1
|
Zhang L, Ye M, Dong Y, Yuan L, Xiang J, Yu X, Liao Q, Ai Q, Qiu S, Zhang D. Strict relationship between phenotypic and plasmid-associated genotypic of multidrug-resistant Escherichia coli isolated from Taihe Black-Boned Silky Fowl farms. Poult Sci 2025; 104:105082. [PMID: 40158280 PMCID: PMC11997332 DOI: 10.1016/j.psj.2025.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Taihe Black-Boned Silky Fowl (TBSF) is a unique breed in China, characterized by a high concentration of melanin deposited throughout its body. Compared to broiler chickens, many antibiotics exhibit significantly longer withdrawal periods in TBSF. Given that antibiotic exposure is widely recognized as the primary selective pressure driving the persistence and dissemination of antibiotic resistance genes (ARGs) across diverse environments, it is crucial to investigate the occurrence and prevalence of ARGs within TBSF farming systems. In this study, 34 Escherichia coli strains isolated from 22 TBSF farms were subjected to phenotypic and genotypic analyses. The isolates were tested for susceptibility to 28 antimicrobial drugs representing nine antibiotic classes to determine their antimicrobial resistance phenotypes. Draft genome sequences of these E. coli strains were obtained, and the ARGs carried by mobile genetic elements, particularly plasmids, were analyzed for their association with susceptibility phenotype. The genetic context of key ARGs in these E. coli isolates was further characterized. Network analysis was employed to investigate the correlations between ARGs, phenotypes, and drug residues. The results demonstrated that high rates of antimicrobial resistance were observed, with 100 % and 29.4 % of isolates exhibiting resistance to four or more and eight or more antibiotic classes, respectively. According to whole-genome sequencing, a total of 143 ARGs were identified. The antimicrobial resistance phenotypes were consistently correlated with the presence of corresponding ARGs in the 34 E. coli genomes. 100 % of the β-lactams antibiotics resistant mechanism could be attributed to the presence of the resistance gene blaTEM and/or blaOXA-10. Similarly, resistance to tetracyclines, chloramphenicols, aminoglycosides, and fluoroquinolones was fully explained by the presence of tetR and/or tetA, floR and/or cmlA, ant(3'')-IIa, aph(3'')-Ib, aph(6)-Id, aac(3)-IId, and aadA, and qnrS and/or mutant gyrA/parC/mdtH. The majority of these key ARGs were found to be plasmid-associated. This study verified and highlighted the prevalent horizontal gene transfer of ARGs in TBSF farms. Factors such as hygiene status, biosecurity measures, and other environmental conditions might play a more significant role than antimicrobial usage in facilitating the horizontal gene transfer of ARGs in TBSF farms. Appropriate measures should be taken to control the transmission and dissemination of these mobile genetic elements associated ARGs and prevent their entry into the human clinical environment from TBSF breeding environment.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Mengjun Ye
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Yifan Dong
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Lijuan Yuan
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Jianjun Xiang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Xiren Yu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiegen Liao
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Qiushuang Ai
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Suyan Qiu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China
| | - Dawen Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China; Key Laboratory of Agro-product Quality and Safety of Jiangxi Province, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
2
|
Tan BSY, Mohan L, Watthanaworawit W, Ngamprasertchai T, Nosten FH, Ling C, Bifani P. Detection of florfenicol resistance in opportunistic Acinetobacter spp. infections in rural Thailand. Front Microbiol 2024; 15:1368813. [PMID: 38765680 PMCID: PMC11099283 DOI: 10.3389/fmicb.2024.1368813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.
Collapse
Affiliation(s)
- Bernice Siu Yan Tan
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lalit Mohan
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Thundon Ngamprasertchai
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Pablo Bifani
- ASTAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
3
|
Magalhães EA, de Jesus HE, Pereira PHF, Gomes AS, Santos HFD. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123237. [PMID: 38159625 DOI: 10.1016/j.envpol.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.
Collapse
Affiliation(s)
- Emily Amorim Magalhães
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Abílio Soares Gomes
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
4
|
Miranda CD, Irgang R, Concha C, Rojas R, Avendaño-Herrera R. Phenotypic and genomic characterization of a non-pathogenic Epilithonimonas ginsengisoli isolated from diseased farmed rainbow trout (Oncorhynchus mykiss) in Chile. JOURNAL OF FISH DISEASES 2024; 47:e13897. [PMID: 38031399 DOI: 10.1111/jfd.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Flavobacterial infection associated with diseased fish is caused by multiple bacterial species within the family Flavobacteriaceae. In the present study, the Chilean isolate FP99, from the gills of a diseased, farmed rainbow trout (Oncorhynchus mykiss), was characterized using phenotypic and genomic analyses. Additionally assessed was pathogenic activity. Phylogenetic analysis based on 16S rRNA gene sequencing confirmed that isolate FP99 belonged to the genus Epilithonimonas, an average nucleotide identity value of 100% was detected with the Chilean isolate identified as Epilithonimonas sp. FP211-J200. In silico genome analysis, mechanisms for toxins production, and superantigens, adhesion, or other genes associated with virulence were not detected. However, genes encoding proteins for antibiotic resistance were found, including the chrA gene and the nucleotide sequence that encodes for multiple antibiotic resistance MarC proteins. Furthermore, the blaESP-1 gene (87.85% aminoacidic sequence identity), encoding an extended-spectrum subclass B3 metallo-β-lactamase and conferring carbapenem-hydrolysing activity, and the tet(X) gene, which encodes a monooxygenase that catalyses the degradation of tetracycline-class antimicrobials were carried by this isolate. Phenotyping analyses also supported assignment as E. ginsengisoli. Challenge trials against healthy rainbow trout resulted in no observed pathogenic effect. Our findings identify for the first time the species E. ginsengisoli as associated with fish farming, suggesting that this isolate may be a component of the microbiota of the freshwater system. Notwithstanding, poor environmental conditions and any stressors associated with aquaculture situations or lesions caused by other pathogenic bacteria, such as F. psychrophilum, could favour the entry of E. ginsengisoli into rainbow trout.
Collapse
Affiliation(s)
- Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
- Centro Tecnológico de Innovación Acuícola AquaPacífico, Coquimbo, Chile
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
- Centro Tecnológico de Innovación Acuícola AquaPacífico, Coquimbo, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
5
|
Che Y, Wu R, Li H, Wang L, Wu X, Chen Q, Chen R, Zhou L. Characterization of the plasmids harbouring the florfenicol resistance gene floR in Glaesserella parasuis and Actinobacillus indolicus. J Glob Antimicrob Resist 2023; 35:163-171. [PMID: 37726088 DOI: 10.1016/j.jgar.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Renjie Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Hongjie Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Qiuyong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, China.
| |
Collapse
|
6
|
Heckman TI, Yazdi Z, Pomaranski EK, Sebastião FDA, Mukkatira K, Vuglar BM, Cain KD, Loch TP, Soto E. Atypical flavobacteria recovered from diseased fish in the Western United States. Front Cell Infect Microbiol 2023; 13:1149032. [PMID: 37153143 PMCID: PMC10161732 DOI: 10.3389/fcimb.2023.1149032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023] Open
Abstract
Flavobacterial diseases, caused by bacteria in the order Flavobacteriales, are responsible for devastating losses in farmed and wild fish populations worldwide. The genera Flavobacterium (Family Flavobacteriaceae) and Chryseobacterium (Weeksellaceae) encompass the most well-known agents of fish disease in the order, but the full extent of piscine-pathogenic species within these diverse groups is unresolved, and likely underappreciated. To identify emerging agents of flavobacterial disease in US aquaculture, 183 presumptive Flavobacterium and Chryseobacterium isolates were collected from clinically affected fish representing 19 host types, from across six western states. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis using the gyrB gene. Antimicrobial susceptibility profiles were compared between representatives from each major phylogenetic clade. Of the isolates, 52 were identified as Chryseobacterium species and 131 as Flavobacterium. The majority of Chryseobacterium isolates fell into six clades (A-F) consisting of ≥ 5 fish isolates with ≥ 70% bootstrap support, and Flavobacterium into nine (A-I). Phylogenetic clades showed distinct patterns in antimicrobial susceptibility. Two Chryseobacterium clades (F & G), and four Flavobacterium clades (B, G-I) had comparably high minimal inhibitory concentrations (MICs) for 11/18 antimicrobials tested. Multiple clades in both genera exhibited MICs surpassing the established F. psychrophilum breakpoints for oxytetracycline and florfenicol, indicating potential resistance to two of the three antimicrobials approved for use in finfish aquaculture. Further work to investigate the virulence and antigenic diversity of these genetic groups will improve our understanding of flavobacterial disease, with applications for treatment and vaccination strategies.
Collapse
Affiliation(s)
- Taylor I. Heckman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Zeinab Yazdi
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eric K. Pomaranski
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Fernanda de Alexandre Sebastião
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Fisheries, Embrapa Amazônia Ocidental, Manaus, Amazonas, Brazil
| | - Kaveramma Mukkatira
- Fish Health Laboratory, California Department of Fish and Wildlife, Rancho Cordova, CA, United States
| | - Brent M. Vuglar
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, United States
| | - Kenneth D. Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, United States
| | - Thomas P. Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- *Correspondence: Esteban Soto,
| |
Collapse
|
7
|
Concha C, Miranda CD, Santander J, Roberts MC. Genetic Characterization of the Tetracycline-Resistance Gene tet(X) Carried by Two Epilithonimonas Strains Isolated from Farmed Diseased Rainbow Trout, Oncorhynchus mykiss in Chile. Antibiotics (Basel) 2021; 10:antibiotics10091051. [PMID: 34572633 PMCID: PMC8464911 DOI: 10.3390/antibiotics10091051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
The main objective of this study was to characterize the tet(X) genes, which encode a monooxygenase that catalyzes the degradation of tetracycline antibiotics, carried by the resistant strains FP105 and FP233-J200, using whole-genome sequencing analysis. The isolates were recovered from fin lesion and kidney samples of diseased rainbow trout Oncorhynchus mykiss, during two Flavobacteriosis outbreaks occurring in freshwater farms located in Southern Chile. The strains were identified as Epilithonimonas spp. by using biochemical tests and by genome comparison analysis using the PATRIC bioinformatics platform and exhibited a minimum inhibitory concentration (MIC) of oxytetracycline of 128 µg/mL. The tet(X) genes were located on small contigs of the FP105 and FP233-J200 genomes. The sequences obtained for the tet(X) genes and their genetic environment were compared with the genomes available in the GenBank database of strains of the Chryseobacterium clade belonging to the Flavobacterium family, isolated from fish and carrying the tet(X) gene. The Tet(X) proteins synthesized by the Chilean Epilithonimonas strains showed a high amino acid similarity (range from 84% to 100%), with the available sequences found in strains belonging to the genus Chryseobacterium and Flavobacterium isolated from fish. An identical neighborhood of tet(X) genes from both Chilean strains was observed. The genetic environment of tet(X) observed in the two strains of Epilithonimonas studied was characterized by the upstream location of a sequence encoding a hypothetical protein and a downstream located alpha/beta hydrolase-encoding gene, similar to the observed in some of the tet(X) genes carried by Chryseobacterium and Flavobacterium strains isolated from fish, but the produced proteins exhibited a low amino acid identity (25–27%) when compared to these synthesized by the Chilean strains. This study reports for the first time the carriage of the tet(X) gene by the Epilithonimonas genus and their detection in fish pathogenic bacteria isolated from farmed salmonids in Chile, thus limiting the use of therapies based on oxytetracycline, the antimicrobial most widely used in Chilean freshwater salmonid farming. This results suggest that pathogenic strains of the Chryseobacterium clade occurring in Chilean salmonid farms may serve as important reservoirs of tet(X) genes.
Collapse
Affiliation(s)
- Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile;
- Centro AquaPacífico, Coquimbo 1780000, Chile
- Correspondence: ; Tel.: +56-512209762
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Marilyn C. Roberts
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suit #100, Seattle, WA 98105, USA;
| |
Collapse
|
8
|
Investigation of tigecycline resistant Escherichia coli from raw meat reveals potential transmission among food-producing animals. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
SATICIOĞLU IB, DUMAN M, ALTUN S. Gökkuşağı Alabalıklarından Izole Edilen Chryseobacterium sp. C-204 Suşunun Fenotipik ve Genom Özelliklerinin Belirlenmesi. ACTA ACUST UNITED AC 2020. [DOI: 10.32707/ercivet.828829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Bruce TJ, Ma J, Knupp C, Loch TP, Faisal M, Cain KD. Cross-protection of a live-attenuated Flavobacterium psychrophilum immersion vaccine against novel Flavobacterium spp. and Chryseobacterium spp. strains. JOURNAL OF FISH DISEASES 2020; 43:915-928. [PMID: 32557714 DOI: 10.1111/jfd.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
For salmonid producers, a common threat is Flavobacterium psychrophilum. Recent advancements in bacterial coldwater disease (BCWD) management include the development of a live-attenuated immersion vaccine that cross-protects against an array of F. psychrophilum strains. Emerging family Flavobacteriaceae cases associated with clinical disease have been increasing, including pathogenic isolates of Flavobacterium spp. and Chryseobacterium spp. The cross-protective ability of a live-attenuated F. psychrophilum vaccine was determined against three virulent Flavobacteriaceae isolates. Juvenile rainbow trout were vaccinated, developed high F. psychrophilum-specific antibody titres and were challenged with Chryseobacterium spp. isolates (S25 and T28), a Flavobacterium sp. (S21) isolate, a mixed combination of S21:S25:T28, and a standard virulent F. psychrophilum CSF259-93 strain. Results demonstrated strong protection in the CSF259-93 vaccinated group (relative per cent survival (RPS)=94.44%) when compared to the relevant CSF259-93 controls (p < .001). Protection was also observed for vaccinated fish challenged with the S21:S25:T28 mix (RPS = 85.18%; p < .001). However, protection was not observed with the S21, S25 or T28 isolates alone. Analysis of whole-cell lysates revealed differences in protein banding by SDS-PAGE, but conserved antigenic regions by Western blot in S25 and T28. Results demonstrate that this live-attenuated vaccine provided protection against mixed flavobacterial infection and suggest further benefits against flavobacteriosis.
Collapse
Affiliation(s)
- Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| | - Christopher Knupp
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Thomas P Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, USA
| |
Collapse
|
11
|
Han C, Wei Y, Cui Y, Geng Y, Bao Y, Shi W. Florfenicol induces oxidative stress and hepatocyte apoptosis in broilers via Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110239. [PMID: 31991393 DOI: 10.1016/j.ecoenv.2020.110239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
In order to explore the mechanism of liver injury induced by florfenicol (FFC) in broilers, one hundred and twenty broilers were randomly divided into six groups, twenty broilers in each group. Except for control group, the other five groups were given different doses of FFC (0.15 g/L, 0.3 g/L, 0.6 g/L, 1.2 g/L and 1.8 g/L) in drinking water. After five days of continuous use, blood was collected from the subpterional vein and the chickens' liver were obtained. Chicken weight gain and liver indices were calculated; blood routine analysis was performed; the oxidative stress and apoptosis of hepatocytes was detected. The results showed that compared with the control group, except for 0.15 g/L FFC, the other doses of FFC significantly decreased the weight gain, white blood cell (WBC) and platelet (PLT) contents in blood, 0.3 g/mL FFC and 1.8 g/L FFC significantly reduced the content of hemoglobin (RGB) (P < 0.05); all doses of FFC significant decreased red blood cell (RBC) increased Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) contents in serum of chickens (P < 0.05), and significantly decreased the contents of albumin (ALB) and total protein (TP) in serum (P < 0.05), but had no significant effect on alkaline phosphatase (ALP) contents(P > 0.05). FFC significantly increased malondialdehyde (MDA) content in serum and liver tissues, but decreased glutathione (GSH), Superoxide dismutase (SOD) and catalase (CAT) content (P < 0.05), and significantly inhibited the mRNA transcription and protein expression of antioxidant proteins nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone-1 (NQO-1)(P < 0.05). FFC also inhibited the content and the transcription level of cytochrome P4501A1(CYP1A1) and CYP2H1 in liver (P < 0.05). At the same time, FFC significantly promoted the apoptotic rate of hepatocytes and the mRNA transcription and protein expression of caspase-3 and caspase-6 (P < 0.05). With the increase of FFC concentration, liver injury became more and more serious, which affected liver function in chickens by inhibiting enzyme activity in Nrf2-ARE pathway to increase oxidative stress and promoting apoptotic protein expression to accelerate hepatocyte apoptosis.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yuanyuan Wei
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yuqing Cui
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yumemg Geng
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, 071001, China.
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agriculture University of Hebei, Baoding, 071001, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, 071001, China.
| |
Collapse
|
12
|
Yang Y, Yang J, Shang D, Li F, Wang L, Li F, Li Y, Sun Y, He S, Wu J. Tissue distribution and elimination features of florfenicol in hybrid sturgeon cultured in cool water. J Vet Pharmacol Ther 2018; 41:894-901. [DOI: 10.1111/jvp.12689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Yuanhao Yang
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Juanning Yang
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Derong Shang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality; Ministry of Agriculture; Yellow Sea Fishery Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality; Ministry of Agriculture; Yellow Sea Fishery Research Institute; Chinese Academy of Fishery Sciences; Qingdao China
| | - Lvzhou Wang
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Fenggang Li
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Yi Li
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Yuhang Sun
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Shuangheng He
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| | - Jinxing Wu
- Fisheries Research Institute of Shanxi Province; Yellow River Fisheries Research Institute Chinese Academy of Fishery Science; Supervision & Test Center for Fisheries Environment and Quality of Fishery Products of Ministry of Agriculture; Xi'an China
| |
Collapse
|
13
|
Ngo TPH, Smith P, Bartie KL, Thompson KD, Verner-Jeffreys DW, Hoare R, Adams A. Antimicrobial susceptibility of Flavobacterium psychrophilum isolates from the United Kingdom. JOURNAL OF FISH DISEASES 2018; 41:309-320. [PMID: 29064104 DOI: 10.1111/jfd.12730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Routine application of antimicrobials is the current treatment of choice for rainbow trout fry syndrome (RTFS) or bacterial coldwater disease (BCWD) caused by Flavobacterium psychrophilum. In this study, the antimicrobial susceptibilities of 133 F. psychrophilum isolates, 118 of which were from the UK, were evaluated by broth microdilution and disc diffusion methods following VET04-A2 and VET03-A guidelines of Clinical and Laboratory Standards Institute (CLSI), respectively. Isolates were categorized as wild type (fully susceptible, WT) or non-wild type (NWT) using normalized resistance interpretation (NRI)-determined cut-off values (COWT ). Broth microdilution testing showed that only 12% of UK isolates were WT to oxolinic acid (MIC COWT ≤ 0.25 mg/L) and 42% were WT for oxytetracycline (MIC COWT ≤ 0.25 mg/L). In contrast, all the isolates tested were WT (MIC COWT ≤ 2 mg/L) for florfenicol, the main antimicrobial for RTFS control in the UK. Disc diffusion-based COWT values were ≥51 mm for 10 μg amoxicillin, ≥44 mm for 30 μg florfenicol, ≥30 mm for 2 μg oxolinic acid and ≥51 mm for 30 μg oxytetracycline. There was a high categorical agreement between the classifications of the isolates by two testing methods for florfenicol (100%), oxytetracycline (93%) and oxolinic acid (99%).
Collapse
Affiliation(s)
- T P H Ngo
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - P Smith
- National University of Ireland, Galway, Ireland
| | - K L Bartie
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, UK
| | - D W Verner-Jeffreys
- The Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Weymouth, UK
| | - R Hoare
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - A Adams
- Institute of Aquaculture, University of Stirling, Stirling, UK
| |
Collapse
|