1
|
Pushkareva E, Elster J, Kudoh S, Imura S, Becker B. Microbial community composition of terrestrial habitats in East Antarctica with a focus on microphototrophs. Front Microbiol 2024; 14:1323148. [PMID: 38249463 PMCID: PMC10797080 DOI: 10.3389/fmicb.2023.1323148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
The Antarctic terrestrial environment harbors a diverse community of microorganisms, which have adapted to the extreme conditions. The aim of this study was to describe the composition of microbial communities in a diverse range of terrestrial environments (various biocrusts and soils, sands from ephemeral wetlands, biofilms, endolithic and hypolithic communities) in East Antarctica using both molecular and morphological approaches. Amplicon sequencing of the 16S rRNA gene revealed the dominance of Chloroflexi, Cyanobacteria and Firmicutes, while sequencing of the 18S rRNA gene showed the prevalence of Alveolata, Chloroplastida, Metazoa, and Rhizaria. This study also provided a comprehensive assessment of the microphototrophic community revealing a diversity of cyanobacteria and eukaryotic microalgae in various Antarctic terrestrial samples. Filamentous cyanobacteria belonging to the orders Oscillatoriales and Pseudanabaenales dominated prokaryotic community, while members of Trebouxiophyceae were the most abundant representatives of eukaryotes. In addition, the co-occurrence analysis showed a prevalence of positive correlations with bacterial taxa frequently co-occurring together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czechia
- Centre for Polar Ecology, University of South Bohemia, České Budějovice, Czechia
| | - Sakae Kudoh
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Satoshi Imura
- Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Japan
- National Institute of Polar Research, Research Organization of Information and Systems, Tachikawa, Japan
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Canini F, Borruso L, Newsham KK, D'Alò F, D'Acqui LP, Zucconi L. Wide divergence of fungal communities inhabiting rocks and soils in a hyper-arid Antarctic desert. Environ Microbiol 2023; 25:3671-3682. [PMID: 37964667 DOI: 10.1111/1462-2920.16534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Highly simplified microbial communities colonise rocks and soils of continental Antarctica ice-free deserts. These two habitats impose different selection pressures on organisms, yet the possible filtering effects on the diversity and composition of microbial communities have not hitherto been fully characterised. We hence compared fungal communities in rocks and soils in three localities of inner Victoria Land. We found low fungal diversity in both substrates, with a mean species richness of 28 across all samples, and significantly lower diversity in rocks than in soils. Rock and soil communities were strongly differentiated, with a multinomial species classification method identifying just three out of 328 taxa as generalists with no affinity for either substrate. Rocks were characterised by a higher abundance of lichen-forming fungi (typically Buellia, Carbonea, Pleopsidium, Lecanora, and Lecidea), possibly owing to the more protected environment and the porosity of rocks permitting photosynthetic activity. In contrast, soils were dominated by obligate yeasts (typically Naganishia and Meyerozyma), the abundances of which were correlated with edaphic factors, and the black yeast Cryomyces. Our study suggests that strong differences in selection pressures may account for the wide divergences of fungal communities in rocks and soils of inner Victoria Land.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen, Bozen-Bolzano, Italy
| | - Kevin K Newsham
- British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Cambridge, UK
| | - Federica D'Alò
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Porano (TR), Italy
| | - Luigi P D'Acqui
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Terrestrial Ecosystems Research Institute (IRET), National Research Council (CNR), Sesto Fiorentino (FI), Italy
| |
Collapse
|
3
|
Tytgat B, Verleyen E, Sweetlove M, Van den Berge K, Pinseel E, Hodgson DA, Chown SL, Sabbe K, Wilmotte A, Willems A, The Polar Lake Sampling Consortium, Vyverman W. Polar lake microbiomes have distinct evolutionary histories. SCIENCE ADVANCES 2023; 9:eade7130. [PMID: 37976353 PMCID: PMC10656066 DOI: 10.1126/sciadv.ade7130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.
Collapse
Affiliation(s)
- Bjorn Tytgat
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Eveline Pinseel
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Dominic A. Hodgson
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Department of Geography, Durham University, Durham, UK
| | - Steven L. Chown
- Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Annick Wilmotte
- InBio-Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Ghent University, Gent, Belgium
| | | | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|
4
|
Doytchinov VV, Dimov SG. Microbial Community Composition of the Antarctic Ecosystems: Review of the Bacteria, Fungi, and Archaea Identified through an NGS-Based Metagenomics Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060916. [PMID: 35743947 PMCID: PMC9228076 DOI: 10.3390/life12060916] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antarctica represents a unique environment, both due to the extreme meteorological and geological conditions that govern it and the relative isolation from human influences that have kept its environment largely undisturbed. However, recent trends in climate change dictate an unavoidable change in the global biodiversity as a whole, and pristine environments, such as Antarctica, allow us to study and monitor more closely the effects of the human impact. Additionally, due to its inaccessibility, Antarctica contains a plethora of yet uncultured and unidentified microorganisms with great potential for useful biological activities and production of metabolites, such as novel antibiotics, proteins, pigments, etc. In recent years, amplicon-based next-generation sequencing (NGS) has allowed for a fast and thorough examination of microbial communities to accelerate the efforts of unknown species identification. For these reasons, in this review, we present an overview of the archaea, bacteria, and fungi present on the Antarctic continent and the surrounding area (maritime Antarctica, sub-Antarctica, Southern Sea, etc.) that have recently been identified using amplicon-based NGS methods.
Collapse
|
5
|
Mezzasoma A, Coleine C, Sannino C, Selbmann L. Endolithic Bacterial Diversity in Lichen-Dominated Communities Is Shaped by Sun Exposure in McMurdo Dry Valleys, Antarctica. MICROBIAL ECOLOGY 2022; 83:328-339. [PMID: 34081148 PMCID: PMC8891110 DOI: 10.1007/s00248-021-01769-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The diversity and composition of endolithic bacterial diversity of several locations in McMurdo Dry Valleys (Continental Antarctica) were explored using amplicon sequencing, targeting the V3 and V4 of the 16S region. Despite the increasing interest in edaphic factors that drive bacterial community composition in Antarctic rocky communities, few researchers focused attention on the direct effects of sun exposure on bacterial diversity; we herein reported significant differences in the northern and southern communities. The analysis of β-diversity showed significant differences among sampled localities. For instance, the most abundant genera found in the north-exposed rocks were Rhodococcus and Blastococcus in Knobhead Mt.; Ktedonobacter and Cyanobacteria Family I Group I in Finger Mt.; Rhodococcus and Endobacter in University Valley; and Segetibacter and Tetrasphaera in Siegfried Peak samples. In south-exposed rocks, instead, the most abundant genera were Escherichia/Shigella and Streptococcus in Knobhead Mt.; Ktedonobacter and Rhodococcus in Finger Mt.; Ktedonobacter and Roseomonas in University Valley; and Blastocatella, Cyanobacteria Family I Group I and Segetibacter in Siegfried Peak. Significant biomarkers, detected by the Linear discriminant analysis Effect Size, were also found among north- and south-exposed communities. Besides, the large number of positive significant co-occurrences may suggest a crucial role of positive associations over competitions under the harsher conditions where these rock-inhabiting microorganisms spread. Although the effect of geographic distances in these extreme environments play a significant role in shaping biodiversity, the study of an edaphic factor, such as solar exposure, adds an important contribution to the mosaic of microbial biodiversity of Antarctic bacterial cryptoendolithic communities.
Collapse
Affiliation(s)
- Ambra Mezzasoma
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
6
|
Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D'Acqui L, Mascalchi C, Ventura S, Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica). FEMS Microbiol Ecol 2021; 97:6307020. [PMID: 34151349 DOI: 10.1093/femsec/fiab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ice-free areas of Victoria Land, in Antarctica, are characterized by different terrestrial ecosystems, that are dominated by microorganisms supporting highly adapted communities. Despite the unique conditions of these ecosystems, reports on their bacterial diversity are still fragmentary. From this perspective, 60 samples from 14 localities were analyzed. These localities were distributed in coastal sites with differently developed biological soil crusts, inner sites in the McMurdo Dry Valleys with soils lacking of plant coverage, and a site called Icarus Camp, with a crust developed on a thin locally weathered substrate of the underlying parent granitic-rock. Bacterial diversity was studied through 16S rRNA metabarcoding sequencing. Communities diversity, composition and the abundance and composition of different taxonomic groups were correlated to soil physicochemical characteristics. Firmicutes, Bacteroidetes, Cyanobacteria and Proteobacteria dominated these communities. Most phyla were mainly driven by soil granulometry, an often disregarded parameter and other abiotic parameters. Bacterial composition differed greatly among the three macrohabitats, each having a distinct bacterial profile. Communities within the two main habitats (coastal and inner ones) were well differentiated from each other as well, therefore depending on site-specific physicochemical characteristics. A core community of the whole samples was observed, mainly represented by Firmicutes and Bacteroidetes.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Luigi Paolo D'Acqui
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cristina Mascalchi
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Stefano Ventura
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,The Italian Embassy in Israel, Trade Tower, 25 Hamered Street, 68125, Tel Aviv, Israel
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
7
|
Fernández-Martínez MÁ, García-Villadangos M, Moreno-Paz M, Gangloff V, Carrizo D, Blanco Y, González S, Sánchez-García L, Prieto-Ballesteros O, Altshuler I, Whyte LG, Parro V, Fairén AG. Geomicrobiological Heterogeneity of Lithic Habitats in the Extreme Environment of Antarctic Nunataks: A Potential Early Mars Analog. Front Microbiol 2021; 12:670982. [PMID: 34276605 PMCID: PMC8284421 DOI: 10.3389/fmicb.2021.670982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nunataks are permanent ice-free rocky peaks that project above ice caps in polar regions, thus being exposed to extreme climatic conditions throughout the year. They undergo extremely low temperatures and scarcity of liquid water in winter, while receiving high incident and reflected (albedo) UVA-B radiation in summer. Here, we investigate the geomicrobiology of the permanently exposed lithic substrates of nunataks from Livingston Island (South Shetlands, Antarctic Peninsula), with focus on prokaryotic community structure and their main metabolic traits. Contrarily to first hypothesis, an extensive sampling based on different gradients and multianalytical approaches demonstrated significant differences for most geomicrobiological parameters between the bedrock, soil, and loose rock substrates, which overlapped any other regional variation. Brevibacillus genus dominated on bedrock and soil substrates, while loose rocks contained a diverse microbial community, including Actinobacteria, Alphaproteobacteria and abundant Cyanobacteria inhabiting the milder and diverse microhabitats within. Archaea, a domain never described before in similar Antarctic environments, were also consistently found in the three substrates, but being more abundant and potentially more active in soils. Stable isotopic ratios of total carbon (δ 13C) and nitrogen (δ 15N), soluble anions concentrations, and the detection of proteins involved in key metabolisms via the Life Detector Chip (LDChip), suggest that microbial primary production has a pivotal role in nutrient cycling at these exposed areas with limited deposition of nutrients. Detection of stress-resistance proteins, such as molecular chaperons, suggests microbial molecular adaptation mechanisms to cope with these harsh conditions. Since early Mars may have encompassed analogous environmental conditions as the ones found in these Antarctic nunataks, our study also contributes to the understanding of the metabolic features and biomarker profiles of a potential Martian microbiota, as well as the use of LDChip in future life detection missions.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Martínez
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain.,Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | | | | | | | | | - Sergi González
- Antarctic Group, Agencia Estatal de Meteorología, Barcelona, Spain
| | | | | | - Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Victor Parro
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain
| | - Alberto G Fairén
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Solon AJ, Mastrangelo C, Vimercati L, Sommers P, Darcy JL, Gendron EMS, Porazinska DL, Schmidt SK. Gullies and Moraines Are Islands of Biodiversity in an Arid, Mountain Landscape, Asgard Range, Antarctica. Front Microbiol 2021; 12:654135. [PMID: 34177836 PMCID: PMC8222675 DOI: 10.3389/fmicb.2021.654135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.
Collapse
Affiliation(s)
- Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Claire Mastrangelo
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado-Anschutz Medical Campus, Denver, CO, United States
| | - Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Canini F, Geml J, Buzzini P, Turchetti B, Onofri S, D’Acqui LP, Ripa C, Zucconi L. Growth Forms and Functional Guilds Distribution of Soil Fungi in Coastal Versus Inland Sites of Victoria Land, Antarctica. BIOLOGY 2021; 10:biology10040320. [PMID: 33920495 PMCID: PMC8070035 DOI: 10.3390/biology10040320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
In Victoria Land, Antarctica, ice-free areas are restricted to coastal regions and dominate the landscape of the McMurdo Dry Valleys. These two environments are subjected to different pressures that determine the establishment of highly adapted fungal communities. Within the kingdom of fungi, filamentous, yeasts and meristematic/microcolonial growth forms on one side and different lifestyles on the other side may be considered adaptive strategies of particular interest in the frame of Antarctic constraints. In this optic, soil fungal communities from both coastal and Dry Valleys sites, already characterized thorough ITS1 metabarcoding sequencing, have been compared to determine the different distribution of phyla, growth forms, and lifestyles. Though we did not find significant differences in the richness between the two environments, the communities were highly differentiated and Dry Valleys sites had a higher evenness compared to coastal ones. Additionally, the distribution of different growth forms and lifestyles were well differentiated, and their diversity and composition were likely influenced by soil abiotic parameters, among which soil granulometry, pH, P, and C contents were the potential main determinants.
Collapse
Affiliation(s)
- Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
- Correspondence: ; Tel.: +39-0761357138
| | - József Geml
- Biodiversity Dynamics Research Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands;
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, H-3300 Eger, Hungary
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (P.B.); (B.T.)
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (P.B.); (B.T.)
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| | - Luigi Paolo D’Acqui
- Research Institute of Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), 50019 Sesto Fiorentino, Italy;
| | - Caterina Ripa
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.O.); (C.R.); (L.Z.)
| |
Collapse
|
10
|
Khomutovska N, de los Ríos A, Syczewski MD, Jasser I. Connectivity of Edaphic and Endolithic Microbial Niches in Cold Mountain Desert of Eastern Pamir (Tajikistan). BIOLOGY 2021; 10:314. [PMID: 33918726 PMCID: PMC8069199 DOI: 10.3390/biology10040314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023]
Abstract
Microbial communities found in arid environments are commonly represented by biological soil crusts (BSCs) and endolithic assemblages. There is still limited knowledge concerning endoliths and BSCs occurring in the cold mountain desert of Pamir. The aim of the study was to investigate the composition and structure of endolithic bacterial communities in comparison to surrounding BSCs in three subregions of the Eastern Pamir (Tajikistan). The endolithic and BSC communities were studied using culture-independent and culture-dependent techniques. The structure of the endolithic bacterial communities can be characterized as Actinobacteria-Proteobacteria-Bacteroidetes-Chloroflexi-Cyanobacteria, while the BSCs' can be described as Proteobacteria-Actinobacteria-Bacteroidetes-Cyanobacteria assemblages with low representation of other bacteria. The endolithic cyanobacterial communities were characterized by the high percentage of Chroococcidiopsaceae, Nodosilineaceae, Nostocaceae and Thermosynechococcaceae, while in the BSCs were dominated by Nodosilineaceae, Phormidiaceae and Nostocaceae. The analysis of 16S rRNA genes of the cyanobacterial cultures revealed the presence of possibly novel species of Chroococcidiopsis, Gloeocapsopsis and Wilmottia. Despite the niches' specificity, which is related to the influence of microenvironment factors on the composition and structure of endolithic communities, our results illustrate the interrelation between the endoliths and the surrounding BSCs in some regions. The structure of cyanobacterial communities from BSC was the only one to demonstrate some subregional differences.
Collapse
Affiliation(s)
- Nataliia Khomutovska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland;
| | - Asunción de los Ríos
- Department of Biogeochemistry and Microbial Ecology, The National Museum of Natural Sciences-CSIC, 28006 Madrid, Spain;
| | - Marcin D. Syczewski
- Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland;
| | - Iwona Jasser
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland;
| |
Collapse
|
11
|
Choe YH, Kim M, Lee YK. Distinct Microbial Communities in Adjacent Rock and Soil Substrates on a High Arctic Polar Desert. Front Microbiol 2021; 11:607396. [PMID: 33488547 PMCID: PMC7819959 DOI: 10.3389/fmicb.2020.607396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding microbial niche variability in polar regions can provide insights into the adaptive diversification of microbial lineages in extreme environments. Compositions of microbial communities in Arctic soils are well documented but a comprehensive multidomain diversity assessment of rocks remains insufficiently studied. In this study, we obtained two types of rocks (sandstone and limestone) and soils around the rocks in a high Arctic polar desert (Svalbard), and examined the compositions of archaeal, bacterial, fungal, and protistan communities in the rocks and soils. The microbial community structure differed significantly between rocks and soils across all microbial groups at higher taxonomic levels, indicating that Acidobacteria, Gemmatimonadetes, Latescibacteria, Rokubacteria, Leotiomycetes, Pezizomycetes, Mortierellomycetes, Sarcomonadea, and Spirotrichea were more abundant in soils, whereas Cyanobacteria, Deinococcus-Thermus, FBP, Lecanoromycetes, Eurotiomycetes, Trebouxiophyceae, and Ulvophyceae were more abundant in rocks. Interestingly, fungal communities differed markedly between two different rock types, which is likely to be ascribed to the predominance of distinct lichen-forming fungal taxa (Verrucariales in limestone, and Lecanorales in sandstone). This suggests that the physical or chemical properties of rocks could be a major determinant in the successful establishment of lichens in lithic environments. Furthermore, the biotic interactions among microorganisms based on co-occurrence network analysis revealed that Polyblastia and Verrucaria in limestone, and Atla, Porpidia, and Candelariella in sandstone play an important role as keystone taxa in the lithic communities. Our study shows that even in niches with the same climate regime and proximity to each other, heterogeneity of edaphic and lithic niches can affect microbial community assembly, which could be helpful in comprehensively understanding the effects of niche on microbial assembly in Arctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Yong-Hoe Choe
- Korea Polar Research Institute, Incheon, South Korea
| | - Mincheol Kim
- Korea Polar Research Institute, Incheon, South Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
12
|
Kudinova AG, Petrova MA, Dolgikh AV, Soina VS, Lysak LV, Maslova OA. Taxonomic Diversity of Bacteria and Their Filterable Forms in the Soils of Eastern Antarctica (Larsemann Hills and Bunger Hills). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720050136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S, Kovařovic V, Busse HJ, Staňková E, Barták M, Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112. [PMID: 32847787 DOI: 10.1016/j.syapm.2020.126112] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5-99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T=CCM 8692T=LMG 31213T), Massilia aquatica sp. nov. (P3165T=CCM 8693T=LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T=CCM 8733T=LMG 31210T), and Massilia frigida sp. nov. (P5534T=CCM 8695T=LMG 31212T).
Collapse
Affiliation(s)
- Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vojtěch Kovařovic
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Section of Experimental Plant Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
14
|
Ray AE, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. Front Microbiol 2020; 11:1936. [PMID: 32903524 PMCID: PMC7437527 DOI: 10.3389/fmicb.2020.01936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Soil microbiomes within oligotrophic cold deserts are extraordinarily diverse. Increasingly, oligotrophic sites with low levels of phototrophic primary producers are reported, leading researchers to question their carbon and energy sources. A novel microbial carbon fixation process termed atmospheric chemosynthesis recently filled this gap as it was shown to be supporting primary production at two Eastern Antarctic deserts. Atmospheric chemosynthesis uses energy liberated from the oxidation of atmospheric hydrogen to drive the Calvin-Benson-Bassham (CBB) cycle through a new chemotrophic form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), designated IE. Here, we propose that the genetic determinants of this process; RuBisCO type IE (rbcL1E) and high affinity group 1h-[NiFe]-hydrogenase (hhyL) are widespread across cold desert soils and that this process is linked to dry and nutrient-poor environments. We used quantitative PCR (qPCR) to quantify these genes in 122 soil microbiomes across the three poles; spanning the Tibetan Plateau, 10 Antarctic and three high Arctic sites. Both genes were ubiquitous, being present at variable abundances in all 122 soils examined (rbcL1E, 6.25 × 103–1.66 × 109 copies/g soil; hhyL, 6.84 × 103–5.07 × 108 copies/g soil). For the Antarctic and Arctic sites, random forest and correlation analysis against 26 measured soil physicochemical parameters revealed that rbcL1E and hhyL genes were associated with lower soil moisture, carbon and nitrogen content. While further studies are required to quantify the rates of trace gas carbon fixation and the organisms involved, we highlight the global potential of desert soil microbiomes to be supported by this new minimalistic mode of carbon fixation, particularly throughout dry oligotrophic environments, which encompass more than 35% of the Earth’s surface.
Collapse
Affiliation(s)
- Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Environment, Antarctic Conservation and Management, Kingston, TAS, Australia
| | - Mukan Ji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Bezuidt OKI, Lebre PH, Pierneef R, León-Sobrino C, Adriaenssens EM, Cowan DA, Van de Peer Y, Makhalanyane TP. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020; 5:e00234-20. [PMID: 32371471 PMCID: PMC7205518 DOI: 10.1128/msystems.00234-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Noh HJ, Lee YM, Park CH, Lee HK, Cho JC, Hong SG. Microbiome in Cladonia squamosa Is Vertically Stratified According to Microclimatic Conditions. Front Microbiol 2020; 11:268. [PMID: 32161575 PMCID: PMC7053493 DOI: 10.3389/fmicb.2020.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Lichens are miniature ecosystems that contain fungi, microalgae, and bacteria. It is generally accepted that symbiosis between mycobiont and photobiont and microbial contribution to the ecosystem support the wide distribution of lichens in terrestrial ecosystems, including polar areas. The composition of symbiotic components can be affected by subtle microenvironmental differences within a thallus, as well as large-scale climate differences. In this study, we investigated fine-scale profiles of algal, fungal, and bacterial compositions through horizontal and vertical positions of the Antarctic lichen Cladonia squamosa colonies by next-generation sequencing of the nuclear large subunit rRNA gene (nucLSU) of eukaryotes and the 16S rRNA gene of bacteria. Apical parts of thalli were exposed to strong light, low moisture, and high variability of temperature compared with basal parts. Microbial diversity increased from apical parts to basal parts of thalli. Asterochloris erici was the major photobiont in apical positions of thalli, but other microalgal operational taxonomic units (OTUs) of Trebouxiophyceae and Ulvophyceae were major microalgal components in basal positions. Photochemical responses of algal components from apical and basal parts of thalli were quite different under variable temperature and humidity conditions. Several fungal OTUs that belonged to Arthoniomycetes and Lecanoromycetes, and diverse bacterial OTUs that belonged to Alphaproteobacteria, Acidobacteria_Gp1, and candidate division WPS-2 showed a clear distribution pattern according to their vertical positions within thalli. The overall lichen microbiome was significantly differentiated by the vertical position within a thallus. These results imply that different microclimate are formed at different lichen thallus parts, which can affect microbial compositions and physiological responses according to positions within the thalli.
Collapse
Affiliation(s)
- Hyun-Ju Noh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Yung Mi Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Chae Haeng Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Hong Kum Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
17
|
Garrido-Benavent I, Pérez-Ortega S, Durán J, Ascaso C, Pointing SB, Rodríguez-Cielos R, Navarro F, de los Ríos A. Differential Colonization and Succession of Microbial Communities in Rock and Soil Substrates on a Maritime Antarctic Glacier Forefield. Front Microbiol 2020; 11:126. [PMID: 32117148 PMCID: PMC7018881 DOI: 10.3389/fmicb.2020.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glacier forefields provide a unique chronosequence to assess microbial or plant colonization and ecological succession on previously uncolonized substrates. Patterns of microbial succession in soils of alpine and subpolar glacier forefields are well documented but those affecting high polar systems, including moraine rocks, remain largely unexplored. In this study, we examine succession patterns in pioneering bacterial, fungal and algal communities developing on moraine rocks and soil at the Hurd Glacier forefield (Livingston Island, Antarctica). Over time, changes were produced in the microbial community structure of rocks and soils (ice-free for different lengths of time), which differed between both substrates across the entire chronosequence, especially for bacteria and fungi. In addition, fungal and bacterial communities showed more compositional consistency in soils than rocks, suggesting community assembly in each niche could be controlled by processes operating at different temporal and spatial scales. Microscopy revealed a patchy distribution of epilithic and endolithic lithobionts, and increasing endolithic colonization and microbial community complexity along the chronosequence. We conclude that, within relatively short time intervals, primary succession processes at polar latitudes involve significant and distinct changes in edaphic and lithic microbial communities associated with soil development and cryptogamic colonization.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carmen Ascaso
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Stephen B. Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricardo Rodríguez-Cielos
- ETSI de Telecomunicación, Departamento de Señales, Sistemas y Radiocomunicaciones, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Navarro
- ETSI de Telecomunicación, Departamento de Matemática Aplicada a las TIC, Universidad Politécnica de Madrid, Madrid, Spain
| | - Asunción de los Ríos
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
18
|
Qu EB, Omelon CR, Oren A, Meslier V, Cowan DA, Maggs-Kölling G, DiRuggiero J. Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Front Microbiol 2020; 10:2952. [PMID: 31969867 PMCID: PMC6960110 DOI: 10.3389/fmicb.2019.02952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022] Open
Abstract
Studies of microbial biogeography are often convoluted by extremely high diversity and differences in microenvironmental factors such as pH and nutrient availability. Desert endolithic (inside rock) communities are relatively simple ecosystems that can serve as a tractable model for investigating long-range biogeographic effects on microbial communities. We conducted a comprehensive survey of endolithic sandstones using high-throughput marker gene sequencing to characterize global patterns of diversity in endolithic microbial communities. We also tested a range of abiotic variables in order to investigate the factors that drive community assembly at various trophic levels. Macroclimate was found to be the primary driver of endolithic community composition, with the most striking difference witnessed between hot and polar deserts. This difference was largely attributable to the specialization of prokaryotic and eukaryotic primary producers to different climate conditions. On a regional scale, microclimate and properties of the rock substrate were found to influence community assembly, although to a lesser degree than global hot versus polar conditions. We found new evidence that the factors driving endolithic community assembly differ between trophic levels. While phototrophic taxa, mostly oxygenic photosynthesizers, were rigorously selected for among different sites, heterotrophic taxa were more cosmopolitan, suggesting that stochasticity plays a larger role in heterotroph assembly. This study is the first to uncover the global drivers of desert endolithic diversity using high-throughput sequencing. We demonstrate that phototrophs and heterotrophs in the endolithic community assemble under different stochastic and deterministic influences, emphasizing the need for studies of microorganisms in context of their functional niche in the community.
Collapse
Affiliation(s)
- Evan B. Qu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chris R. Omelon
- Department of Geography and Planning, Queen’s University, Kingston, ON, Canada
| | - Aharon Oren
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
19
|
Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P, Karsten U, Lehnert L, Achilles S, Bendix J, Büdel B. Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. JOURNAL OF PHYCOLOGY 2019; 55:1306-1318. [PMID: 31378942 DOI: 10.1111/jpy.12908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
In the Atacama Desert, cyanobacteria grow on various substrates such as soils (edaphic) and quartz or granitoid stones (lithic). Both edaphic and lithic cyanobacterial communities have been described but no comparison between both communities of the same locality has yet been undertaken. In the present study, we compared both cyanobacterial communities along a precipitation gradient ranging from the arid National Park Pan de Azúcar (PA), which resembles a large fog oasis in the Atacama Desert extending to the semiarid Santa Gracia Natural Reserve (SG) further south, as well as along a precipitation gradient within PA. Various microscopic techniques, as well as culturing and partial 16S rRNA sequencing, were applied to identify 21 cyanobacterial species; the diversity was found to decline as precipitation levels decreased. Additionally, under increasing xeric stress, lithic community species composition showed higher divergence from the surrounding edaphic community, resulting in indigenous hypolithic and chasmoendolithic cyanobacterial communities. We conclude that rain and fog water, respectively, cause contrasting trends regarding cyanobacterial species richness in the edaphic and lithic microhabitats.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Peter Leinweber
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Lukas Lehnert
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Sebastian Achilles
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Jörg Bendix
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| |
Collapse
|
20
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, Séneca J, Baptista MS, Lee CK, Cary SC, Ramos V, Carvalho MF, Leão PN, Magalhães C. Actinobacteria and Cyanobacteria Diversity in Terrestrial Antarctic Microenvironments Evaluated by Culture-Dependent and Independent Methods. Front Microbiol 2019; 10:1018. [PMID: 31214128 PMCID: PMC6555387 DOI: 10.3389/fmicb.2019.01018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial diversity from McMurdo Dry Valleys in Antarctica, the coldest desert on earth, has become more easily assessed with the development of High Throughput Sequencing (HTS) techniques. However, some of the diversity remains inaccessible by the power of sequencing. In this study, we combine cultivation and HTS techniques to survey actinobacteria and cyanobacteria diversity along different soil and endolithic micro-environments of Victoria Valley in McMurdo Dry Valleys. Our results demonstrate that the Dry Valleys actinobacteria and cyanobacteria distribution is driven by environmental forces, in particular the effect of water availability and endolithic environments clearly conditioned the distribution of those communities. Data derived from HTS show that the percentage of cyanobacteria decreases from about 20% in the sample closest to the water source to negligible values on the last three samples of the transect with less water availability. Inversely, actinobacteria relative abundance increases from about 20% in wet soils to over 50% in the driest samples. Over 30% of the total HTS data set was composed of actinobacterial strains, mainly distributed by 5 families: Sporichthyaceae, Euzebyaceae, Patulibacteraceae, Nocardioidaceae, and Rubrobacteraceae. However, the 11 actinobacterial strains isolated in this study, belonged to Micrococcaceae and Dermacoccaceae families that were underrepresented in the HTS data set. A total of 10 cyanobacterial strains from the order Synechococcales were also isolated, distributed by 4 different genera (Nodosilinea, Leptolyngbya, Pectolyngbya, and Acaryochloris-like). In agreement with the cultivation results, Leptolyngbya was identified as dominant genus in the HTS data set. Acaryochloris-like cyanobacteria were found exclusively in the endolithic sample and represented 44% of the total 16S rRNA sequences, although despite our efforts we were not able to properly isolate any strain from this Acaryochloris-related group. The importance of combining cultivation and sequencing techniques is highlighted, as we have shown that culture-dependent methods employed in this study were able to retrieve actinobacteria and cyanobacteria taxa that were not detected in HTS data set, suggesting that the combination of both strategies can be usefull to recover both abundant and rare members of the communities.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Francisco Raio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Teresa P Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Hugo Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - António G G Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Joana Séneca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Mafalda S Baptista
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - S Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand.,School of Science, University of Waikato, Hamilton, New Zealand
| | - Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Lee J, Cho J, Cho YJ, Cho A, Woo J, Lee J, Hong SG, Sul WJ, Kim OS. The latitudinal gradient in rock-inhabiting bacterial community compositions in Victoria Land, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:731-738. [PMID: 30677938 DOI: 10.1016/j.scitotenv.2018.12.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The harsh conditions in Victoria Land, Antarctica have formed a simple ecosystem dominated by microbes that use rocks as shelters to avoid environmental stressors. The area is composed of basement rocks that illustrate the history of complex deformation, thus it is highly valuable not only in perspectives of geology but also in biological aspects. Because this region is inhospitable to higher-level organisms and receives least external influences, it can be an ideal environment to investigate the relationship between rock-inhabiting bacterial communities and environmental factors. In such conditions, inorganics dissolved from minerals can be considered as key factors influencing rock-inhabiting bacterial communities. Thus, the present study attempted to explore rock-inhabiting bacterial communities throughout Victoria Land, to identify environmental parameters that are more influential on bacterial community compositions, and to investigate latitudinal gradients in environmental parameters and rock-inhabiting bacterial communities. The results suggested that (i) rock-inhabiting bacterial communities in Victoria Land predominately consisted of either Actinobacteria or Proteobacteria; (ii) latitudinal gradients in rock-inhabiting bacterial community compositions and some environmental parameters were observed; (iii) latitude, pH, nitrate, and sulfate significantly correlated with the dominant phyla; and (iv) the Classification and Regression Tree (CART) analysis demonstrated that latitude, pH, and sulfate concentrations could explain the dominant phylum with 89% accuracy. These findings can provide important insight into the link between environmental factors and rock-inhabiting bacterial community compositions in conditions with extremely cold temperatures and high levels of radiation, which could also be of interest in astrobiology.
Collapse
Affiliation(s)
- Jaejin Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Agricultural & Biosystems Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Junho Cho
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yong-Joon Cho
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Ahnna Cho
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jusun Woo
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jongik Lee
- Division of Polar Earth-System Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ok-Sun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| |
Collapse
|
23
|
Amarelle V, Carrasco V, Fabiano E. The Hidden Life of Antarctic Rocks. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Pushkareva E, Pessi IS, Namsaraev Z, Mano MJ, Elster J, Wilmotte A. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst Appl Microbiol 2018; 41:363-373. [DOI: 10.1016/j.syapm.2018.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
|
25
|
Gómez-Silva B. Lithobiontic life: "Atacama rocks are well and alive". Antonie Van Leeuwenhoek 2018; 111:1333-1343. [PMID: 29392527 DOI: 10.1007/s10482-018-1033-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/28/2018] [Indexed: 11/29/2022]
Abstract
Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.
Collapse
Affiliation(s)
- Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department, Faculty of Health Sciences, and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, 601 Angamos Ave., Antofagasta, Chile.
| |
Collapse
|
26
|
Bhattacharjee K, Palepu NR, Rao KM, Joshi SR. Precursor-directed combinatorial biosynthesis of cephalosporin analogue by endolithic actinobacterium Streptomyces sp. AL51 by utilizing thiophene derivative. 3 Biotech 2018; 8:31. [PMID: 29291144 DOI: 10.1007/s13205-017-1051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022] Open
Abstract
Natural products or their derivatives provide a reliable resource for new drugs. The multi-step chemical reaction to produce new drug is not only expensive but also release pollutants. The precursor-based combinatorial biosynthesis (PCB) is, however, a better option to produce novel natural products with potential pharmaceutical applications. The present work is an attempt to synthesize an antibacterial compound by transforming thiophene precursor using endolithic Streptomyces sp. AL51. The Streptomyces sp. AL51 was isolated from a granite rock sample collected from Mylliem, Meghalaya, India. The isolate was identified as Streptomyces sp. based on its cultural, morphological, biochemical and molecular characteristics. The bioactive compound CAx1 was extracted from the fermentation broth. The compound was characterized by bioactivity-guided fractionation and identified by infrared, UV-visible, nuclear magnetic resonance and mass spectrometry data and identified as 7-[1-(thiophene-5-yl)-1-formamido]-3-propylenyl-3-cephem-4-carboxylic acid with molecular formula C15H14N2O4S2. The purified compound showed considerable in vitro antibacterial activity against both Gram-positive and Gram-negative bacteria showing its broad spectrum property. The obtained results provide promising baseline information for the potential use of endolithic actinobacterium for semisynthetic drug discovery. This is the first report on PCB of broad range antibacterial compound by endolithic Streptomyces strain.
Collapse
|
27
|
Van Goethem MW, Makhalanyane TP, Cowan DA, Valverde A. Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Front Microbiol 2017; 8:2099. [PMID: 29118751 PMCID: PMC5660985 DOI: 10.3389/fmicb.2017.02099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023] Open
Abstract
Hypoliths, microbial assemblages found below translucent rocks, provide important ecosystem services in deserts. While several studies have assessed microbial diversity of hot desert hypoliths and whether these communities are metabolically active, the interactions among taxa remain unclear. Here, we assessed the structure, diversity, and co-occurrence patterns of hypolithic communities from the hyperarid Namib Desert by comparing total (DNA) and potentially active (RNA) communities. The potentially active and total hypolithic communities differed in their composition and diversity, with significantly higher levels of Cyanobacteria and Alphaproteobacteria in potentially active hypoliths. Several phyla known to be abundant in total hypolithic communities were metabolically inactive, indicating that some hypolithic taxa may be dormant or dead. The potentially active hypolith network was highly modular in structure with almost exclusively positive co-occurrences (>95% of the total) between taxa. Members of the Cyanobacteria and Alphaproteobacteria were identified as potential keystone taxa, and exhibited numerous positive co-occurrences with other microbes, suggesting that these groups might have important roles in maintaining network topological structure despite their low abundance.
Collapse
Affiliation(s)
- Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Angel Valverde
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ Microbiol 2017; 19:3755-3767. [PMID: 28752953 DOI: 10.1111/1462-2920.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022]
Abstract
Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H+ , Na+ and Cl+ pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.
Collapse
Affiliation(s)
- Leandro D Guerrero
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica. Front Microbiol 2017; 8:1347. [PMID: 28824553 PMCID: PMC5543034 DOI: 10.3389/fmicb.2017.01347] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023] Open
Abstract
In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Nazia Mojib
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Ian Hawes
- Gateway Antarctica, University of CanterburyChristchurch, New Zealand
| | - Yukiko Tanabe
- National Institute of Polar ResearchTachikawa, Japan
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain ViewCA, United States
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| |
Collapse
|
30
|
Adriaenssens EM, Kramer R, Van Goethem MW, Makhalanyane TP, Hogg I, Cowan DA. Environmental drivers of viral community composition in Antarctic soils identified by viromics. MICROBIOME 2017; 5:83. [PMID: 28724405 PMCID: PMC5518109 DOI: 10.1186/s40168-017-0301-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/06/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Antarctic continent is considered the coldest and driest place on earth with simple ecosystems, devoid of higher plants. Soils in the ice-free regions of Antarctica are known to harbor a wide range of microorganisms from primary producers to grazers, yet their ecology and particularly the role of viruses is poorly understood. In this study, we examined the virus community structures of 14 soil samples from the Mackay Glacier region. METHODS Viral communities were extracted from soil and the dsDNA was extracted, amplified using single-primer amplification, and sequenced using the Ion Torrent Proton platform. Metadata on soil physico-chemistry was collected from all sites. Both read and contig datasets were analyzed with reference-independent and reference-dependent methods to assess viral community structures and the influence of environmental parameters on their distribution. RESULTS We observed a high heterogeneity in virus signatures, independent of geographical proximity. Tailed bacteriophages were dominant in all samples, but the incidences of the affiliated families Siphoviridae and Myoviridae were inversely correlated, suggesting direct competition for hosts. Viruses of the families Phycodnaviridae and Mimiviridae were present at significant levels in high-diversity soil samples and were found to co-occur, implying little competition between them. Combinations of soil factors, including pH, calcium content, and site altitude, were found to be the main drivers of viral community structure. CONCLUSIONS The pattern of viral community structure with higher levels of diversity at lower altitude and pH, and co-occurring viral families, suggests that these cold desert soil viruses interact with each other, the host, and the environment in an intricate manner, playing a potentially crucial role in maintaining host diversity and functioning of the microbial ecosystem in the extreme environments of Antarctic soil.
Collapse
Affiliation(s)
- Evelien M. Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Natural Sciences Building II, Private Bag X20, Hatfield, 0028 South Africa
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Rolf Kramer
- Centre for Microbial Ecology and Genomics, University of Pretoria, Natural Sciences Building II, Private Bag X20, Hatfield, 0028 South Africa
| | - Marc W. Van Goethem
- Centre for Microbial Ecology and Genomics, University of Pretoria, Natural Sciences Building II, Private Bag X20, Hatfield, 0028 South Africa
| | - Thulani P. Makhalanyane
- Centre for Microbial Ecology and Genomics, University of Pretoria, Natural Sciences Building II, Private Bag X20, Hatfield, 0028 South Africa
| | - Ian Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Polar Knowledge Canada, 170 Laurier Avenue West, Ottawa, Ontario K1P 5V5 Canada
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Natural Sciences Building II, Private Bag X20, Hatfield, 0028 South Africa
| |
Collapse
|
31
|
Elster J, Margesin R, Wagner D, Häggblom M. Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiol Ecol 2016; 93:fiw221. [DOI: 10.1093/femsec/fiw221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|
32
|
Lucas R, Groeneveld J, Harms H, Johst K, Frank K, Kleinsteuber S. A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets. FEMS Microbiol Ecol 2016; 93:fiw209. [PMID: 27798064 DOI: 10.1093/femsec/fiw209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
In times of global change and intensified resource exploitation, advanced knowledge of ecophysiological processes in natural and engineered systems driven by complex microbial communities is crucial for both safeguarding environmental processes and optimising rational control of biotechnological processes. To gain such knowledge, high-throughput molecular techniques are routinely employed to investigate microbial community composition and dynamics within a wide range of natural or engineered environments. However, for molecular dataset analyses no consensus about a generally applicable alpha diversity concept and no appropriate benchmarking of corresponding statistical indices exist yet. To overcome this, we listed criteria for the appropriateness of an index for such analyses and systematically scrutinised commonly employed ecological indices describing diversity, evenness and richness based on artificial and real molecular datasets. We identified appropriate indices warranting interstudy comparability and intuitive interpretability. The unified diversity concept based on 'effective numbers of types' provides the mathematical framework for describing community composition. Additionally, the Bray-Curtis dissimilarity as a beta-diversity index was found to reflect compositional changes. The employed statistical procedure is presented comprising commented R-scripts and example datasets for user-friendly trial application.
Collapse
Affiliation(s)
- Rico Lucas
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jürgen Groeneveld
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany.,Institute of Forest Growth and Computer Science, Technische Universität Dresden, PO 1117, 01735 Tharandt, Germany
| | - Hauke Harms
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Karin Johst
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karin Frank
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Sabine Kleinsteuber
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|