. Furthermore, there is a need for surveillance and monitoring to control the increase in resistance to currently used antimicrobials in dairy farms because the occurrence of multidrug-resistant E. coli isolated from milk poses a health hazard to consumers.
Collapse
Affiliation(s)
- Roxana Ionela Drugea
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
| | - Mădălina Iulia Siteavu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
- Synevovet Laboratory, Ilfov County, 077040 Chiajna, Romania;
| | - Elena Pitoiu
- Synevovet Laboratory, Ilfov County, 077040 Chiajna, Romania;
| | - Cristina Delcaru
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Ecaterina Monica Sârbu
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Carmen Postolache
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (C.D.); (E.M.S.); (C.P.)
| | - Stelian Bărăităreanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania; (R.I.D.); (M.I.S.)
| |
Collapse
|
6
|
Xu H, Wu X, Yang Z, Shi X, Guo A, Hu C. N 6-methyladenosine-modified lncRNA in Staphylococcus aureus-injured bovine mammary epithelial cells. Arch Microbiol 2024; 206:431. [PMID: 39395056 DOI: 10.1007/s00203-024-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Staphylococcus aureus-induced mastitis is a serious disease in dairy bovine, with no currently effective treatment. Antibiotics demonstrate certain therapeutic potency in dairy husbandry; they generate drug-resistant bacteria, thereby harming public health. LncRNAs and m6A have been verified as potential targets in infectious diseases and have powerful regulatory capabilities. However, the biological regulation of lncRNAs with m6A modification in mastitis needs further investigation. This study aims to determine the m6A-modified lncRNAs in bovine mammary epithelial cells and their diversity during S. aureus induction. Heat-inactivated S. aureus was used to develop the cell injury model, and we subsequently found low cell viability and different m6A modification levels. Our analysis of m6A-modified lncRNA profiles through MeRIP-seq revealed significant differences in 140 peaks within 130 lncRNAs when cells were injured by S. aureus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these differential m6A-modified lncRNAs were mainly enriched in the WNT pathway, and their functions were associated with amino acid metabolism, lipid translocation, and metalloproteinase activity. Here, we report for the first time lncRNAs with m6A modification in regulating S. aureus infection, revealing potential mechanisms and targets of infectious diseases, such as mastitis, from an epigenetics perspective.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiming Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhuai Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Rahman MH, El Zowalaty ME, Falgenhauer L, Khan MFR, Alam J, Popy NN, Rahman MB. Draft genome sequences of clinical mastitis-associated Enterococcus faecalis and Enterococcus faecium carrying multiple antimicrobial resistance genes isolated from dairy cows. J Glob Antimicrob Resist 2024; 38:111-115. [PMID: 38795772 DOI: 10.1016/j.jgar.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
OBJECTIVES The emergence of antimicrobial-resistant and mastitis-associated Enterococcus faecalis and Enterococcus faecium is of great concern due to the huge economic losses associated with enterococcal infections. Here we report the draft genome sequences of E. faecalis and E. faecium strains that were isolated from raw milk samples obtained from mastitis-infected cows in Bangladesh. METHODS The two strains were isolated, identified, and genomic DNA was sequenced using the Illumina NextSeq 550 platform. The assembled contigs were analysed for virulence, antimicrobial resistance genes, and multilocus sequence type. The genomes were compared to previously reported E. faecalis and E. faecium genomes to generate core genome phylogenetic trees. RESULTS E. faecalis strain BR-MHR218Efa and E. faecium strain BR-MHR268Efe belonged to multilocus sequence types ST-190 and ST-22, respectively, both of which appear to represent relatively rare sequence types. BR-MHR268Efe harboured only one antibiotic resistance gene encoding resistance towards macrolides (lsa(A)), while BR-MHR218Efa harboured ten different antibiotic resistance genes encoding resistance to aminoglycosides (ant[6]-Ia, aph(3')-III), sulphonamides (aac(6')-II), lincosamides (lnu(B)), macrolides (erm(B)), MLSB antibiotics (msr(C)), tetracyclines (tet(M), tet(L)), trimethoprim (dfrG), and pleuromutilin-lincosamide-streptogramin A (lsa(E)). Virulence gene composition was different between the two isolates. BR-MHR218Efa harboured only two virulence genes involved in adherence (acm and scm). BR-MHR268Efe harboured eight complete virulence operons including three operons involved in adherence (Ace, Ebp pili, and EfaA), two operons involved in biofilm formation (BopD and Fsr), and three exoenzymes (gelatinase, hyaluronidase, SprE). CONCLUSIONS The genome sequences of the strains BR-MHR268Efe and BR-MHR218Efa will serve as a reference point for molecular epidemiological studies of mastitis-associated E. faecalis and E. faecium. Additionally, the findings will help understand the complex antimicrobial-resistance in livestock-assoiated Enterococci.
Collapse
Affiliation(s)
- Mohammad H Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohamed E El Zowalaty
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg, Schubertstrasse 81, 35392 Giessen, Germany
| | | | - Jahangir Alam
- National Institute of Biotechnology, Savar, Dhaka, Bangladesh
| | - Najmun Nahar Popy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Bahanur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
8
|
Cremonesi P, Biscarini F, Conte G, Piccioli-Cappelli F, Morandi S, Silvetti T, Tringali S, Trevisi E, Castiglioni B, Brasca M. Aloe arborescens supplementation in drying-off dairy cows: influence on rumen, rectum and milk microbiomes. Anim Microbiome 2024; 6:49. [PMID: 39217403 PMCID: PMC11366166 DOI: 10.1186/s42523-024-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND In the context of the RABOLA project, which aimed to identify operational practices that lead to the reduction of antibiotic use in dairy cattle farming, lyophilised Aloe arborescens was administered orally to cows during the dry-off and peripartum periods. In this specific paper we wanted to examine whether oral administration of Aloe arborescens, in combination with the topical application of a teat sealant could exert an effect on the microbial populations of three cow microbiomes (rumen, milk, rectum), between dry-off and peripartum. Dry-off and peripartum are critical physiological phases of the cow's life, where both the mammary gland and the gastrointestinal tract undergo dramatic modifications, hence the relevance of evaluating the effects of dietary treatments. METHODS Thirty multiparous dairy cows were randomly allocated to three groups: Control (antibiotic treatment and internal teat sealant), Sealant (only internal teat sealant) and Aloe (internal teat sealant and Aloe arborescens homogenate administered orally). For 16S rRNA gene sequencing, rumen, rectum and milk samples were collected, not synchronously, at the most critical timepoints around dry-off and calving, considering the physiological activity of each biological site. RESULTS The rumen microbiome was predominantly characterized by Bacteroidetes and Firmicutes followed by Proteobacteria, while the rectum exhibited a prevalence of Firmicutes and Bacteroidetes. The milk microbiome mainly comprised Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Alistipes spp., Ruminococcaceae UCG-10 group, Prevotellaceae UCG-001 group, and Bacteroides spp., involved in cellulose and hemicellulose degradation, enhancement of energy metabolism, and peptide breakdown, showed increment in the rectum microbiome with Aloe supplementation. The rectum microbiome in the Aloe group exhibited a significant increase in the Firmicutes to Bacteroidetes ratio and alpha-diversity at seven days after dry-off period. Beta-diversity showed a significant separation between treatments for the rectum and milk microbiomes. Aloe supplementation seemed to enrich milk microbial composition, whereas the Sealant group showed greater diversity compared to the Control group, albeit this included an increase in microorganisms frequently associated with mastitis. CONCLUSIONS Aloe arborescens administration during the dry-off period did not demonstrate any observable impact on the microbial composition of the rumen, a finding further supported by volatilome analysis. Instead, the oral Aloe supplementation at dry-off appears to significantly influence the composition of the dairy cow rectum and milk microbiomes in the following lactation.
Collapse
Affiliation(s)
- Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Pisa, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Simona Tringali
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Lodi, Italy.
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council of Italy, Milano, Italy
| |
Collapse
|
9
|
Xue Y, Gao Y, Guo M, Zhang Y, Zhao G, Xia L, Ma J, Cheng Y, Wang H, Sun J, Wang Z, Yan Y. Phage cocktail superimposed disinfection: A ecological strategy for preventing pathogenic bacterial infections in dairy farms. ENVIRONMENTAL RESEARCH 2024; 252:118720. [PMID: 38537740 DOI: 10.1016/j.envres.2024.118720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Bovine mastitis (BM) is mainly caused by bacterial infection that has a highly impact on dairy production, affecting both economic viability and animal well-being. A cross-sectional study was conducted in dairy farms to investigate the prevalence and antimicrobial resistance patterns of bacterial pathogens associated with BM. The analysis revealed that Staphylococcus (49%), Escherichia (16%), Pseudomonas (11%), and Klebsiella (6%) were the primary bacterial pathogens associated with mastitis. A significant proportion of Staphylococcus strains displayed multiple drug resistance. The use of disinfectants is an important conventional measure to control the pathogenic bacteria in the environment. Bacteriophages (Phages), possessing antibacterial properties, are natural green and effective disinfectants. Moreover, they mitigate the risk of generating harmful disinfection byproducts, which are commonly associated with traditional disinfection methods. Based on the primary bacterial pathogens associated with mastitis in the investigation area, a phage cocktail, named SPBC-SJ, containing seven phages capable of lysing S. aureus, E. coli, and P. aeruginosa was formulated. SPBC-SJ exhibited superior bactericidal activity and catharsis effect on pollutants (glass surface) compared to chemical disinfectants. Clinical trials confirmed that the SPBC-SJ-based superimposed disinfection group (phage combined with chemical disinfectants) not only cut down the dosage of disinfectants used, but significantly reduced total bacterial counts on the ground and in the feeding trough of dairy farms. Furthermore, SPBC-SJ significantly reduced the abundance of Staphylococcus and Pseudomonas in the environment of the dairy farm. These findings suggest that phage-based superimposed disinfection is a promising alternative method to combat mastitis pathogens in dairy farms due to its highly efficient and environmentally-friendly properties.
Collapse
Affiliation(s)
- Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Guoqing Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Lu Xia
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
10
|
Guzmán-Rodríguez JJ, Gutiérrez-Chávez AJ, Meléndez-Soto RM, Amador-Sánchez MA, Franco-Robles E. Antimicrobial activities of Agave fructans against multi-resistant and biofilm-producing Staphylococcus aureus isolated from bovine mastitis. Vet Res Commun 2024; 48:61-67. [PMID: 37493941 DOI: 10.1007/s11259-023-10180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Bovine mastitis is an emerging disease that causes large economic losses. Staphylococcus aureus its main etiological agent, is multi-resistant to antimicrobials and produces biofilm. The objective of this study was to investigate the effect of Agave fructans (AF), a type of prebiotic, on multi-resistant and biofilm-forming isolates of S. aureus. Ten isolates of S. aureus from bovine subclinical mastitis previously characterized as highly resistant to antimicrobials and biofilm formers were used in this study. The growth kinetics of S. aureus in the presence of AF was evaluated by the Baranyi and Roberts microbial growth model using the DMFit program. The antibacterial activity of AF against S. aureus was studied by the well-diffusion method and the effect on biofilm formation by the crystal violet method. All assays were performed in triplicate for each isolate and an ANOVA with Tukey's post hoc was performed considering p < 0.05 as significant. The AF showed a decrease in maximum growth rate (µmax) and OD max levels (Ymax) in all isolates with all concentrations. Also, zones of inhibition were observed due to the effect of all AF concentrations in all isolates in a dose-dependent manner. Interestingly, S. aureus biofilm formation was inhibited by all AF concentrations assessed in this study. More investigations are required to elucidate the mechanisms of action of AF on S. aureus as well as in vivo studies to evaluate its therapeutic efficacy for bovine mastitis.
Collapse
Affiliation(s)
- Jaquelina Julia Guzmán-Rodríguez
- Department of Veterinary and Animal Science, Division of Life Sciences, University of Guanajuato, Irapuato-Salamanca Campus, Ex-Hacienda El Copal km 9. Irapuato-Silao, Guanajuato, 36500, Irapuato, Mexico
- Institute of Science, Technology and Innovation of Michoacan State, Michoacan, 58060, Morelia, Mexico
| | - Abner Josué Gutiérrez-Chávez
- Department of Veterinary and Animal Science, Division of Life Sciences, University of Guanajuato, Irapuato-Salamanca Campus, Ex-Hacienda El Copal km 9. Irapuato-Silao, Guanajuato, 36500, Irapuato, Mexico
| | - Rosa M Meléndez-Soto
- Department of Veterinary Sciences, Center for Agricultural Sciences, Autonomous University of Aguascalientes, Jesus Maria, Aguascalientes, 20934, Mexico
| | - Marco Antonio Amador-Sánchez
- Interinstitutional Master's Degree in Livestock Production, Division of Life Sciences, University of Guanajuato, Irapuato-Salamanca Campus, Irapuato, Guanajuato, 36500, Mexico
| | - Elena Franco-Robles
- Department of Veterinary and Animal Science, Division of Life Sciences, University of Guanajuato, Irapuato-Salamanca Campus, Ex-Hacienda El Copal km 9. Irapuato-Silao, Guanajuato, 36500, Irapuato, Mexico.
| |
Collapse
|
11
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Zhu H, Miao R, Tao X, Wu J, Liu L, Qu J, Liu H, Sun Y, Li L, Qu Y. Longitudinal Changes in Milk Microorganisms in the First Two Months of Lactation of Primiparous and Multiparous Cows. Animals (Basel) 2023; 13:1923. [PMID: 37370433 DOI: 10.3390/ani13121923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The present experiment was carried out to analyze the longitudinal changes in milk microorganisms. For this purpose, milk samples were collected from 12 healthy cows (n = 96; six primiparous cows and six multiparous cows) at eight different time points. The characteristics and variations in microbial composition were analyzed by 16S rRNA gene high-throughput sequencing. In the primiparous group, higher and more stable alpha diversity was observed in transitional and mature milk compared with the colostrum, with no significant difference in alpha diversity at each time point in the multiparous group. Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota were the most dominant phyla, and Pseudomonas, UCG-005, Acinetobacter, Vibrio, Lactobacillus, Bacteroides, Serratia, Staphylococcus, and Glutamicibacter were the most dominant genera in both primiparous and multiparous cow milk. Some typically gut-associated microbes, such as Bacteroides, UCG-005, and Rikenellaceae_RC9_gut_group, etc., were enriched in the two groups. Biomarker taxa with the day in time (DIM) were identified by a random forest algorithm, with Staphylococcus showing the highest degree of interpretation, and the difference in milk microbiota between the two groups was mainly reflected in 0 d-15 d. Additionally, network analysis suggested that there were bacteria associated with the total protein content in milk. Collectively, our results disclosed the longitudinal changes in the milk microbiota of primiparous and multiparous cows, providing further evidence in dairy microbiology.
Collapse
Affiliation(s)
- Huan Zhu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- College of Science, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Renfang Miao
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Xinxu Tao
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Jianhao Wu
- Bright Farming Co., Ltd., No. 1518, West Jiangchang Road, Shanghai 200436, China
| | - Licheng Liu
- Institute of Animal Husbandry and Veterinary Medicine, Heilongjiang Academy of Agricultural Reclamation, No. 101 Xiangfu Road, Herbin 150038, China
| | - Jiachen Qu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Hongzhi Liu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Yanting Sun
- School of Civil Engineering, Xi'an University of Architecture & Technology, No. 99 Yanta Road, Xi'an 710064, China
| | - Lingyan Li
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| | - Yongli Qu
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Daqing 163319, China
| |
Collapse
|
13
|
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Anim Microbiome 2022; 4:59. [PMID: 36434660 PMCID: PMC9701008 DOI: 10.1186/s42523-022-00211-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common cause of clinical mastitis (CM) in dairy cattle. Optimizing the bovine mammary gland microbiota to resist S. aureus colonization is a growing area of research. However, the details of the interbacterial interactions between S. aureus and commensal bacteria, which would be required to manipulate the microbiome to resist infection, are still unknown. This study aims to characterize changes in the bovine milk bacterial community before, during, and after S. aureus CM and to compare bacterial communities present in milk between infected and healthy quarters. METHODS We collected quarter-level milk samples from 698 Holstein dairy cows over an entire lactation. A total of 11 quarters from 10 cows were affected by S. aureus CM and milk samples from these 10 cows (n = 583) regardless of health status were analyzed by performing 16S rRNA gene amplicon sequencing. RESULTS The milk microbiota of healthy quarters was distinguishable from that of S. aureus CM quarters two weeks before CM diagnosis via visual inspection. Microbial network analysis showed that 11 OTUs had negative associations with OTU0001 (Staphylococcus). A low diversity or dysbiotic milk microbiome did not necessarily correlate with increased inflammation. Specifically, Staphylococcus xylosus, Staphylococcus epidermidis, and Aerococcus urinaeequi were each abundant in milk from the quarters with low levels of inflammation. CONCLUSION Our results show that the udder microbiome is highly dynamic, yet a change in the abundance in certain bacteria can be a potential indicator of future S. aureus CM. This study has identified potential prophylactic bacterial species that could act as a barrier against S. aureus colonization and prevent future instances of S. aureus CM.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Ianina Altshuler
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Daryna Kurban
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.
- Mastitis Network, Saint-Hyacinthe, QC, Canada.
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
14
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
15
|
Mtshali K, Khumalo ZTH, Kwenda S, Arshad I, Thekisoe OMM. Exploration and comparison of bacterial communities present in bovine faeces, milk and blood using 16S rRNA metagenomic sequencing. PLoS One 2022; 17:e0273799. [PMID: 36044481 PMCID: PMC9432762 DOI: 10.1371/journal.pone.0273799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Cattle by-products like faeces, milk and blood have many uses among rural communities; aiding to facilitate everyday household activities and occasional rituals. Ecologically, the body sites from which they are derived consist of distinct microbial communities forming a complex ecosystem of niches. We aimed to explore and compare the faecal, milk and blood microbiota of cows through 16S rRNA sequencing. All downstream analyses were performed using applications in R Studio (v3.6.1). Alpha-diversity metrics showed significant differences between faeces and blood; faeces and milk; but non-significant between blood and milk using Kruskal-Wallis test, P < 0,05. The beta-diversity metrics on Principal Coordinate Analysis and Non-Metric Dimensional Scaling significantly clustered samples by type (PERMANOVA test, P < 0,05). The overall analysis revealed a total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera. Firmicutes, Bacteroidota and Proteobacteria were the most abundant phyla overall. A total of 58 genus-level taxa occurred concurrently between the body sites. The important taxa could be categorized into four potentially pathogenic clusters i.e. arthropod-borne; food-borne and zoonotic; mastitogenic; and metritic and abortigenic. A number of taxa were significantly differentially abundant (DA) between sites based on the Wald test implemented in DESeq2 package. Majority of the DA taxa (i.e. Romboutsia, Paeniclostridium, Monoglobus, Akkermansia, Turicibacter, Bacteroides, Candidatus_Saccharimonas, UCG-005 and Prevotellaceae_UCG-004) were significantly enriched in faeces in comparison to milk and blood, except for Anaplasma which was greatly enriched in blood and was in turn the largest microbial genus in the entire analysis. This study provides insights into the microbial community composition of the sampled body sites and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the community of Waaihoek in KwaZulu-Natal, Republic of South Africa pertaining to their unsanitary practices associated with the use of cattle by-products.
Collapse
Affiliation(s)
- Khethiwe Mtshali
- Biomedical Sciences Department, Tshwane University of Technology, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- * E-mail: ,
| | - Zamantungwa Thobeka Happiness Khumalo
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
- Study Management, ClinVet International, Bainsvlei, Bloemfontein, South Africa
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Ismail Arshad
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Science, Department of Biochemistry and Microbiology, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | | |
Collapse
|
16
|
Goulart DB, Mellata M. Escherichia coli Mastitis in Dairy Cattle: Etiology, Diagnosis, and Treatment Challenges. Front Microbiol 2022; 13:928346. [PMID: 35875575 PMCID: PMC9301288 DOI: 10.3389/fmicb.2022.928346] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC’s pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.
Collapse
Affiliation(s)
- Débora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Débora Brito Goulart,
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Melha Mellata,
| |
Collapse
|
17
|
Ajose DJ, Oluwarinde BO, Abolarinwa TO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Combating Bovine Mastitis in the Dairy Sector in an Era of Antimicrobial Resistance: Ethno-veterinary Medicinal Option as a Viable Alternative Approach. Front Vet Sci 2022; 9:800322. [PMID: 35445101 PMCID: PMC9014217 DOI: 10.3389/fvets.2022.800322] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Bovine mastitis (BM) is the traditional infectious condition in reared cattle which may result in serious repercussions ranging from animal welfare to economic issues. Owing to the high costs associated with preventative practices and therapeutic measures, lower milk output, and early culling, bovine mastitis is accountable for most of the financial losses suffered in cattle farming. Streptococcus agalactiae, Staphylococcus aureus, Streptococcus dysgalactiae and coliform bacteria are the predominant pathogens for bovine mastitis. In addition, the occurrence of BM has been linked to lactation stage and poor management, in the latter case, the poor stabling conditions around udder hygiene. BM occurs throughout the world, with varying rates of Streptococcus agalactiae infection in different regions. Despite the modern techniques, such as the appropriate milking practices that are applied, lower levels of pathogen vulnerability may help to prevent the development of the disease, BM treatment is primarily reliant on antibiotics for both prophylactic and therapeutic purposes. Nevertheless, as a result of the proliferation of bacterial agents to withstand the antibiotic effects, these therapies have frequently proven ineffectual, resulting in persistent BM. Consequently, alternative medicines for the management of udder inflammation have been researched, notably natural compounds derived from plants. This review focuses on BM in terms of its risk factors, pathogenesis, management, the molecular identification of causative agents, as well as the application of ethno-veterinary medicine as an alternative therapy.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| |
Collapse
|
18
|
Genome-Wide Analysis of LncRNA in Bovine Mammary Epithelial Cell Injuries Induced by Escherichia Coli and Staphylococcus Aureus. Int J Mol Sci 2021; 22:ijms22189719. [PMID: 34575880 PMCID: PMC8470725 DOI: 10.3390/ijms22189719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are two common pathogenic microorganisms that cause mastitis in dairy cows. They can cause clinical mastitis and subclinical mastitis. In recent studies, lncRNAs have been found to play an important role in the immune responses triggered by microbial inducers. However, the actions of lncRNAs in bovine mastitis remain unclear. The purpose of this study was to investigate the effects of bovine mammary epithelial cell injuries induced by treatment with E. coli and S. aureus, and to explore the lncRNA profile on cell injuries. The lncRNA transcriptome analysis showed a total of 2597 lncRNAs. There were 2234 lncRNAs differentially expressed in the E. coli group and 2334 in the S. aureus group. Moreover, we found that the E. coli and S. aureus groups of maternal genes targeted signaling pathways with similar functions according to KEGG and GO analyses. Two lncRNA-miRNA-mRNA interaction networks were constructed in order to predict the potential molecular mechanisms of regulation in the cell injuries. We believe that this is the first report demonstrating the dysregulation of lncRNAs in cells upon E. coli and S. aureus infections, suggesting that they have the potential to become important diagnostic markers and to provide novel insights into controlling and preventing mastitis.
Collapse
|
19
|
Enger BD, Middleton JR. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6295309. [PMID: 34104961 DOI: 10.1093/femsec/fiab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Benjamin D Enger
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA.,National Mastitis Council, New Prague, Minnesota, USA
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA.,National Mastitis Council, New Prague, Minnesota, USA
| |
Collapse
|
20
|
Barlow J. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294905. [PMID: 34100913 DOI: 10.1093/femsec/fiab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT. United States
| |
Collapse
|
21
|
Rainard P. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294903. [PMID: 34100928 DOI: 10.1093/femsec/fiab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Affiliation(s)
- Pascal Rainard
- INRAE, Université de Tours, UMR ISP, F-37380, Nouzilly, France
| |
Collapse
|
22
|
Maity S, Ambatipudi K. Response to Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294908. [PMID: 34100931 DOI: 10.1093/femsec/fiab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|