1
|
Bornbusch SL, Crosier A, Gentry L, Delaski KM, Maslanka M, Muletz-Wolz CR. Fecal microbiota transplants facilitate post-antibiotic recovery of gut microbiota in cheetahs (Acinonyx jubatus). Commun Biol 2024; 7:1689. [PMID: 39715825 DOI: 10.1038/s42003-024-07361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Burgeoning study of host-associated microbiomes has accelerated the development of microbial therapies, including fecal microbiota transplants (FMTs). FMTs provide host-specific microbial supplementation, with applicability across host species. Studying FMTs can simultaneously provide comparative frameworks for understanding microbial therapies in diverse microbial systems and improve the health of managed wildlife. Ex-situ carnivores, including cheetahs (Acinonyx jubatus), often suffer from intractable gut infections similar to those treated with antibiotics and FMTs in humans, providing a valuable system for testing FMT efficacy. Using an experimental approach in 21 cheetahs, we tested whether autologous FMTs facilitated post-antibiotic recovery of gut microbiota. We used 16S rRNA sequencing and microbial source tracking to characterize antibiotic-induced microbial extirpations and signatures of FMT engraftment for single versus multiple FMTs. We found that antibiotics extirpated abundant bacteria and FMTs quickened post-antibiotic recovery via engraftment of bacteria that may facilitate protein digestion and butyrate production (Fusobacterium). Although multiple FMTs better sustained microbial recovery compared to a single FMT, one FMT improved recovery compared to antibiotics alone. This study elucidated the dynamics of microbiome modulation in a non-model system and improves foundations for reproducible, low-cost, low-dose, and minimally invasive FMT protocols, emphasizing the scientific and applied value of FMTs across species.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA.
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA.
| | - Adrienne Crosier
- Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Lindsey Gentry
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Kristina M Delaski
- Department of Conservation Medicine, Smithsonian's National Zoo and Conservation Biology Institution, Front Royal, VA, 22630, USA
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institution, Washington, DC, 20008, USA
| |
Collapse
|
2
|
Villalba JJ, Ramsey RD, Athanasiadou S. Review: Herbivory and the power of phytochemical diversity on animal health. Animal 2024:101287. [PMID: 39271413 DOI: 10.1016/j.animal.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plant secondary compounds (PSCs) were thought to be waste products of plant metabolism when first identified in the mid-1800 s. Since then, many different roles have been recognized for these chemicals. With regard to their function as defense, PSCs can negatively impact different cellular and metabolic processes in the herbivore, causing illness and reductions in feed intake. This penalty on fitness also applies to other trophic levels, like the microorganisms and parasites that infect herbivores and thus, PSCs at certain doses may function as medicines. In turn, herbivores evolved learning mechanisms to cope with the constant variability in their environment and physiological needs. Under this context, foraging can be viewed as the quest for substances in the external environment that provide homeostatic utility to the animal. For instance, herbivores increase preference for PSC-containing feeds that negatively impact infectious agents (i.e., therapeutic self-medication). Given that some classes of PSCs like polyphenols present antioxidant, antiinflammatory, immunomodulatory and prebiotic properties, chronic and sustained consumption of these chemicals results in robust animals that are tolerant to disease (i.e., prophylactic self-medication). Foraging plasticity in terms of the quality and quantity of nutrients ingested in the absence and during sickness may also influence immunocompetence, resistance and resilience to infection, and thus can be interpreted as another form of medication. Finally, self-medicative behaviors can be transmitted through social learning. We suggest that foraging studies will benefit from exploring self-medicative behaviors in chemically diverse plant communities, in particular when considering the vast diversity of PSC structures (more than 200 000) observed in nature. We then lay out a framework for enhancing the medicinal effects of PSCs on grazing herbivores. We propose landscape interventions through the establishment of resource patches or "islands" with a diversity of PSC-containing forages (e.g., legumes, herbs, shrubs) in monotonous rangelands or pasturelands, viewed as a "sea" of low-diversity vegetation devoid of functional biochemicals. Strategies aimed at enhancing the diversity of plant communities lead to heterogeneity in chemical, structural and functional landscape traits that offer options to foragers, and thus allow for balanced diets that maintain and restore health. Beyond animal health, such heterogeneity promotes a broad array of ecosystem services that significantly improve landscape resilience to environmental disturbances.
Collapse
Affiliation(s)
- J J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA.
| | - R D Ramsey
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin Institute, EH25 9RG Midlothian, UK
| |
Collapse
|
3
|
Stapleton TE, Lindsey LM, Sundar H, Dearing MD. Rodents consuming the same toxic diet harbor a unique functional core microbiome. Anim Microbiome 2024; 6:43. [PMID: 39080711 PMCID: PMC11289948 DOI: 10.1186/s42523-024-00330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.
Collapse
Affiliation(s)
- Tess E Stapleton
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - LeAnn M Lindsey
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - Hari Sundar
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
4
|
Klure DM, Dearing MD. Seasonal restructuring facilitates compositional convergence of gut microbiota in free-ranging rodents. FEMS Microbiol Ecol 2023; 99:fiad127. [PMID: 37838471 PMCID: PMC10622585 DOI: 10.1093/femsec/fiad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite advances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.) across a hybrid zone in the Mojave Desert, USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities were individualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of gut microbiota was highest amongst bacterial subspecies and was much lower at the rank of Family, suggesting there may be selection for conservation of core microbial functions in the woodrat gut. Lastly, we identified an abundant core gut bacterial community that may aid woodrats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut microbial communities of woodrats are highly dynamic and experience seasonal restructuring which may facilitate adaptive plasticity in response to changes in diet.
Collapse
Affiliation(s)
- Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| |
Collapse
|
5
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Dearing MD, Kaltenpoth M, Gershenzon J. Demonstrating the role of symbionts in mediating detoxification in herbivores. Symbiosis 2022; 87:59-66. [PMID: 36164313 PMCID: PMC9499882 DOI: 10.1007/s13199-022-00863-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
AbstractPlant toxins constitute an effective defense against herbivorous animals. However, many herbivores have evolved adaptations to cope with dietary toxins through detoxification, excretion, sequestration, target site insensitivity and/or via behavioral avoidance. While these adaptations are often directly encoded in herbivore genomes, evidence is accumulating that microbial symbionts can reduce the dose of plant toxins by metabolizing or sequestering them prior to absorption by the herbivore. Here, we describe a few well-studied examples to assess such symbiont-mediated detoxification and showcase different approaches that have been used for their analyses. These include: (i) a host phenotypic route in which the symbiotic association is manipulated to reveal host fitness costs upon toxin exposure in the presence/absence of detoxifying symbionts, including function restoration after symbiont re-infection, (ii) a molecular microbiological approach that focuses on the identification and characterization of microbial genes involved in plant toxin metabolism, and (iii) an analytical chemical route that aims to characterize the conversion of the toxin to less harmful metabolites in vivo and link conversion to the activities of a detoxifying symbiont. The advantages and challenges of each approach are discussed, and it is argued that a multi-pronged strategy combining phenotypic, molecular, and chemical evidence is needed to unambiguously demonstrate microbial contributions to plant toxin reduction and the importance of these processes for host fitness. Given the interdisciplinary nature of the topic, we aim to provide a guideline to researchers interested in symbiont-mediated detoxification and hope to encourage future studies that contribute to a more comprehensive and mechanistic understanding of detoxification in herbivores and their symbionts.
Collapse
Affiliation(s)
- M. Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|