1
|
Li Q, Yu H, Yuan P, Liu R, Jing Z, Wei Y, Tu S, Gao H, Song Y. Mitigated N 2O emissions from submerged-plant-covered aquatic ecosystems on the Changjiang River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172592. [PMID: 38642768 DOI: 10.1016/j.scitotenv.2024.172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.
Collapse
Affiliation(s)
- Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
2
|
Govednik A, Eler K, Mihelič R, Suhadolc M. Mineral and organic fertilisation influence ammonia oxidisers and denitrifiers and nitrous oxide emissions in a long-term tillage experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172054. [PMID: 38569950 DOI: 10.1016/j.scitotenv.2024.172054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Nitrous oxide (N2O) emissions from different agricultural systems have been studied extensively to understand the mechanisms underlying their formation. While a number of long-term field experiments have focused on individual agricultural practices in relation to N2O emissions, studies on the combined effects of multiple practices are lacking. This study evaluated the effect of different tillage [no-till (NT) vs. conventional plough tillage (CT)] in combination with fertilisation [mineral (MIN), compost (ORG), and unfertilised control (CON)] on seasonal N2O emissions and the underlying N-cycling microbial community in one maize growing season. Rainfall events after fertilisation, which resulted in increased soil water content, were the main triggers of the observed N2O emission peaks. The highest cumulative emissions were measured in MIN fertilisation, followed by ORG and CON fertilisation. In the period after the first fertilisation CT resulted in higher cumulative emissions than NT, while no significant effect of tillage was observed cumulatively across the entire season. A higher genetic potential for N2O emissions was observed under NT than CT, as indicated by an increased (nirK + nirS)/(nosZI + nosZII) ratio. The mentioned ratio under NT decreased in the order CON > MIN > ORG, indicating a higher N2O consumption potential in the NT-ORG treatment, which was confirmed in terms of cumulative emissions. The AOB/16S ratio was strongly affected by fertilisation and was higher in the MIN than in the ORG and CON treatments, regardless of the tillage system. Multiple regression has revealed that this ratio is one of the most important variables explaining cumulative N2O emissions, possibly reflecting the role of bacterial ammonia oxidisers in minerally fertilised soil. Although the AOB/16S ratio aligned well with the measured N2O emissions in our experimental field, the higher genetic potential for denitrification expressed by the (nirK + nirS)/(nosZI + nosZII) ratio in NT than CT was not realized in the form of increased emissions. Our results suggest that organic fertilisation in combination with NT shows a promising combination for mitigating N2O emissions; however, addressing the yield gap is necessary before incorporating it in recommendations for farmers.
Collapse
Affiliation(s)
- Anton Govednik
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Klemen Eler
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rok Mihelič
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Marjetka Suhadolc
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zhang S, Xia X, Yu L, Liu S, Li X, Wang J, Zheng Y, Han L, Tan Q, Yang Z. Biogeography and impact of nitrous oxide reducers in rivers across a broad environmental gradient on emission rates. Environ Microbiol 2024; 26:e16622. [PMID: 38757466 DOI: 10.1111/1462-2920.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Leilei Yu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qian Tan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
4
|
Yang X, Duan P, Cao Y, Wang K, Li D. Mechanisms of mitigating nitrous oxide emission during composting by biochar and calcium carbonate addition. BIORESOURCE TECHNOLOGY 2023; 388:129772. [PMID: 37734484 DOI: 10.1016/j.biortech.2023.129772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
To investigate the mechanisms underlying effects of biochar and calcium carbonate (CaCO3) addition on nitrous oxide (N2O) emissions during composting, this paper conducted a systematic study on mineral nitrogen (N), dissolved organic carbon (C) and N, sources of N2O, and functional genes. Biochar and CaCO3 addition decreased N2O emissions by 26.5-47.8% (9.5-96.9 mg N kg-1 dw) and 13.9-37.4% (12.0-121.0 mg N kg-1 dw) compared to the control (14.3-179.7 mg N kg-1 dw), respectively. The mitigation of N2O emission was caused by decreased contribution of ammonia-oxidizing bacteria (AOB) and fungi to N2O production due to diminished AOB amoA, fungal nirK and P450 gene abundances, or by stimulated N2O reduction to N2 owing to increased abundances of nosZⅠ and nosZⅠⅠ genes under biochar and CaCO3 addition. The findings suggest that the addition of biochar or CaCO3 is effective in mitigating N2O emission during composting.
Collapse
Affiliation(s)
- Xinyi Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|