1
|
Thomas K. Pints of the past, flavours for the future. Fungal Biol 2024; 128:2503-2512. [PMID: 39653496 DOI: 10.1016/j.funbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 12/17/2024]
Abstract
The recreation of historic beverages is possible via contemporary fermentations carried out with microbes revived form the past. Advanced molecular techniques have recently provided opportunities to investigate historic samples, such as those from beer found in shipwrecks, and provide data on their character as well as identifying differences with contemporary products. In some cases, isolates of yeasts and bacteria create the possibility for authentic recreations of fermented beverages that can have cultural and nostalgic interest. They may also provide insights into the relationship between humans and microbes. The authenticity of recreations, however, can be limited by difficulties in recipe interpretation, differences in water composition and ingredients, possible genetic changes of the retrieved microbes, and from advances in production processes and equipment. Such organisms may also be used to produce novel foods and for other new industrial (non-food) applications. Microorganisms in nature are known to survive geological time-periods. Nevertheless, the survival of some copiotrophic 'fermentation' microbes for a century or more suggests a robust stress biology. Moreover, it facilitates the exciting prospect of recreating fermented products once enjoyed by our predecessors.
Collapse
Affiliation(s)
- Keith Thomas
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Science Complex, City Campus, SUNDERLAND, SR1 3SD, UK; Brewlab Limited, Unit 1 West Quay Court, Sunderland Enterprise Park, Sunderland, Tyne and Wear, SR5 2TE, UK.
| |
Collapse
|
2
|
Kiousi DE, Bucka-Kolendo J, Wojtczak A, Sokołowska B, Doulgeraki AI, Galanis A. Genomic Analysis and In Vitro Investigation of the Hop Resistance Phenotype of Two Novel Loigolactobacillus backii Strains, Isolated from Spoiled Beer. Microorganisms 2023; 11:microorganisms11020280. [PMID: 36838246 PMCID: PMC9967799 DOI: 10.3390/microorganisms11020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Loigolactobacillus backii is an important beer-spoiling species, exhibiting high hop tolerance. Here, we present the annotated whole genome sequence of two recently isolated strains, Lg. backii KKP 3565 and KKP 3566. Firstly, to study the genetic basis of the persistence of the two isolates in beer, a comprehensive bioinformatic analysis ensued. Their chromosome map was constructed, using whole-genome sequencing and assembly, revealing that the two strains carry genomes with a length of 2.79 Mb with a GC content of 40.68%. An average nucleotide identity (ANI) analysis demonstrated that the novel strains possess unique genomic sequences, also confirming their classification into the Lg. backii species. Their genome harbors numerous insertion sequences and plasmids, originating from other beer-spoiling species. Regarding their adaptation in brewery environment, homologous genes that confer resistance to hop were spotted, while the impact of hop bitters and pure beer on bacterial growth was investigated, in vitro. In brief, low hop concentrations were found to induce the proliferation of strains, while a higher concentration negatively affected their growth. Nonetheless, their ability to survive in pure beer indicated their tolerance to high hop concentrations. These results offer insight into the capacity of Lg. backii KKP 3566 and Lg. backii KKP 3566 to tolerate the extreme conditions prevalent in the brewery environment.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Joanna Bucka-Kolendo
- Culture Collection of Industrial Microorganisms, Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Adrian Wojtczak
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Attica, Greece
- Correspondence: (A.I.D.); (A.G.); Tel.: +30-21028-45940 (A.I.D.); +30-25510-30634 (A.G.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence: (A.I.D.); (A.G.); Tel.: +30-21028-45940 (A.I.D.); +30-25510-30634 (A.G.)
| |
Collapse
|
3
|
Xu Z, Wang K, Liu Z, Soteyome T, Deng Y, Chen L, Seneviratne G, Hong W, Liu J, Harro JM, Kjellerup BV. A novel procedure in combination of genomic sequencing, flow cytometry and routine culturing for confirmation of beer spoilage caused by Pediococcus damnosus in viable but nonculturable state. Lebensm Wiss Technol 2022; 154:112623. [DOI: 10.1016/j.lwt.2021.112623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Applied Microbiology China Southern, Insititue of Microbiology, Guangdong Academy of Sciences, 510070, China
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | | | | | | | | | | | | | - Wei Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | | | | |
Collapse
|
4
|
Abstract
Mixed microbial cultures create sour beers but many brewers do not know which microbes comprise their cultures. The objective of this work was to use deep sequencing to identify microorganisms in sour beers brewed by spontaneous and non-spontaneous methods. Twenty samples were received from brewers, which were processed for microbiome analysis by next generation sequencing. For bacteria, primers were used to amplify the V3-V4 region of the 16S rRNA gene; fungal DNA detection was performed using primers to amplify the entire internal transcribed spacer region. The sequencing results were then used for taxonomy assignment, sample composition, and diversity analyses, as well as nucleotide BLAST searching. We identified 60 genera and 140 species of bacteria, of which the most prevalent were Lactobacillus acetotolerans, Pediococcus damnosus, and Ralstonia picketti/mannitolilytica. In fungal identification, 19 genera and 26 species were found, among which the most common yeasts were Brettanomyces bruxellensis and Saccharomyces cerevisiae. In some cases, genetic material from more than 60 microorganisms was found in a single sample. In conclusion, we were able to determine the microbiomes of various mixed cultures used to produce beer, providing useful information to better understand the sour beer fermentation process and brewing techniques.
Collapse
|
5
|
ODFM, an omics data resource from microorganisms associated with fermented foods. Sci Data 2021; 8:113. [PMID: 33879798 PMCID: PMC8058077 DOI: 10.1038/s41597-021-00895-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
ODFM is a data management system that integrates comprehensive omics information for microorganisms associated with various fermented foods, additive ingredients, and seasonings (e.g. kimchi, Korean fermented vegetables, fermented seafood, solar salt, soybean paste, vinegar, beer, cheese, sake, and yogurt). The ODFM archives genome, metagenome, metataxonome, and (meta)transcriptome sequences of fermented food-associated bacteria, archaea, eukaryotic microorganisms, and viruses; 131 bacterial, 38 archaeal, and 28 eukaryotic genomes are now available to users. The ODFM provides both the Basic Local Alignment Search Tool search-based local alignment function as well as average nucleotide identity-based genetic relatedness measurement, enabling gene diversity and taxonomic analyses of an input query against the database. Genome sequences and annotation results of microorganisms are directly downloadable, and the microbial strains registered in the archive library will be available from our culture collection of fermented food-associated microorganisms. The ODFM is a comprehensive database that covers the genomes of an entire microbiome within a specific food ecosystem, providing basic information to evaluate microbial isolates as candidate fermentation starters for fermented food production.
Collapse
|
6
|
Thomas K, Ironside K, Clark L, Bingle L. Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keith Thomas
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Kayleigh Ironside
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| | - Lisa Clark
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Lewis Bingle
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| |
Collapse
|
7
|
Suzuki K, Shinohara Y, Kurniawan YN. Role of Plasmids in Beer Spoilage Lactic Acid Bacteria: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yuji Shinohara
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yohanes Novi Kurniawan
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| |
Collapse
|