1
|
Lin C, Li LJ, Yang K, Xu JY, Fan XT, Chen QL, Zhu YG. Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance. THE ISME JOURNAL 2025; 19:wraf009. [PMID: 39869787 PMCID: PMC11845867 DOI: 10.1093/ismejo/wraf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes (ARGs). However, the effects of protozoan predation on ARGs dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of ARGs to soil microbial communities. Protozoan predation reduced the absolute abundance of plasmids but promoted the expression of conjugation-associated genes, leading to a 5-fold and 4.5-fold increase in conjugation frequency in the presence of C. steinii and A. castellanii, respectively. Excessive oxidative stress, increased membrane permeability, and the provoked SOS response closely associated with the increased conjugative transfer. Protozoan predation also altered the plasmid host range and selected for specific transconjugant taxa along with ARGs and virulence factors carried by transconjugant communities. This study underscores the role of protozoa in the plasmid-mediated conjugative transfer of ARGs, providing new insights into microbial mechanisms that drive the dissemination of environmental antibiotic resistance.
Collapse
Affiliation(s)
- Chenshuo Lin
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Li-Juan Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jia-Yang Xu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Dorado-Morales P, Lambérioux M, Mazel D. Unlocking the potential of microbiome editing: A review of conjugation-based delivery. Mol Microbiol 2024; 122:273-283. [PMID: 37658686 DOI: 10.1111/mmi.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
In recent decades, there has been a rapid increase in the prevalence of multidrug-resistant pathogens, posing a challenge to modern antibiotic-based medicine. This has highlighted the need for novel treatments that can specifically affect the target microorganism without disturbing other co-inhabiting species, thus preventing the development of dysbiosis in treated patients. Moreover, there is a pressing demand for tools to effectively manipulate complex microbial populations. One of the approaches suggested to address both issues was to use conjugation as a tool to modify the microbiome by either editing the genome of specific bacterial species and/or the removal of certain taxonomic groups. Conjugation involves the transfer of DNA from one bacterium to another, which opens up the possibility of introducing, modifying or deleting specific genes in the recipient. In response to this proposal, there has been a significant increase in the number of studies using this method for gene delivery in bacterial populations. This MicroReview aims to provide a detailed overview on the use of conjugation for microbiome engineering, and at the same time, to initiate a discussion on the potential, limitations and possible future directions of this approach.
Collapse
Affiliation(s)
- Pedro Dorado-Morales
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Morgan Lambérioux
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université de Paris, Unité Plasticité du Génome Bactérien, et CNRS, UMR3525, Paris, France
| |
Collapse
|
3
|
Risely A, Newbury A, Stalder T, Simmons BI, Top EM, Buckling A, Sanders D. Host- plasmid network structure in wastewater is linked to antimicrobial resistance genes. Nat Commun 2024; 15:555. [PMID: 38228585 PMCID: PMC10791616 DOI: 10.1038/s41467-024-44827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.
Collapse
Affiliation(s)
- Alice Risely
- School of Science, Engineering, and Environment, University of Salford, Salford, M5 4WT, UK
| | - Arthur Newbury
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Benno I Simmons
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Angus Buckling
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Dirk Sanders
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
4
|
Castañeda-Barba S, Top EM, Stalder T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 2024; 22:18-32. [PMID: 37430173 DOI: 10.1038/s41579-023-00926-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.
Collapse
Affiliation(s)
- Salvador Castañeda-Barba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
5
|
Tokuda M, Shintani M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb Biotechnol 2024; 17:e14408. [PMID: 38226780 PMCID: PMC10832538 DOI: 10.1111/1751-7915.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Mobile genetic elements (MGEs) are crucial for horizontal gene transfer (HGT) in bacteria and facilitate their rapid evolution and adaptation. MGEs include plasmids, integrative and conjugative elements, transposons, insertion sequences and bacteriophages. Notably, the spread of antimicrobial resistance genes (ARGs), which poses a serious threat to public health, is primarily attributable to HGT through MGEs. This mini-review aims to provide an overview of the mechanisms by which MGEs mediate HGT in microbes. Specifically, the behaviour of conjugative plasmids in different environments and conditions was discussed, and recent methodologies for tracing the dynamics of MGEs were summarised. A comprehensive understanding of the mechanisms underlying HGT and the role of MGEs in bacterial evolution and adaptation is important to develop strategies to combat the spread of ARGs.
Collapse
Affiliation(s)
- Maho Tokuda
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
| | - Masaki Shintani
- Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan
- Research Institute of Green Science and TechnologyShizuoka UniversityHamamatsuJapan
- Japan Collection of MicroorganismsRIKEN BioResource Research CenterIbarakiJapan
- Graduate School of Integrated Science and TechnologyShizuoka UniversityHamamatsuJapan
| |
Collapse
|
6
|
Alonso-del Valle A, Toribio-Celestino L, Quirant A, Pi CT, DelaFuente J, Canton R, Rocha EPC, Ubeda C, Peña-Miller R, San Millan A. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc Natl Acad Sci U S A 2023; 120:e2314135120. [PMID: 38096417 PMCID: PMC10741383 DOI: 10.1073/pnas.2314135120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Conjugative plasmids play a key role in the dissemination of antimicrobial resistance (AMR) genes across bacterial pathogens. AMR plasmids are widespread in clinical settings, but their distribution is not random, and certain associations between plasmids and bacterial clones are particularly successful. For example, the globally spread carbapenem resistance plasmid pOXA-48 can use a wide range of enterobacterial species as hosts, but it is usually associated with a small number of specific Klebsiella pneumoniae clones. These successful associations represent an important threat for hospitalized patients. However, knowledge remains limited about the factors determining AMR plasmid distribution in clinically relevant bacteria. Here, we combined in vitro and in vivo experimental approaches to analyze pOXA-48-associated AMR levels and conjugation dynamics in a collection of wild-type enterobacterial strains isolated from hospitalized patients. Our results revealed significant variability in these traits across different bacterial hosts, with Klebsiella spp. strains showing higher pOXA-48-mediated AMR and conjugation frequencies than Escherichia coli strains. Using experimentally determined parameters, we developed a simple mathematical model to interrogate the contribution of AMR levels and conjugation permissiveness to plasmid distribution in bacterial communities. The simulations revealed that a small subset of clones, combining high AMR levels and conjugation permissiveness, play a critical role in stabilizing the plasmid in different polyclonal microbial communities. These results help to explain the preferential association of plasmid pOXA-48 with K. pneumoniae clones in clinical settings. More generally, our study reveals that species- and strain-specific variability in plasmid-associated phenotypes shape AMR evolution in clinically relevant bacterial communities.
Collapse
Affiliation(s)
- Aida Alonso-del Valle
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Laura Toribio-Celestino
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Anna Quirant
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
| | - Carles Tardio Pi
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica Yucatán, Universidad Nacional Autónoma de México, Yucatán04510, México
| | - Javier DelaFuente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid28034, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris75015, France
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia46020, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Rafael Peña-Miller
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca62209, México
| | - Alvaro San Millan
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid28049, Spain
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid28029, Spain
| |
Collapse
|
7
|
Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, Lee MD, Maurer JJ. Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics (Basel) 2023; 12:1006. [PMID: 37370325 DOI: 10.3390/antibiotics12061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Animal manures contain a large and diverse reservoir of antimicrobial resistance (AMR) genes that could potentially spillover into the general population through transfer of AMR to antibiotic-susceptible pathogens. The ability of poultry litter microbiota to transmit AMR was examined in this study. Abundance of phenotypic AMR was assessed for litter microbiota to the antibiotics: ampicillin (Ap; 25 μg/mL), chloramphenicol (Cm; 25 μg/mL), streptomycin (Sm; 100 μg/mL), and tetracycline (Tc; 25 μg/mL). qPCR was used to estimate gene load of streptomycin-resistance and sulfonamide-resistance genes aadA1 and sul1, respectively, in the poultry litter community. AMR gene load was determined relative to total bacterial abundance using 16S rRNA qPCR. Poultry litter contained 108 CFU/g, with Gram-negative enterics representing a minor population (<104 CFU/g). There was high abundance of resistance to Sm (106 to 107 CFU/g) and Tc (106 to 107 CFU/g) and a sizeable antimicrobial-resistance gene load in regards to gene copies per bacterial genome (aadA1: 0.0001-0.0060 and sul1: 0.0355-0.2455). While plasmid transfer was observed from Escherichia coli R100, as an F-plasmid donor control, to the Salmonella recipient in vitro, no AMR Salmonella were detected in a poultry litter microcosm with the inclusion of E. coli R100. Confirmatory experiments showed that isolated poultry litter bacteria were not interfering with plasmid transfer in filter matings. As no R100 transfer was observed at 25 °C, conjugative plasmid pRSA was chosen for its high plasmid transfer frequency (10-4 to 10-5) at 25 °C. While E. coli strain background influenced the persistence of pRSA in poultry litter, no plasmid transfer to Salmonella was ever observed. Although poultry litter microbiota contains a significant AMR gene load, potential to transmit resistance is low under conditions commonly used to assess plasmid conjugation.
Collapse
Affiliation(s)
- Aaron Oxendine
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Allison A Walsh
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Tamesha Young
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Brandan Dixon
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Alexa Hoke
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Eda Erdogan Rogers
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Margie D Lee
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John J Maurer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
8
|
Wang S, Li S, Du D, Abass OK, Nasir MS, Yan W. Stimulants and donors promote megaplasmid pND6-2 horizontal gene transfer in activated sludge. J Environ Sci (China) 2023; 126:742-753. [PMID: 36503799 DOI: 10.1016/j.jes.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/17/2023]
Abstract
The activated sludge process is characterized by high microbial density and diversity, both of which facilitate antibiotic resistance gene transfer. Many studies have suggested that antibiotic and non-antibiotic drugs at sub-inhibitory concentrations are major inducers of conjugative gene transfer. The self-transmissible plasmid pND6-2 is one of the endogenous plasmids harbored in Pseudomonas putida ND6, which can trigger the transfer of another co-occurring naphthalene-degrading plasmid pND6-1. Therefore, to illustrate the potential influence of stimulants on conjugative transfer of pND6-2, we evaluated the effects of four antibiotics (ampicillin, gentamycin, kanamycin, and tetracycline) and naphthalene, on the conjugal transfer efficiency of pND6-2 by filter-mating experiment. Our findings demonstrated that all stimulants within an optimal dose promoted conjugative transfer of pND6-2 from Pseudomonas putida GKND6 to P. putida KT2440, with tetracycline being the most effective (100 µg/L and 10 µg/L), as it enhanced pND6-2-mediated intra-genera transfer by approximately one hundred-fold. Subsequently, seven AS reactors were constructed with the addition of donors and different stimulants to further elucidate the conjugative behavior of pND6-2 in natural environment. The stimulants positively affected the conjugal process of pND6-2, while donors reshaped the host abundance in the sludge. This was likely because stimulant addition enhanced the expression levels of conjugation transfer-related genes. Furthermore, Blastocatella and Chitinimonas were identified as the potential receptors of plasmid pND6-2, which was not affected by donor types. These findings demonstrate the positive role of sub-inhibitory stimulant treatment on pND6-2 conjugal transfer and the function of donors in re-shaping the host spectrum of pND6-2.
Collapse
Affiliation(s)
- Shan Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Du
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| | - Olusegun K Abass
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China; Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad 38040, Pakistan
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Bottery MJ. Ecological dynamics of plasmid transfer and persistence in microbial communities. Curr Opin Microbiol 2022; 68:102152. [PMID: 35504055 PMCID: PMC9586876 DOI: 10.1016/j.mib.2022.102152] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Plasmids are a major driver of horizontal gene transfer in prokaryotes, allowing the sharing of ecologically important accessory traits between distantly related bacterial taxa. Within microbial communities, interspecies transfer of conjugative plasmids can rapidly drive the generation genomic innovation and diversification. Recent studies are starting to shed light on how the microbial community context, that is, the bacterial diversity together with interspecies interactions that occur within a community, can alter the dynamics of conjugative plasmid transfer and persistence. Here, I summarise the latest research exploring how community ecology can both facilitate and impose barriers to the spread of conjugative plasmids within complex microbial communities. Ultimately, the fate of plasmids within communities is unlikely to be determined by any one individual host, rather it will depend on the interacting factors imposed by the community in which it is embedded.
Collapse
Affiliation(s)
- Michael J Bottery
- Division of Evolution Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
10
|
Ye C, Feng M, Chen Y, Zhang Y, Chen Q, Yu X. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: A lagging response. WATER RESEARCH 2022; 221:118798. [PMID: 35779456 DOI: 10.1016/j.watres.2022.118798] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Disinfection is known to greatly alter bacterial characteristics in water, and high horizontal gene transfer (HGT) frequency occurs in eutrophic conditions. Interestingly, these two seemingly irrelevant phenomena were closely linked by a lagging response of the increased conjugation frequency probably via daily water disinfection in this study. Three disinfection methods (UV, chlorine, and UV/chlorine) were selected to investigate the increased frequency of conjugation of ARGs during the stage of continuing culture after disinfection. The results showed that the conjugative transfer frequency was inhibited for all disinfection treatments after 24 h of co-incubation. Unexpectedly, after 3-7 days of co-cultivation, the HGT frequencies were increased by 2.71-5.61-fold and 5.46-13.96-fold in chlorine (30 min) and UV/chlorine (1 min) groups compared to the control, but not in UV-irradiated groups. A neglected lagging response was found for the first time, i.e., oxidative disinfection-induced dormancy promotes conjugative transfer of ARGs. Furthermore, mechanistic insights were gained from (1) membrane permeability, (2) conjugation-regulated system, (3) efflux pump system, and (4) oxidative stress system, suggesting the critical role of enhancing efflux and oxidative stress in the propagation of ARGs. Finally, the known instantaneous effect of oxidation disinfection was compared to address the controversial debate in this research field, proposing that the dormancy level of donor bacteria is the key to evaluating whether it can promote the HGT process. This study has important environmental implications for elucidating the transmission of ARGs after oxidation disinfection.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Yuqi Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
11
|
Newbury A, Dawson B, Klümper U, Hesse E, Castledine M, Fontaine C, Buckling A, Sanders D. Fitness effects of plasmids shape the structure of bacteria-plasmid interaction networks. Proc Natl Acad Sci U S A 2022; 119:e2118361119. [PMID: 35613058 PMCID: PMC9295774 DOI: 10.1073/pnas.2118361119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids, and the spread of AMR within microbial communities will therefore depend on the structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological interaction networks suggest that network structure differs between communities that are predominantly mutualistic versus antagonistic, with the former showing more generalized interactions (i.e., species interact with many others to a similar extent). This suggests that mutualistic bacteria–plasmid networks—where antibiotics are present and plasmids carry AMR genes—will be more generalized than antagonistic interactions, where plasmids do not confer benefits to their hosts. We first develop a simple theory to explain this link: fitness benefits of harboring a mutualistic symbiont promote the spread of the symbiont to other species. We find support for this theory using an experimental bacteria–symbiont (plasmid) community, where the same plasmid can be mutualistic or antagonistic depending on the presence of antibiotics. This short-term and parsimonious mechanism complements a longer-term mechanism (coevolution and stability) explaining the link between mutualistic and antagonistic interactions and network structure.
Collapse
Affiliation(s)
- Arthur Newbury
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Beth Dawson
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Uli Klümper
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Institute for Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Colin Fontaine
- Centre d’écologie et des Sciences de la Conservation, CESCO, UMR7204, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 75005 Paris, France
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|