1
|
Xu G, Lyu H, Tang J. Editorial: Microorganisms in dehalogenation: regulation and enhancement. Front Microbiol 2025; 16:1559619. [PMID: 39935645 PMCID: PMC11811096 DOI: 10.3389/fmicb.2025.1559619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Hashmi MZ, Mughal AF. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2167-2181. [PMID: 39762530 DOI: 10.1007/s11356-024-35831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H2 or competing electron acceptors and other electron donors.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Amina F Mughal
- The State University of New York College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
3
|
Matturro B, Di Franca ML, Tonanzi B, Cruz Viggi C, Aulenta F, Di Leo M, Giandomenico S, Rossetti S. Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy). Microorganisms 2023; 11:2782. [PMID: 38004793 PMCID: PMC10673493 DOI: 10.3390/microorganisms11112782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maria Letizia Di Franca
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Barbara Tonanzi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Magda Di Leo
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Santina Giandomenico
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| |
Collapse
|
4
|
Botti A, Musmeci E, Negroni A, Capuozzo R, Fava F, Biagi E, Zanaroli G. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165485. [PMID: 37442469 DOI: 10.1016/j.scitotenv.2023.165485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The use of biodegradable plastics is constantly raising, increasing the likeliness for these polymers to end up in the environment. Environmental applications foreseeing the intentional release of biodegradable plastics have been also recently proposed, e.g., for polyhydroxyalkanoates (PHAs) acting as slow hydrogen releasing compounds to stimulate microbial reductive dehalogenation processes. However, the effects of their release into the environment on the ecosystems still need to be thoroughly explored. In this work, the use of PHAs to enhance the microbial reductive dechlorination of polychlorobiphenyls (PCBs) and their impact on the metabolic and compositional features of the resident microbial community have been investigated in laboratory microcosms of a polluted marine sediment from Mar Piccolo (Taranto, Italy), and compared with recent findings on a different contaminated marine sediment from Pialassa della Baiona (Ravenna, Italy). A decreased biostimulation efficiency of PHAs on PCBs reductive dechlorination was observed in the sediment from Mar Piccolo, with respect to the sediment from Pialassa della Baiona, suggesting that the sediments' physical-chemical characteristics and/or the biodiversity and composition of its microbial community might play a key role in determining the outcome of this biostimulation strategy. Regardless of the sediment origin, PHAs were found to have a specific and pervasive effect on the sediment microbial community, reducing its biodiversity, defining a newly arranged microbial core of primary degraders and consequently affecting, in a site-specific way, the abundance of subdominant bacteria, possibly cross-feeders. Such potential to dramatically change the structure of autochthonous microbial communities should be carefully considered, since it might have secondary effects, e.g., on the natural biogeochemical cycles.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Rosaria Capuozzo
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|
5
|
Botti A, Biagi E, Musmeci E, Breglia A, Degli Esposti M, Fava F, Zanaroli G. Effect of polyhydroxyalkanoates on the microbial reductive dechlorination of polychlorinated biphenyls and competing anaerobic respirations in a marine microbial culture. MARINE POLLUTION BULLETIN 2023; 186:114458. [PMID: 36493518 DOI: 10.1016/j.marpolbul.2022.114458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The effect of polyhydroxyalkanoates (PHAs) with different composition on the reductive dechlorination activity of a polychlorinated biphenyls (PCBs) dechlorinating marine microbial community and on the activity of sulfate-reducing (SRB) and methanogenic bacteria (MB), were investigated in marine sediment microcosms and compared with the main monomer, 3-hydroxybutyric acid (3HB). Despite PHAs were fermented more slowly than 3HB, all electron donors stimulated constantly sulfate-reduction, methanogenesis and, only transiently, PCB reductive dechlorination. No relevant differences were observed with different compositions of PHAs. According to electron balances, the majority of the supplied electrons (50 %) were consumed by SRB and to less extent by MB (9-31 %), while a small percentage (0.01 %) was delivered to OHRB. In the studied conditions PHAs were confirmed as potential slow‑hydrogen releasing compounds in marine environment but their fermentation rate was sufficiently high to mainly stimulate the competitors of organohalide respring bacteria for electron donors.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Alessia Breglia
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Micaela Degli Esposti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
6
|
Di Franca ML, Matturro B, Crognale S, Zeppilli M, Dell’Armi E, Majone M, Petrangeli Papini M, Rossetti S. Microbiome Composition and Dynamics of a Reductive/Oxidative Bioelectrochemical System for Perchloroethylene Removal: Effect of the Feeding Composition. Front Microbiol 2022; 13:951911. [PMID: 35923400 PMCID: PMC9340161 DOI: 10.3389/fmicb.2022.951911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.e., anaerobic mineral medium (MM), synthetic groundwater (SG), and real groundwater (RG)] differing in presence of sulfate, nitrate, and iron (III). In addition, the main biomarkers of the dechlorination process have been monitored in the system under various conditions. Among them, Dehalococcoides mccartyi 16S rRNA and reductive dehalogenase genes (tceA, bvcA, and vcrA) involved in anaerobic dechlorination have been quantified. The etnE and etnC genes involved in aerobic dechlorination have also been quantified. The feeding composition affected the microbiome, in particular when the BES was fed with RG. Sulfuricurvum, enriched in the reductive compartment, operated with MM and SG, suggesting complex interactions in the sulfur cycle mostly including sulfur oxidation occurring at the anodic counter electrode (MM) or coupled to nitrate reduction (SG). Moreover, the known Mycobacterium responsible for natural attenuation of VC by aerobic degradation was found abundant in the oxidative compartment fed with RG, which was in line with the high VC removal observed (92 ± 2%). D. mccartyi was observed in all the tested conditions ranging from 8.78E + 06 (with RG) to 2.35E + 07 (with MM) 16S rRNA gene copies/L. tceA was found as the most abundant reductive dehalogenase gene in all the conditions explored (up to 2.46 E + 07 gene copies/L in MM). The microbiome dynamics and the occurrence of biomarkers of dechlorination, along with the kinetic performance of the system under various feeding conditions, suggested promising implications for the scale-up of the BES, which couples reductive with oxidative dechlorination to ensure the complete removal of highly chlorinated ethylene and mobile low-chlorinated by-products.
Collapse
Affiliation(s)
- Maria L. Di Franca
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Bruna Matturro
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Simona Crognale
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Simona Rossetti
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
7
|
Ewald JM, Schnoor JL, Mattes TE. Combined read- and assembly-based metagenomics to reconstruct a Dehalococcoides mccartyi genome from PCB-contaminated sediments and evaluate functional differences among organohalide-respiring consortia in the presence of different halogenated contaminants. FEMS Microbiol Ecol 2022; 98:6602352. [PMID: 35665806 DOI: 10.1093/femsec/fiac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Microbial communities that support respiration of halogenated organic contaminants by Dehalococcoides sp. facilitate full-scale bioremediation of chlorinated ethenes and demonstrate the potential to aid in bioremediation of halogenated aromatics like polychlorinated biphenyls (PCBs). However, it remains unclear if Dehalococcoides-containing microbial community dynamics observed in sediment-free systems quantitatively resemble that of sediment environments. To evaluate that possibility we assembled, annotated, and analyzed a Dehalococcoides sp. metagenome-assembled genome (MAG) from PCB-contaminated sediments. Phylogenetic analysis of reductive dehalogenase gene (rdhA) sequences within the MAG revealed that pcbA1 and pcbA4/5-like rdhA were absent, while several candidate PCB dehalogenase genes and potentially novel rdhA sequences were identified. Using a compositional comparative metagenomics approach, we quantified Dehalococcoides-containing microbial community structure shifts in response to halogenated organics and the presence of sediments. Functional level analysis revealed significantly greater abundances of genes associated with cobamide remodeling and horizontal gene transfer in tetrachloroethene-fed cultures as compared to halogenated aromatic-exposed consortia with or without sediments, despite little evidence of statistically significant differences in microbial community taxonomic structure. Our findings support the use of a generalizable comparative metagenomics workflow to evaluate Dehalococcoides-containing consortia in sediments and sediment-free environments to eludicate functions and microbial interactions that facilitate bioremediation of halogenated organic contaminants.
Collapse
Affiliation(s)
- Jessica M Ewald
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
8
|
Xu G, Zhang N, Zhao X, Chen C, Zhang C, He J. Offshore Marine Sediment Microbiota Respire Structurally Distinct Organohalide Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3065-3075. [PMID: 35187933 DOI: 10.1021/acs.est.1c06680] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine sediments are a major sink of organohalide pollutants, but the potential for offshore marine microbiota to transform these pollutants remains underexplored. Here, we report dehalogenation of diverse organohalide pollutants by offshore marine microbiota. Dechlorination of polychlorinated biphenyls (PCBs) was observed in four marine sediment microcosms, which was positively correlated with in situ PCB contamination. Three distinct enrichment cultures were enriched from these PCB-dechlorinating microcosms using tetrachloroethene (PCE) as the sole organohalide. All enrichment cultures also dehalogenated polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), and 2,4,6-trichlorophenol (2,4,6-TCP). Particularly, two enrichments completely debrominated penta-BDEs, the first observation of complete debromination of penta-BDEs in marine cultures. Multiple Dehalococcoides and uncultivated Dehalococcoidia were identified in the initial sediment microcosms, but only Dehalococcoides was dominant in all enrichments. Transcription of a gene encoding a PcbA5-like reductive dehalogenase (RDase) was observed during dehalogenation of different organohalides in each enrichment culture. When induced by a single organohalide substrate, the PcbA5-like RDase dehalogenated all tested organohalides (PCE, PCBs, PBDEs, TBBPA, and 2,4,6-TCP) in in vitro tests, suggesting its involvement in dehalogenation of structurally distinct organohalides. Our results demonstrate the versatile dehalogenation capacity of marine Dehalococcoidia and contribute to a better understanding of the fate of these pollutants in marine systems.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- NUS Graduate School─Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Ning Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
9
|
Avona A, Capodici M, Di Trapani D, Giustra MG, Greco Lucchina P, Lumia L, Di Bella G, Viviani G. Preliminary insights about the treatment of contaminated marine sediments by means of bioslurry reactor: Process evaluation and microbiological characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150708. [PMID: 34600982 DOI: 10.1016/j.scitotenv.2021.150708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.
Collapse
Affiliation(s)
- Alessia Avona
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Marco Capodici
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy.
| | - Maria Gabriella Giustra
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Pietro Greco Lucchina
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Lucia Lumia
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Gaetano Di Bella
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| |
Collapse
|
10
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
11
|
Hardoim CCP, Ramaglia ACM, Lôbo-Hajdu G, Custódio MR. Community composition and functional prediction of prokaryotes associated with sympatric sponge species of southwestern Atlantic coast. Sci Rep 2021; 11:9576. [PMID: 33953214 PMCID: PMC8100286 DOI: 10.1038/s41598-021-88288-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Prokaryotes contribute to the health of marine sponges. However, there is lack of data on the assembly rules of sponge-associated prokaryotic communities, especially for those inhabiting biodiversity hotspots, such as ecoregions between tropical and warm temperate southwestern Atlantic waters. The sympatric species Aplysina caissara, Axinella corrugata, and Dragmacidon reticulatum were collected along with environmental samples from the north coast of São Paulo (Brazil). Overall, 64 prokaryotic phyla were detected; 51 were associated with sponge species, and the dominant were Proteobacteria, Bacteria (unclassified), Cyanobacteria, Crenarchaeota, and Chloroflexi. Around 64% and 89% of the unclassified operational taxonomical units (OTUs) associated with Brazilian sponge species showed a sequence similarity below 97%, with sequences in the Silva and NCBI Type Strain databases, respectively, indicating the presence of a large number of unidentified taxa. The prokaryotic communities were species-specific, ranging 56%-80% of the OTUs and distinct from the environmental samples. Fifty-four lineages were responsible for the differences detected among the categories. Functional prediction demonstrated that Ap. caissara was enriched for energy metabolism and biosynthesis of secondary metabolites, whereas D. reticulatum was enhanced for metabolism of terpenoids and polyketides, as well as xenobiotics' biodegradation and metabolism. This survey revealed a high level of novelty associated with Brazilian sponge species and that distinct members responsible from the differences among Brazilian sponge species could be correlated to the predicted functions.
Collapse
Affiliation(s)
- C C P Hardoim
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil.
| | - A C M Ramaglia
- Institute of Biosciences, São Paulo State University, Coastal Campus of São Vicente, São Paulo, Brazil
| | - G Lôbo-Hajdu
- Department of Genetic, Biology Institute Roberto Alcântara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - M R Custódio
- Department of Physiology, Center for Marine Biology, Biosciences Institute and NP-Biomar, São Paulo University, São Paulo, Brazil
| |
Collapse
|
12
|
Shen R, Yu L, Xu P, Liang Z, Lu Q, Liang D, He Z, Wang S. Water content as a primary parameter determines microbial reductive dechlorination activities in soil. CHEMOSPHERE 2021; 267:129152. [PMID: 33316619 DOI: 10.1016/j.chemosphere.2020.129152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Organohalide-respiring bacteria (OHRB) remove halogens from a variety of organohalides, which have been utilized for in situ remediation of different contaminated sites, e.g., groundwater, sediment and soil. Nonetheless, dehalogenation activities of OHRB and consequent remediation efficiencies can be synergistically affected by water content, soil type and inoculated/indigenous OHRB, which need to be disentangled to identify the key driving parameter and to elucidate the underlying mechanism. In this study, we investigated the impacts of water content (0-100%), soil type (laterite, brown soil and black soil) and inoculated OHRB (Dehalococcoides mccartyi CG1 and a river sediment culture) on reductive dechlorination of perchloroethene (PCE) and polychlorinated biphenyls (PCBs), as well as on associated microbial communities. Results suggested that the water content as a primary rate-limiting parameter governed dechlorination activities in environmental matrices, particularly in the soil, possibly through mediation of cell-to-organohalide mobility of OHRB. By contrast, interestingly, organohalide-dechlorinating microbial communities were predominantly clustered based on soil types, rather than water contents or inoculated OHRB. This study provided knowledge on the impacts of major parameters on OHRB-mediated reductive dechlorination in groundwater, sediment and soil for future optimization of in situ bioremediation of organohalides.
Collapse
Affiliation(s)
- Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, 100191, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Tang S, Song X, Wang Q, Wang S. Effects of two surfactants on microbial diversity of a PCE-degrading microbial consortium. CHEMOSPHERE 2020; 261:127685. [PMID: 32771713 DOI: 10.1016/j.chemosphere.2020.127685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/23/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The effects of two representative surfactants, Rhamnolipids and Tween 80, on the microbial diversity of a PCE-degrading consortium during surfactant-enhanced biodegradation, were explored. The biodegradation efficiency was increased from 47.25% to 73.44%, and 47.25%-66.69%, with the addition of Rhamnolipid at 10 mg/L and Tween 80 at 50 mg/L, respectively. PCE biodegradation kinetics can be described by the pseudo-first-order reaction model for both scenarios. Analyses of alpha and beta indices of the microbial consortium showed that the microbial diversity of both groups exposed to either surfactant was not significantly different from the PCE only group. However, the bacterial abundance in the consortium changed significantly at both the phylum and genus levels. The results demonstrated that the composition of the PCE-degrading consortium is relatively stable, but the exposure to both surfactants results in the enrichment of some genera, which could contribute to the increased biodegradation efficiency.
Collapse
Affiliation(s)
- Shiyue Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China
| | - Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China.
| | - Shui Wang
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Road, Nanjing, Jiangsu 210036, China
| |
Collapse
|
14
|
Vuillemin A, Kerrigan Z, D'Hondt S, Orsi WD. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay. FEMS Microbiol Ecol 2020; 96:fiaa223. [PMID: 33150943 PMCID: PMC7688785 DOI: 10.1093/femsec/fiaa223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
Chloroflexi are widespread in subsurface environments, and recent studies indicate that they represent a major fraction of the communities in subseafloor sediment. Here, we compare the abundance, diversity, metabolic potential and gene expression of Chloroflexi from three abyssal sediment cores from the western North Atlantic Gyre (water depth >5400 m) covering up to 15 million years of sediment deposition, where Chloroflexi were found to represent major components of the community at all sites. Chloroflexi communities die off in oxic red clay over 10-15 million years, and gene expression was below detection. In contrast, Chloroflexi abundance and gene expression at the anoxic abyssal clay site increase below the seafloor and peak in 2-3 million-year-old sediment, indicating a comparably higher activity. Metatranscriptomes from the anoxic site reveal increased expression of Chloroflexi genes involved in cell wall biogenesis, protein turnover, inorganic ion transport, defense mechanisms and prophages. Phylogenetic analysis shows that these Chloroflexi are closely related to homoacetogenic subseafloor clades and actively transcribe genes involved in sugar fermentations, gluconeogenesis and Wood-Ljungdahl pathway in the subseafloor. Concomitant expression of cell division genes indicates that these putative homoacetogenic Chloroflexi are actively growing in these million-year-old anoxic abyssal sediments.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| | - Zak Kerrigan
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - Steven D'Hondt
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 South Ferry Road, Narragansett, RI 02882, USA
| | - William D Orsi
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| |
Collapse
|
15
|
Matturro B, Mascolo G, Rossetti S. Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. N Biotechnol 2020; 56:96-102. [DOI: 10.1016/j.nbt.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
|
16
|
Pan Y, Chen J, Zhou H, Cheung SG, Tam NFY. Degradation of BDE-47 in mangrove sediments with amendment of extra carbon sources. MARINE POLLUTION BULLETIN 2020; 153:110972. [PMID: 32056850 DOI: 10.1016/j.marpolbul.2020.110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in coastal wetlands but their remediation is still difficult. In this study, different carbon sources, namely formate, acetate, pyruvate, lactate, succinate, methanol and ethanol, were added to mangrove sediments contaminated with BDE-47, a common PBDE congener, to enhance its degradation. After 2-month incubation, all carbon addition significantly enhanced degradation percentages. The residual BDE-47 percentage significantly correlated with the abundance of total bacteria and Dehalococcoides spp. The addition of methanol, acetate and succinate also achieved significantly higher degradation rates and shorter half-lives than sediments without carbon amendment at the end of 5-month incubation, although degradation percentages were comparable between sediments with and without extra carbon. The degradation pathway based on the profiles of degradation products was also similar among treatments. The results indicated the stimulatory effect of extra carbon sources on BDE-47 degradation in contaminated sediments was carbon- and time-specific.
Collapse
Affiliation(s)
- Ying Pan
- College of Oceanography, Hohai University, Xikang Road, Nanjing 210098, PR China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road, Nanjing 210098, PR China
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Nanhai Avenue, 518060, PR China
| | - S G Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Matturro B, Pierro L, Frascadore E, Petrangeli Papini M, Rossetti S. Microbial Community Changes in a Chlorinated Solvents Polluted Aquifer Over the Field Scale Treatment With Poly-3-Hydroxybutyrate as Amendment. Front Microbiol 2018; 9:1664. [PMID: 30087670 PMCID: PMC6066499 DOI: 10.3389/fmicb.2018.01664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated the organohalide-respiring bacteria (OHRB) and the supporting microbial populations operating in a pilot scale plant employing poly-3-hydroxybutyrate (PHB), a biodegradable polymer produced by bacteria from waste streams, for the in situ bioremediation of groundwater contaminated by chlorinated solvents. The bioremediation was performed in ground treatment units, including PHB reactors as slow release source of electron donors, where groundwater extracted from the wells flows through before the re-infiltration to the low permeability zones of the aquifer. The coupling of the biological treatment with groundwater recirculation allowed to drastically reducing the contamination level and the remediation time by efficiently stimulating the growth of autochthonous OHRB and enhancing the mobilization of the pollutants. Quantitative PCR performed along the external treatment unit showed that the PHB reactor may efficiently act as an external incubator to growing Dehalococcoides mccartyi, known to be capable of fully converting chlorinated ethenes to innocuous end-products. The slow release source of electron donors for the bioremediation process allowed the establishment of a stable population of D. mccartyi, mainly carrying bvcA and vcrA genes which are implicated in the metabolic conversion of vinyl chloride to harmless ethene. Next generation sequencing was performed to analyze the phylogenetic diversity of the groundwater microbiome before and after the bioremediation treatment and allowed the identification of the microorganisms working closely with organohalide-respiring bacteria.
Collapse
Affiliation(s)
| | - Lucia Pierro
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
18
|
Holliger C, Nijenhuis I. Editorial: Special issue on anaerobic biological dehalogenation. FEMS Microbiol Ecol 2018; 94:4953414. [PMID: 29590392 DOI: 10.1093/femsec/fiy054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christof Holliger
- School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|