1
|
Wu X, Peng J, Malik AA, Peng Z, Luo Y, Fan F, Lu Y, Wei G, Delgado-Baquerizo M, Liesack W, Jiao S. A Global Relationship Between Genome Size and Encoded Carbon Metabolic Strategies of Soil Bacteria. Ecol Lett 2025; 28:e70064. [PMID: 39824780 DOI: 10.1111/ele.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Microbial traits are critical for carbon sequestration and degradation in terrestrial ecosystems. Yet, our understanding of the relationship between carbon metabolic strategies and genomic traits like genome size remains limited. To address this knowledge gap, we conducted a global-scale meta-analysis of 2650 genomes, integrated whole-genome sequencing data, and performed a continental-scale metagenomic field study. We found that genome size was tightly associated with an increase in the ratio between genes encoding for polysaccharide decomposition and biomass synthesis that we defined as the carbon acquisition-to-biomass yield ratio (A/Y). We also show that horizontal gene transfer played a major evolutionary role in the expanded bacterial capacities in carbon acquisition. Our continental-scale field study further revealed a significantly negative relationship between the A/Y ratio and soil organic carbon stocks. Our work demonstrates a global relationship between genome size and the encoded carbon metabolic strategies of soil bacteria across terrestrial microbiomes.
Collapse
Affiliation(s)
- Xingjie Wu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | | | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Fenliang Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Finn DR. A metagenomic alpha-diversity index for microbial functional biodiversity. FEMS Microbiol Ecol 2024; 100:fiae019. [PMID: 38337180 PMCID: PMC10939414 DOI: 10.1093/femsec/fiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Alpha-diversity indices are an essential tool for describing and comparing biodiversity. Microbial ecologists apply indices originally intended for, or adopted by, macroecology to address questions relating to taxonomy (conserved marker) and function (metagenome-based data). In this Perspective piece, I begin by discussing the nature and mathematical quirks important for interpreting routinely employed alpha-diversity indices. Secondly, I propose a metagenomic alpha-diversity index (MD) that measures the (dis)similarity of protein-encoding genes within a community. MD has defined limits, whereby a community comprised mostly of similar, poorly diverse protein-encoding genes pulls the index to the lower limit, while a community rich in divergent homologs and unique genes drives it toward the upper limit. With data acquired from an in silico and three in situ metagenome studies, I derive MD and typical alpha-diversity indices applied to taxonomic (ribosomal rRNA) and functional (all protein-encoding) genes, and discuss their relationships with each other. Not all alpha-diversity indices detect biological trends, and taxonomic does not necessarily follow functional biodiversity. Throughout, I explain that protein Richness and MD provide complementary and easily interpreted information, while probability-based indices do not. Finally, considerations regarding the unique nature of microbial metagenomic data and its relevance for describing functional biodiversity are discussed.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
- Institut für Geoökologie, Technische Universität Braunschweig, Braunschweig 38106, Germany
| |
Collapse
|
3
|
Marschmann GL, Tang J, Zhalnina K, Karaoz U, Cho H, Le B, Pett-Ridge J, Brodie EL. Predictions of rhizosphere microbiome dynamics with a genome-informed and trait-based energy budget model. Nat Microbiol 2024; 9:421-433. [PMID: 38316928 PMCID: PMC10847045 DOI: 10.1038/s41564-023-01582-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.
Collapse
Affiliation(s)
- Gianna L Marschmann
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinyun Tang
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kateryna Zhalnina
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Heejung Cho
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Beatrice Le
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Baril X, Constant P. Carbon amendments in soil microcosms induce uneven response on H2 oxidation activity and microbial community composition. FEMS Microbiol Ecol 2023; 99:fiad159. [PMID: 38040657 PMCID: PMC10716739 DOI: 10.1093/femsec/fiad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
High-affinity H2-oxidizing bacteria (HA-HOB) thriving in soil are responsible for the most important sink of atmospheric H2. Their activity increases with soil organic carbon content, but the incidence of different carbohydrate fractions on the process has received little attention. Here we tested the hypothesis that carbon amendments impact HA-HOB activity and diversity differentially depending on their recalcitrance and their concentration. Carbon sources (sucrose, starch, cellulose) and application doses (0, 0.1, 1, 3, 5% Ceq soildw-1) were manipulated in soil microcosms. Only 0.1% Ceq soildw-1 cellulose treatment stimulated the HA-HOB activity. Sucrose amendments induced the most significant changes, with an abatement of 50% activity at 1% Ceq soildw-1. This was accompanied with a loss of bacterial and fungal alpha diversity and a reduction of high-affinity group 1 h/5 [NiFe]-hydrogenase gene (hhyL) abundance. A quantitative classification framework was elaborated to assign carbon preference traits to 16S rRNA gene, ITS and hhyL genotypes. The response was uneven at the taxonomic level, making carbon preference a difficult trait to predict. Overall, the results suggest that HA-HOB activity is more susceptible to be stimulated by low doses of recalcitrant carbon, while labile carbon-rich environment is an unfavorable niche for HA-HOB, inducing catabolic repression of hydrogenase.
Collapse
Affiliation(s)
- Xavier Baril
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Philippe Constant
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
5
|
Bittleston LS, Wolock CJ, Maeda J, Infante V, Ané JM, Pierce NE, Pringle A. Carnivorous Nepenthes Pitchers with Less Acidic Fluid House Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0081223. [PMID: 37338413 PMCID: PMC10370301 DOI: 10.1128/aem.00812-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.
Collapse
Affiliation(s)
- Leonora S. Bittleston
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charles J. Wolock
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Agronomy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Anne Pringle
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|