1
|
Tardiolo G, La Fauci D, Riggio V, Daghio M, Di Salvo E, Zumbo A, Sutera AM. Gut Microbiota of Ruminants and Monogastric Livestock: An Overview. Animals (Basel) 2025; 15:758. [PMID: 40076043 PMCID: PMC11899476 DOI: 10.3390/ani15050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The diversity and composition of the gut microbiota are widely recognized as fundamental factors influencing the well-being and productivity of domestic animals. Advancements in sequencing technologies have revolutionized studies in this research field, allowing for deeper insights into the composition and functionality of microbiota in livestock. Ruminants and monogastric animals exhibit distinct digestive systems and microbiota characteristics: ruminants rely on fermentation, while monogastrics use enzymatic digestion, and monogastric animals have simpler stomach structures, except for horses and rabbits, where both processes coexist. Understanding the gut microbiota's impact and composition in both animal types is essential for optimizing production efficiency and promoting animal health. Following this perspective, the present manuscript review aims to provide a comprehensive overview of the gut microbiota in ruminants (such as cattle, sheep, and goats) and monogastric animals (including horses, pigs, rabbits, and chickens).
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Deborah La Fauci
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK;
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Eleonora Di Salvo
- Department of Biomedical, Dental Sciences, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Anna Maria Sutera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
2
|
McIntyre DB, Dawson BM, Long BM, Barton PS. A review of multi-disciplinary decomposition research and key drivers of variation in decay. Int J Legal Med 2024; 138:2181-2192. [PMID: 38622312 PMCID: PMC11306653 DOI: 10.1007/s00414-024-03222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The decomposition of animal remains is a multifaceted process, involving ecological, biological, and chemical interactions. While the complexity is acknowledged through concepts like the necrobiome, it's unclear if this complexity is reflected in research. Appreciation of the complexity of decomposition is crucial for identifying sources of variation in estimations of time since death in medico-legal science, as well as building broader ecological knowledge of the decomposition process. To gain insights into the extent of multidisciplinary research in the field of decomposition science, we conducted an examination of peer-reviewed literature on four key drivers of variation: volatile organic compounds, microbes, drugs/toxins, and insects. Among 650 articles, we identified their scientific discipline, driver/s of variation investigated, and year of publication. We found that 19% explored relationships between two drivers, while only 4% investigated interactions between three. None considered all four drivers. Over the past three decades, there has been a steady increase in decomposition research publications, signifying its growing importance. Most research (79%) was linked to forensic science, highlighting opportunities for interdisciplinary collaboration in decomposition science. Overall, our review underscores the need to incorporate multidisciplinary approaches and theory into contemporary decomposition research.
Collapse
Affiliation(s)
- Donna B McIntyre
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia.
- Graduate Research School, Federation University, Mount Helen, VIC, 3350, Australia.
| | - Blake M Dawson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2350, Australia
| | - Benjamin M Long
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia
| | - Philip S Barton
- Future Regions Research Centre, Federation University, Mount Helen, VIC, 3350, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
3
|
Yu Q, Han Q, Li T, Kou Y, Zhang X, Wang Y, Li G, Zhou H, Qu J, Li H. Metagenomics reveals the self-recovery and risk of antibiotic resistomes during carcass decomposition of wild mammals. ENVIRONMENTAL RESEARCH 2023; 238:117222. [PMID: 37778601 DOI: 10.1016/j.envres.2023.117222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.
Collapse
Affiliation(s)
- Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Kou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huan Li
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Dai T, Liu R, Zhou X, Zhang J, Song M, Zou P, Bi X, Li S. Role of Lake Aquatic-Terrestrial Ecotones in the Ecological Restoration of Eutrophic Water Bodies. TOXICS 2023; 11:560. [PMID: 37505526 PMCID: PMC10385339 DOI: 10.3390/toxics11070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Freshwater lake eutrophication is a global concern causing adverse effects on aquatic ecosystems. The degradation of lake aquatic-terrestrial ecotones, which are the transitional zones between terrestrial and water ecosystems, contributes to eutrophication. These ecotones play vital roles in nutrient cycling, runoff control, biodiversity conservation, and habitat provision. In the past three decades, the research on lake aquatic-terrestrial ecotones has focused on techniques for managing contaminants and runoff purification. This paper reviews the recent studies on the restoration ability of eutrophic water bodies in lake aquatic-terrestrial ecotones in recent years regarding three aspects: the establishment, restoration mechanism, and improvement of restoration function. In addition, ecological factors such as lakeshore height, water level, surface runoff, shallow groundwater level, and rainfall intensity have impacts on the restoration capacity of lake aquatic-terrestrial ecotones.
Collapse
Affiliation(s)
- Tingting Dai
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650091, China
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Rui Liu
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Xingxing Zhou
- Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| | - Jing Zhang
- International School of Shenyang Jianzhu University, Shenyang 110168, China
| | - Mengting Song
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066064, China
| | - Ping Zou
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Xiaoyi Bi
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| | - Shuibing Li
- School of Ecology and Environmental Science, Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Li N, Liang XR, Zhou SD, Dang LH, Li J, An GS, Ren K, Jin QQ, Liang XH, Cao J, Du QX, Wang YY, Sun JH. Exploring postmortem succession of rat intestinal microbiome for PMI based on machine learning algorithms and potential use for humans. Forensic Sci Int Genet 2023; 66:102904. [PMID: 37307769 DOI: 10.1016/j.fsigen.2023.102904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The microbial communities may undergo a meaningful successional change during the progress of decay and decomposition that could aid in determining the post-mortem interval (PMI). However, there are still challenges to applying microbiome-based evidence in law enforcement practice. In this study, we attempted to investigate the principles governing microbial community succession during decomposition of rat and human corpse, and explore their potential use for PMI of human cadavers. A controlled experiment was conducted to characterize temporal changes in microbial communities associated with rat corpses as they decomposed for 30 days. Obvious differences of microbial community structures were observed among different stages of decomposition, especially between decomposition of 0-7d and 9-30d. Thus, a two-layer model for PMI prediction was developed based on the succession of bacteria by combining classification and regression models using machine learning algorithms. Our results achieved 90.48% accuracy for discriminating groups of PMI 0-7d and 9-30d, and yielded a mean absolute error of 0.580d within 7d decomposition and 3.165d within 9-30d decomposition. Furthermore, samples from human cadavers were collected to gain the common succession of microbial community between rats and humans. Based on the 44 shared genera of rats and humans, a two-layer model of PMI was rebuilt to be applied for PMI prediction of human cadavers. Accurate estimates indicated a reproducible succession of gut microbes across rats and humans. Together these results suggest that microbial succession was predictable and can be developed into a forensic tool for estimating PMI.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Shi-Dong Zhou
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jian Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Guo-Shuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Ying-Yuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China.
| |
Collapse
|
6
|
Guo X, Gu L, Luo Y, Wang S, Luo H, Song F. A bibliometric analysis of microbial forensics from 1984 to 2022: progress and research trends. Front Microbiol 2023; 14:1186372. [PMID: 37260676 PMCID: PMC10227522 DOI: 10.3389/fmicb.2023.1186372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Microbial forensics is a rapidly evolving discipline that has gained significant momentum in recent years. The study evaluated relevant results over the last four decades from 1984 to 2022 all over the world, aiming to analyze the growing trends and research orientations of microbial forensics. Using "microbial forensics" as the search topic in the Web of Science Core Collection, the systematic retrieval identified 579 documents relevant to the field and draw many statistical tables and maps to make the retrieval results visible. According to further bibliometric analysis, there are an increasing number of publications related to microbial forensics from the overall trend, with the highest number of publications recorded in 2021. In terms of the total number of articles, the USA and China were both the leading contributors to the field among 40 countries. The field has developed rapidly in recent years based on the development of next-generation sequencing. Over the course of its development, there are rich keywords in the research of scholars, which focus on diversity and identification. Moreover, despite the early hot topic being PCR (the use of PCR to probe microorganisms), in recent years, the topics, markers, and the potential application of microorganisms in forensic practice have become hot, which also indicates the future research directions of microbial forensic.
Collapse
|
7
|
Kanzaki N, Ikeda Y, Shinya R. Onthodiplogaster japonica n. gen., n. sp. (Rhabditida: Diplogastridae) isolated from Onthophagus sp. (Coleoptera: Scarabaeidae) from Japan. Sci Rep 2023; 13:6470. [PMID: 37081071 PMCID: PMC10119125 DOI: 10.1038/s41598-023-33586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/15/2023] [Indexed: 04/22/2023] Open
Abstract
A diplogastrid nematode was isolated from a dung beetle, Onthophagus sp., collected from a rotten mushroom in Kyoto, Japan. The species is characterised by its cheilostomatal shape, separated into 12 narrow plates (rugae), deep stegostom, large ellipsoidal amphids, conical female tail and characteristic receptaculum seminis in the female. Based on its phylogenetic status and stomatal composition, the species is typologically similar to two other diplogastrid genera, Neodiplogaster and Mononchoides. The species can be distinguished from these two genera by the size and shape of the amphid (small pore in Neodiplogaster), female tail shape (long and filiform in Mononchoides) and presence of receptaculum seminis (absence in the two nominal genera), and is described as a monotypic member of a new genus, Onthodiplogaster japonica n. gen., n. sp. Observation of feeding behaviour suggested that O. japonica n. gen., n. sp. does not show clear stomatal dimorphism or polymorphism, which is found in its close relatives, but the species can feed on nematodes (predation), fungi and bacteria. This monomorphic omnivory possibly represents its habitat of dung and other rotten materials, where the environment is biologically divergent, and its condition changes rapidly.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto, 612-0855, Japan.
| | - Yuya Ikeda
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Ryoji Shinya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
8
|
Mason AR, Taylor LS, DeBruyn JM. Microbial ecology of vertebrate decomposition in terrestrial ecosystems. FEMS Microbiol Ecol 2023; 99:6985004. [PMID: 36631293 DOI: 10.1093/femsec/fiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Vertebrate decomposition results in an ephemeral disturbance of the surrounding environment. Microbial decomposers are recognized as key players in the breakdown of complex organic compounds, controlling carbon and nutrient fate in the ecosystem and potentially serving as indicators of time since death for forensic applications. As a result, there has been increasing attention on documenting the microbial communities associated with vertebrate decomposition, or the 'necrobiome'. These necrobiome studies differ in the vertebrate species, microhabitats (e.g. skin vs. soil), and geographic locations studied, but many are narrowly focused on the forensic application of microbial data, missing the larger opportunity to understand the ecology of these communities. To further our understanding of microbial dynamics during vertebrate decomposition and identify knowledge gaps, there is a need to assess the current works from an ecological systems perspective. In this review, we examine recent work pertaining to microbial community dynamics and succession during vertebrate (human and other mammals) decomposition in terrestrial ecosystems, through the lens of a microbial succession ecological framework. From this perspective, we describe three major microbial microhabitats (internal, external, and soil) in terms of their unique successional trajectories and identify three major knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Allison R Mason
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Lois S Taylor
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|