1
|
Ramachandran P, Ramirez A, Dinneny JR. Rooting for survival: how plants tackle a challenging environment through a diversity of root forms and functions. PLANT PHYSIOLOGY 2024; 197:kiae586. [PMID: 39657006 DOI: 10.1093/plphys/kiae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
The current climate crisis has global impacts and will affect the physiology of plants across every continent. Ensuring resilience of our agricultural and natural ecosystems to the environmental stresses imposed by climate change will require molecular insight into the adaptations employed by a diverse array of plants. However, most current studies continue to focus on a limited set of model species or crops. Root systems are particularly understudied even though their functions in water and nutrient uptake are likely pivotal for plant stress resilience and sustainable agriculture. In this review, we highlight anatomical adaptations in roots that enable plant survival in different ecological niches. We then present the current state of knowledge for the molecular underpinnings of these adaptations. Finally, we identify areas where future research using a biodiversity approach can fill knowledge gaps necessary for the development of climate-resilient crops of the future.
Collapse
Affiliation(s)
- Prashanth Ramachandran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
3
|
Ruan Y, Ling N, Jiang S, Jing X, He JS, Shen Q, Nan Z. Warming and altered precipitation independently and interactively suppress alpine soil microbial growth in a decadal-long experiment. eLife 2024; 12:RP89392. [PMID: 38647539 PMCID: PMC11034942 DOI: 10.7554/elife.89392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Warming and precipitation anomalies affect terrestrial carbon balance partly through altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is known about how such processes responds to simultaneous regime shifts in temperature and precipitation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precipitation manipulation. Our results showed that the growth of major taxa was suppressed by the single and combined effects of temperature and precipitation, eliciting 40-90% of growth reduction of whole community. The antagonistic interactions of warming and altered precipitation on population growth were common (~70% taxa), represented by the weak antagonistic interactions of warming and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter and Pseudonocardia genera had high growth rates under changed climate regimes. These results are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems suffering from multiple climate change factors.
Collapse
Affiliation(s)
- Yang Ruan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Shengjing Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking UniversityBeijingChina
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjingChina
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| |
Collapse
|
4
|
Chen Y, Xu Y, Ma Y, Lin J, Ruan A. Microbial community structure and its driving mechanisms in the Hangbu estuary of Chaohu Lake under different sedimentary areas. ENVIRONMENTAL RESEARCH 2023; 238:117153. [PMID: 37726029 DOI: 10.1016/j.envres.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Estuaries are known for their high ecological diversity and biological productivity. Sediment microorganisms, as crucial components of estuarine ecosystems, play a pivotal role in reflecting the intricate and dynamic ecological niches. However, our research on microbial community characteristics in estuarine ecosystems under different sedimentary types remains limited. In this study, we collected a total of 27 samples from three sampling sites at Hangbu estuary in Chaohu Lake, and three sedimentary areas were classified based on the overlying water flow conditions and sediment particle properties to elucidate their microbial community structure, environmental drivers, assembly processes, and co-occurrence network characteristics. Our results showed significant differences in microbial community composition and diversity among three sedimentary areas. Redundancy analysis indicated that the differences in microbial community composition at the OTU level among the three sedimentary areas were mainly determined by nitrate-nitrogen, temperature, and water content. Phylogenetic bin-based null model analysis revealed that temperature was a key factor influencing deterministic processes among the three sedimentary areas, while stochastic processes predominantly governed the assembly of microbial communities. In addition, co-occurrence network analysis demonstrated that the network in the hydraulically driven sedimentary area of the lake, consisting mainly of medium and fine silt, had the highest complexity, stability, and cohesion, but was missing potential keystone taxa. The remaining two sedimentary areas had 5 and 8 potential keystone taxa, respectively. Overall, our study proposes the delineation of sedimentary types and comprehensively elucidates the microbial community characteristics under different sedimentary areas, providing a new perspective for studying sediment microbial community structure and helping future scholars systematically study ecological dynamics in estuaries.
Collapse
Affiliation(s)
- Yang Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yaofei Xu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yunmei Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jie Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
5
|
Dabravolski SA, Isayenkov SV. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3225. [PMID: 36501264 PMCID: PMC9736550 DOI: 10.3390/plants11233225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
6
|
Wang K, Pan R, Fei H, Tong Q, Han F. Changes in soil prokaryotic communities and nitrogen cycling functions along a groundwater table drawdown gradient in desert wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156868. [PMID: 35752234 DOI: 10.1016/j.scitotenv.2022.156868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Desert wetlands are evolving into deserts by groundwater table (GWT) drawdown. However, the changes in microbial communities and functions during the GWT drawdown are unclear, which hinders the predictive power of biogeochemical processes across the desertification. Here, 16S rRNA gene sequencing, PICRUSt2 and qPCR were used to investigate soil prokaryotic diversity, composition and nitrogen cycling gene abundance at four vegetation types [flooded swamp (FS), drained swamp (DS), desert grassland (DG), and bare sandy land (BS)] along a GWT decline gradient in the Mu Us Desert, northern China. Results showed that prokaryotic Shannon and Chao1 indexes were significantly reduced at BS than those at FS (p < 0.05). Whereas no significant difference was observed between FS, DS and DG (p > 0.05). Distinct shifts in community composition were found along the GWT decline gradient. The dominant taxa gradually changed from obligate anaerobes and eutrophic microbes to facultative anaerobes, and finally to aerobic, oligotrophic and drought-tolerant microbes. Soil moisture was the most important factor in regulating the communities. In addition, GWT drawdown inhibited the relative abundance of genes involved in nitrogen fixation, assimilatory nitrite reduction, and nitrate oxidation, but enhanced the relative abundance of genes related to denitrification, assimilated nitrate reduction, ammonia oxidation and ammonification. Thus, GWT drawdown inhibits nitrogen input potential and exacerbates nitrogen loss potential. These results help in understanding the succession characteristics of desert wetland desertification.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ruopeng Pan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyan Fei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Qian Tong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
7
|
Wang X, Ren Y, Yu Z, Shen G, Cheng H, Tao S. Effects of environmental factors on the distribution of microbial communities across soils and lake sediments in the Hoh Xil Nature Reserve of the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156148. [PMID: 35609688 DOI: 10.1016/j.scitotenv.2022.156148] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Comparison of microbial community diversity and composition of terrestrial and aquatic ecosystems in undisturbed regions could expand our understanding on the mechanisms of microbial community assembly and ecosystem responses to environmental change. This study investigated the spatial distribution of bacterial community diversity and composition in the lakeshore soils and lake sediments from one of the best preserved nature reserves, Hoh Xil on the Qinghai-Tibetan Plateau, and explored the corresponding environmental drivers. A total of 36 sediment and soil samples were collected from six alpine lakes and the corresponding shore zones, and their bacterial community structure was identified by high-throughput 16S rRNA gene sequencing. Significant difference (p < 0.05) in diversity and composition of bacterial communities between the soils and sediments was observed. Heterogeneous selection played a dominant role in shaping the spatial variations of bacterial communities between the soils and sediments. Results of canonical correspondence analysis showed that the difference in composition of bacterial communities at OTU level between the soils and sediments was mainly determined by the mean annual temperature, salinity, and contents of total organic carbon and total nitrogen. Structural equation modeling revealed that salinity played a significantly direct role in soil bacterial composition, while mean annual temperature indirectly affected the bacterial composition mainly through changing soil salinity. In contrast, the sediment bacterial composition was directly influenced primarily by the contents of total organic carbon and total nitrogen, while pH also had an important indirect effect on sediment bacterial composition. These results shed light on the distribution patterns of bacterial communities between lakeshore soils and lake sediments in high-altitude permafrost regions, and the major ecological processes and environmental drivers that shaped their bacterial communities, and provide insight into the mechanisms underlying microbial community assembly in such regions.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Ren
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Liu J, Wang C, Guo Z, Xu A, Pan K, Pan X. The effects of climate on soil microbial diversity shift after intensive agriculture in arid and semiarid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153075. [PMID: 35038533 DOI: 10.1016/j.scitotenv.2022.153075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/14/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In arid and semiarid desert areas, climate factors distinctly impact soil microbial community, which can also be greatly altered after agricultural practices at multiple spatial scales. However, it is still poorly unknown whether the effects of climate on soil microbial diversity change after intensive agriculture at a large spatial scale. To uncover this concern, we used time-interval archived soils, taken from paired desert and agricultural experiments at five field stations of the Chinese Ecosystem Research Network across northern China, and performed high-throughput sequencing. Herein, we discovered that the clustering pattern of soil microbial communities was influenced by precipitation at some extent in desert ecosystem, while not impacted by climate factors in agricultural ecosystem. In addition, the analyses on microbial communities presented that the effects of climate factors on the communities decreased after agricultural practices. Soil microbial richness was significantly correlated with environmental temperature in deserts (R = -0.39, P < 0.001) and croplands (R = 0.34, P = 0.004), while the coefficients were opposite; the richness-precipitation relationship was significant in deserts (R = 0.63, P < 0.001) while nonsignificant in croplands (R = -0.03, P = 0.815). Moreover, for the dominant microbial groups (the top 10 phyla), the relationships between their richness and climate factors differed in two land use types, and fewer significant correlations were observed in croplands. In summary, it can be indicated that the influences of climate on soil microbial communities are shifted after intensive agriculture, and the relations of the richness with climate factors are also weakened for both the total and dominant microbial groups. These results improve our comprehension about the effects of climate on soil microbial diversity after intensive agriculture in desert areas, which can help to project microbial diversity in varied land uses under the context of global climate changes.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changkun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiai Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Earth System Science Data Center, Nanjing 210008, China
| | - Xianzhang Pan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Short-Term Responses of Soil Microbial Communities to Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2022; 13:genes13050850. [PMID: 35627235 PMCID: PMC9142034 DOI: 10.3390/genes13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023] Open
Abstract
We analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species Enchytraeus crypticus) in modulating the community’s response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15–25 °C or 20–30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV). BIOLOG EcoPlates and 16S rDNA sequencing (Illumina) were used to assess the microbial community’s physiological profile and the bacterial community’s structure, respectively. The bacterial abundance (estimated by 16S rDNA qPCR) did not change. Most of the conditions led to an increase in microbial activity and a decrease in diversity. The structure of the bacterial community was particularly affected by higher air temperatures (20–30 °C, without E. crypticus) and floods (with E. crypticus). Effects were observed at the class, genera and OTU levels. The presence of invertebrates mostly resulted in the attenuation of the observed effects, highlighting the importance of considering microbiome–invertebrate interactions. Considering future climate changes, the effects described here raise concern. This study provides fundamental knowledge to develop effective strategies to mitigate these negative outcomes. However, long-term studies integrating biotic and abiotic factors are needed.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF—Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (I.H.); (M.N.G.-A.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203 Cartagena, Spain
- Correspondence: (I.H.); (M.N.G.-A.)
| |
Collapse
|
10
|
Parihar J, Parihar SP, Suravajhala P, Bagaria A. Spatial Metagenomic Analysis in Understanding the Microbial Diversity of Thar Desert. BIOLOGY 2022; 11:biology11030461. [PMID: 35336834 PMCID: PMC8945486 DOI: 10.3390/biology11030461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We present a systematic investigation of the distribution of microbial communities in arid and semi-arid regions of Thar Desert Rajasthan, India. Their responses in multiple environmental stresses, including surface soil, surface water and underground water were evaluated. We further assess the biotechnological potential of native microorganisms and discover functional species with results providing a detailed understanding of the abundance of microbial communities in these regions, associated with various stress-related biogeochemical and biotechnological processes. We hope our work will facilitate the development of effective future strategies for the use of extremophiles in complex environments. Abstract The arid and semi-arid regions of Rajasthan are one of the most extreme biomes of India, possessing diverse microbial communities that exhibit immense biotechnological potential for industries. Herein, we sampled study sites from arid and semi-arid regions of Thar Desert, Rajasthan, India and subjected them to chemical, physical and metagenomics analysis. The microbial diversity was studied using V3–V4 amplicon sequencing of 16S rRNA gene by Illumina MiSeq. Our metagenomic analyses revealed that the sampled sites consist mainly of Proteobacteria (19–31%) followed by unclassified bacteria (5–21%), Actinobacteria (3–25%), Planctomycetes (5–13%), Chloroflexi (2–14%), Bacteroidetes (3–12%), Firmicutes (3–7%), Acidobacteria (1–4%) and Patescibacteria (1–4%). We have found Proteobacteria in abundance which is associated with a range of activities involved in biogeochemical cycles such as carbon, nitrogen, and sulphur. Our study is perhaps the first of its kind to explore soil bacteria from arid and semi-arid regions of Rajasthan, India. We believe that the new microbial candidates found can be further explored for various industrial and biotechnological applications.
Collapse
Affiliation(s)
- Jagdish Parihar
- Department of Physics, Manipal University Jaipur, Jaipur 303007, India
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| | - Prashanth Suravajhala
- Bioclues.org, Vivekananda Nagar, Kukatpally, Hyderabad 500072, India
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Amritapuri Campus, Clappana P.O., Kollam 690525, India
| | - Ashima Bagaria
- Department of Physics, Manipal University Jaipur, Jaipur 303007, India
| |
Collapse
|
11
|
Shelyakin PV, Semenkov IN, Tutukina MN, Nikolaeva DD, Sharapova AV, Sarana YV, Lednev SA, Smolenkov AD, Gelfand MS, Krechetov PP, Koroleva TV. The Influence of Kerosene on Microbiomes of Diverse Soils. Life (Basel) 2022; 12:221. [PMID: 35207510 PMCID: PMC8878009 DOI: 10.3390/life12020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 01/04/2023] Open
Abstract
One of the most important challenges for soil science is to determine the limits for the sustainable functioning of contaminated ecosystems. The response of soil microbiomes to kerosene pollution is still poorly understood. Here, we model the impact of kerosene leakage on the composition of the topsoil microbiome in pot and field experiments with different loads of added kerosene (loads up to 100 g/kg; retention time up to 360 days). At four time points we measured kerosene concentration and sequenced variable regions of 16S ribosomal RNA in the microbial communities. Mainly alkaline Dystric Arenosols with low content of available phosphorus and soil organic matter had an increased fraction of Actinobacteriota, Firmicutes, Nitrospirota, Planctomycetota, and, to a lesser extent, Acidobacteriota and Verrucomicobacteriota. In contrast, in highly acidic Fibric Histosols, rich in soil organic matter and available phosphorus, the fraction of Acidobacteriota was higher, while the fraction of Actinobacteriota was lower. Albic Luvisols occupied an intermediate position in terms of both physicochemical properties and microbiome composition. The microbiomes of different soils show similar response to equal kerosene loads. In highly contaminated soils, the proportion of anaerobic bacteria-metabolizing hydrocarbons increased, whereas the proportion of aerobic bacteria decreased. During the field experiment, the soil microbiome recovered much faster than in the pot experiments, possibly due to migration of microorganisms from the polluted area. The microbial community of Fibric Histosols recovered in 6 months after kerosene had been loaded, while microbiomes of Dystric Arenosols and Albic Luvisols did not restore even after a year.
Collapse
Affiliation(s)
- Pavel V. Shelyakin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia; (P.V.S.); (M.N.T.); (D.D.N.); (M.S.G.)
- Department of Computational Biology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ivan N. Semenkov
- Faculty of Geography, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.S.); (S.A.L.); (P.P.K.); (T.V.K.)
| | - Maria N. Tutukina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia; (P.V.S.); (M.N.T.); (D.D.N.); (M.S.G.)
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
- Lab of Functional Genomics and Cellular Stress, Institute of Cell Biophysics RAS, 142290 Moscow, Russia
| | - Daria D. Nikolaeva
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia; (P.V.S.); (M.N.T.); (D.D.N.); (M.S.G.)
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Anna V. Sharapova
- Faculty of Geography, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.S.); (S.A.L.); (P.P.K.); (T.V.K.)
| | - Yulia V. Sarana
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Sergey A. Lednev
- Faculty of Geography, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.S.); (S.A.L.); (P.P.K.); (T.V.K.)
| | | | - Mikhail S. Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia; (P.V.S.); (M.N.T.); (D.D.N.); (M.S.G.)
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| | - Pavel P. Krechetov
- Faculty of Geography, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.S.); (S.A.L.); (P.P.K.); (T.V.K.)
| | - Tatiana V. Koroleva
- Faculty of Geography, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.S.); (S.A.L.); (P.P.K.); (T.V.K.)
| |
Collapse
|
12
|
Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides. Int J Mol Sci 2021; 22:ijms222312979. [PMID: 34884785 PMCID: PMC8657635 DOI: 10.3390/ijms222312979] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Drought is a major abiotic stress imposed by climate change that affects crop production and soil microbial functions. Plants respond to water deficits at the morphological, biochemical, and physiological levels, and invoke different adaptation mechanisms to tolerate drought stress. Plant growth-promoting bacteria (PGPB) can help to alleviate drought stress in plants through various strategies, including phytohormone production, the solubilization of mineral nutrients, and the production of 1-aminocyclopropane-1-carboxylate deaminase and osmolytes. However, PGPB populations and functions are influenced by adverse soil factors, such as drought. Therefore, maintaining the viability and stability of PGPB applied to arid soils requires that the PGPB have to be protected by suitable coatings. The encapsulation of PGPB is one of the newest and most efficient techniques for protecting beneficial bacteria against unfavorable soil conditions. Coatings made from polysaccharides, such as sodium alginate, chitosan, starch, cellulose, and their derivatives, can absorb and retain substantial amounts of water in the interstitial sites of their structures, thereby promoting bacterial survival and better plant growth.
Collapse
|
13
|
Yuan D, Zheng L, Tan Q, Wang X, Xing Y, Wang H, Wang S, Zhu G. Comammox activity dominates nitrification process in the sediments of plateau wetland. WATER RESEARCH 2021; 206:117774. [PMID: 34757282 DOI: 10.1016/j.watres.2021.117774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidation (comammox) has increased our understanding of nitrification. Although comammox has been shown to play an important role in plain wetland ecosystems, studies of comammox contribution are still limited in plateau wetland ecosystems. Here, we analyzed the abundance, activity, community and biogeochemical mechanisms of the comammox bacteria in Yunnan-kweichow and Qinghai-Tibet plateau wetlands from elevations of 1000-5000 m. Comammox bacteria were widely distributed in all 16 sediment samples with abundances higher than 0.96 ± 0.26 × 107 copies g-1 (n = 16). Comammox showed high activity (1.18 ± 0.17 to 1.98 ± 0.08 mg N kg-1 d-1) at high-elevation (3000-5000 m) and dominated the nitrification process (activity contribution: 37.20 - 60.62%). The activity contribution of ammonia-oxidizing bacteria (1.07 ± 0.08 to 2.79 ± 0.35 mg N kg-1 d-1) dominated the nitrification process (44.55 - 64.15%) in low-elevation (1000-3000 m) samples. All detected comammox Nitrospira belonged to clade A, while clade B was not detected. Elevation always had a strongest effect on key comammox species. Thus, we infer that elevation may drive the high relative abundance of the species Candidatus Nitrospira nitrificans (avg. 12.40%) and the low relative abundance of the species Nitrospira sp. SG-bin2 (avg. 4.75%) in high-elevation samples that showed a high comammox activity (avg. 1.62 mg N kg-1 d-1) and high contribution (avg. 46.08%) to the nitrification process. These results indicate that comammox may be an important and currently underestimated microbial nitrification process in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huipeng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Alsharif W, Saad MM, Hirt H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Front Microbiol 2020; 11:1666. [PMID: 32793155 PMCID: PMC7387410 DOI: 10.3389/fmicb.2020.01666] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
A large portion of the earth's surface consists of arid, semi-arid and hyper-arid lands. Life in these regions is profoundly challenged by harsh environmental conditions of water limitation, high levels of solar radiation and temperature fluctuations, along with soil salinity and nutrient deficiency, which have serious consequences on plant growth and survival. In recent years, plants that grow in such extreme environments and their naturally associated beneficial microbes have attracted increased interest. The rhizosphere, rhizosheath, endosphere, and phyllosphere of desert plants display a perfect niche for isolating novel microbes. They are well adapted to extreme environments and offer an unexploited reservoir for bio-fertilizers and bio-control agents against a wide range of abiotic and biotic stresses that endanger diverse agricultural ecosystems. Their properties can be used to improve soil fertility, increase plant tolerance to various environmental stresses and crop productivity as well as benefit human health and provide enough food for a growing human population in an environment-friendly manner. Several initiatives were launched to discover the possibility of using beneficial microbes. In this review, we will be describing the efforts to explore the bacterial diversity associated with desert plants in the arid, semi-arid, and hyper-arid regions, highlighting the latest discoveries and applications of plant growth promoting bacteria from the most studied deserts around the world.
Collapse
Affiliation(s)
- Wiam Alsharif
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Vásquez-Dean J, Maza F, Morel I, Pulgar R, González M. Microbial communities from arid environments on a global scale. A systematic review. Biol Res 2020; 53:29. [PMID: 32631429 PMCID: PMC7336661 DOI: 10.1186/s40659-020-00296-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
Arid environments are defined by the lack of water availability, which is directly related to the mean annual precipitation (MAP), and high values of solar irradiation, which impacts the community composition of animals, plants, and the microbial structure of the soil. Recent advances in NGS technologies have expanded our ability to characterize microbiomes, allowing environmental microbiologists to explore the complete microbial structure. Intending to identify and describe the state-of-the-art of bacterial communities in arid soils at a global scale, and to address the effect that some environmental features may have on them, we performed a systematic review based on the PRISMA guideline. Using a combination of keywords, we identified a collection of 66 studies, including 327 sampled sites, reporting the arid soil bacterial community composition by 16S rDNA gene high-throughput sequencing. To identify factors that can modulate bacterial communities, we extracted the geographical, environmental, and physicochemical data. The results indicate that even though each sampled site was catalogued as arid, they show wide variability in altitude, mean annual temperature (MAT), soil pH and electric conductivity, within and between arid environments. We show that arid soils display a higher abundance of Actinobacteria and lower abundance of Proteobacteria, Cyanobacteria, and Planctomycetes, compared with non-arid soil microbiomes, revealing that microbial structure seems to be strongly modulated by MAP and MAT and not by pH in arid soils. We observed that environmental and physicochemical features were scarcely described among studies, hence, we propose a reporting guideline for further analysis, which will allow deepening the knowledge of the relationship between the microbiome and abiotic factors in arid soil. Finally, to understand the academic collaborations landscape, we developed an analysis of the author's network, corroborating a low degree of connectivity and collaborations in this research topic. Considering that it is crucial to understand how microbial processes develop and change in arid soils, our analysis emphasizes the need to increase collaborations between research groups worldwide.
Collapse
Affiliation(s)
- Javiera Vásquez-Dean
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Center for Genome Regulation (CGR), Santiago, Chile
| | - Isidora Morel
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Scimetrica Lab, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.
- Center for Genome Regulation (CGR), Santiago, Chile.
| |
Collapse
|
16
|
|
17
|
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9040166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
Collapse
|