1
|
Pinko D, Langlet D, Sur O, Husnik F, Holzmann M, Rubin-Blum M, Rahav E, Belkin N, Kucera M, Morard R, Abdu U, Upcher A, Abramovich S. Long-term functional kleptoplasty in benthic foraminifera. iScience 2025; 28:112028. [PMID: 40124518 PMCID: PMC11926685 DOI: 10.1016/j.isci.2025.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Foraminifera are highly diverse rhizarian protists, with some lineages having developed the ability to retain chloroplasts from algal prey (kleptoplasty). Recently, we revealed the evolutionary relationship between kleptoplasty and algal symbiosis in the benthic foraminifera Hauerina diversa. In this study, we explored fundamental aspects of host-kleptoplast interactions. The photosynthetic rates of H. diversa show the sequestered kleptoplast activity under a wide range of light intensities with no signs of photoinhibition. This lack of photoinhibition response may be attributed to the loss of key elements responsible for this process during the acquisition of kleptoplasts. Our study demonstrates the stability and notably extended retention of kleptoplasty in H. diversa, evidenced by its plastid retention under conditions of heterotrophic feeding deprivation for 50 days. The host-kleptoplast interactions suggest that H. diversa is highly committed to this partnership and that this kleptoplasty species likely relies on similar kleptoplast/alga maintenance mechanisms as symbiont-bearing foraminifera.
Collapse
Affiliation(s)
- Doron Pinko
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dewi Langlet
- Okinawa Institute of Science and Technology, Evolution, Cell Biology, and Symbiosis Unit, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- University Brest, Ifremer, BEEP, F-29280 Plouzané, France
| | - Olha Sur
- Okinawa Institute of Science and Technology, Evolution, Cell Biology, and Symbiosis Unit, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology, Evolution, Cell Biology, and Symbiosis Unit, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa 3102201, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa 3102201, Israel
| | - Natalia Belkin
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa 3102201, Israel
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Uri Abdu
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Sigal Abramovich
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
2
|
Pinko D, Abramovich S, Rahav E, Belkin N, Rubin-Blum M, Kucera M, Morard R, Holzmann M, Abdu U. Shared ancestry of algal symbiosis and chloroplast sequestration in foraminifera. SCIENCE ADVANCES 2023; 9:eadi3401. [PMID: 37824622 PMCID: PMC10569721 DOI: 10.1126/sciadv.adi3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Foraminifera are unicellular organisms that established the most diverse algal symbioses in the marine realm. Endosymbiosis repeatedly evolved in several lineages, while some engaged in the sequestration of chloroplasts, known as kleptoplasty. So far, kleptoplasty has been documented exclusively in the rotaliid clade. Here, we report the discovery of kleptoplasty in the species Hauerina diversa that belongs to the miliolid clade. The existence of kleptoplasty in the two main clades suggests that it is more widespread than previously documented. We observed chloroplasts in clustered structures within the foraminiferal cytoplasm and confirmed their functionality. Phylogenetic analysis of 18S ribosomal RNA gene sequences showed that H. diversa branches next to symbiont-bearing Alveolinidae. This finding represents evidence of of a relationship between kleptoplastic and symbiotic foraminifera.. Analysis of ribosomal genes and metagenomics revealed that alveolinid symbionts and kleptoplasts belong to the same clade, which suggests a common ancestry.
Collapse
Affiliation(s)
- Doron Pinko
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sigal Abramovich
- Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Natalia Belkin
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Michal Kucera
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Raphaël Morard
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Uri Abdu
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Schweizer M, Jauffrais T, Choquel C, Méléder V, Quinchard S, Geslin E. Trophic strategies of intertidal foraminifera explored with single-cell microbiome metabarcoding and morphological methods: What is on the menu? Ecol Evol 2022; 12:e9437. [PMID: 36407902 PMCID: PMC9666909 DOI: 10.1002/ece3.9437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
In mudflats, interactions and transfers of nutrients and secondary metabolites may drive ecosystems and biodiversity. Foraminifera have complex trophic strategies as they often rely on bacteria and eukaryotes or on potential symbionts for carbon and nitrogen resources. The capacity of these protists to use a wide range of adaptive mechanisms requires clarifying the relationships between them and their microbial associates. Here, we investigate the interactions of three foraminiferal species with nearby organisms in situ, by coupling molecular (cloning/Sanger and high-throughput sequencing) and direct counting and morphological identification with microscopy. This coupling allows the identification of the organisms found in or around three foraminiferal species through molecular tools combined with a direct counting of foraminifera and diatoms present in situ through microscopy methods. Depending on foraminiferal species, and in addition to diatom biomass, diatom frustule shape, size and species are key factors driving the abundance and diversity of foraminifera in mudflat habitats. Three different trophic strategies were deduced for the foraminifera investigated in this study: Ammonia sp. T6 has an opportunistic strategy and is feeding on bacteria, nematoda, fungi, and diatoms when abundant; Elphidium oceanense is feeding mainly on diatoms, mixed with other preys when they are less abundant; and Haynesina germanica is feeding almost solely on medium-large pennate diatoms. Although there are limitations due to the lack of species coverage in DNA sequence databases and to the difficulty to compare morphological and molecular data, this study highlights the relevance of combining molecular with morphological tools to study trophic interactions and microbiome communities of protists at the single-cell scale.
Collapse
Affiliation(s)
- Magali Schweizer
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Thierry Jauffrais
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- UMR 9220 ENTROPIE, Ifremer, IRD, Univ Nouvelle‐Calédonie, Univ La RéunionCNRSNoumeaNew Caledonia
| | - Constance Choquel
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
- Department of GeologyLund UniversityLundSweden
| | - Vona Méléder
- UR 2160, ISOMer, Institut des Substances et Organismes de la MerNantes UniversitéNantesFrance
| | - Sophie Quinchard
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| | - Emmanuelle Geslin
- UMR 6112 LPG, Laboratoire de Planétologie et Géosciences, Univ Angers, Nantes Université, Le Mans UniversitéCNRSAngersFrance
| |
Collapse
|
4
|
Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera. THE ISME JOURNAL 2022; 16:822-832. [PMID: 34635793 PMCID: PMC8857221 DOI: 10.1038/s41396-021-01128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known. In our study, we investigated relationships between feeding strategies, kleptoplast spatial distribution and photosynthetic functionality in two shallow-water benthic foraminifera (Haynesina germanica and Elphidium williamsoni), both species feeding on benthic diatoms. We used a combination of observations of foraminiferal feeding behaviour, test morphology, cytological TEM-based observations and HPLC pigment analysis, with non-destructive, single-cell level imaging of kleptoplast spatial distribution and PSII quantum efficiency. The two species showed different feeding strategies, with H. germanica removing diatom content at the foraminifer's apertural region and E. williamsoni on the dorsal site. All E. williamsoni parameters showed that this species has higher autotrophic capacity albeit both feeding on benthic diatoms. This might represent two different stages in the evolutionary process of establishing a permanent symbiotic relationship, or may reflect different trophic strategies.
Collapse
|
5
|
Effects of temperature on the behaviour and metabolism of an intertidal foraminifera and consequences for benthic ecosystem functioning. Sci Rep 2021; 11:4013. [PMID: 33597653 PMCID: PMC7889916 DOI: 10.1038/s41598-021-83311-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv-1 day-1 (usual temperature) to 0 mm3 indiv-1 day-1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.
Collapse
|
6
|
Coulombier N, Nicolau E, Le Déan L, Barthelemy V, Schreiber N, Brun P, Lebouvier N, Jauffrais T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Mar Drugs 2020; 18:E453. [PMID: 32872415 PMCID: PMC7551860 DOI: 10.3390/md18090453] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites' production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g-1 DW) and the lutein content (5.22 to 7.97 mg g-1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest.
Collapse
Affiliation(s)
| | - Elodie Nicolau
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Loïc Le Déan
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Vanille Barthelemy
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nathalie Schreiber
- Ifremer, RBE/BRM/LPBA, Rue de l’île d’Yeu, 44311 Nantes, France; (E.N.); (N.S.)
| | - Pierre Brun
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| | - Nicolas Lebouvier
- ISEA, EA7484, Université de la Nouvelle Calédonie, Campus de Nouville, 98851 Nouméa, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, UMR 9220 ENTROPIE, BP 32078, 98800 Nouméa, New Caledonia; (L.L.D.); (V.B.); (P.B.); (T.J.)
| |
Collapse
|