1
|
Rejili M, Bouznif B, Benabderrahim MA, Mars M. Multilocus sequencing analysis of the rhizobial symbionts isolated from Acacia salicina (Lindl.) grown in different regions in Tunisia reveals putative novel Bradyrhizobium species. World J Microbiol Biotechnol 2024; 41:22. [PMID: 39738700 DOI: 10.1007/s11274-024-04236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
In this study, we investigated various chromosomal and symbiotic markers in 40 bacterial strains that nodulate an invasive alien plant, Acacia salicina Lindl. in Tunisia. Our findings showed that the native rhizobia associated to A. salicina are grouped into eight distinct RAPD electrophoretic types (RETs) (genotypes). Sequence analyses of rrs gene and three housekeeping genes (recA, rpoB and glnII) assigned sixteen isolates to three putative new lineages within the genus Bradyrhizobium. Seven strains clustered with B. rifense CTAW71T with a 91% bootstrap support, five strains grouped with B. niftali CNPSo3448T with a very low bootstrap support (60%), and four strains formed a group phylogenetically related with B. shewense ERR11T and B. centrosematis A9T. Based on nodC phylogeny and cross inoculation tests, the 16 strains are clustered within symbiovar retamae (six strains) and cyanophyllae (ten strains). Moreover, we showed by the first time in this work that the type strains B. diversitatis CNPSo4019T and B. xenonodulans 14ABT, which nodulated soybean and A. dealbata respectively, belong to the symbiovar cyanophyllae according to the results of the nodC gene analysis.
Collapse
Affiliation(s)
- Mokhtar Rejili
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia.
| | - Besma Bouznif
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia
| | - Mohamed Ali Benabderrahim
- Arid and Oases Cropping Laboratory LR16IRA02, Arid Lands Institute, 4119, Medenine, Tunisia.
- Department of Biology, Faculty of Science of Tunis, University of Tunis EL Manar, 2092, Tunis, Tunisia.
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia
| |
Collapse
|
2
|
Mahdhi A, Mars M, Rejili M. Members of Ensifer and Rhizobium genera are new bacterial endosymbionts nodulating Pisum sativum (L.). FEMS Microbiol Ecol 2023; 99:fiad001. [PMID: 36597782 DOI: 10.1093/femsec/fiad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
A total of 84 Pisum sativum legume nodulating bacteria (LNB) were isolated from seven geographical sites from southern Tunisia. Phylogenetic analyses based on partial sequences of 16S rRNA gene and the housekeeping genes glnII, and recA grouped strains into six clusters, four of which belonged to the genus Rhizobium and two to the Ensifer genus. Among Rhizobium clusters, 41 strains were affiliated to Rhizobium leguminosarum, two strains to R. pisi, two strains to R. etli, and interestingly two strains belonged to previously undescribed Rhizobium species. The remaining two strains were closely related to Ensifer medicae (two strains) and Ensifer meliloti (two strains). A symbiotic nodC gene-based phylogeny and host specificity test showed that all Rhizobium strains nodulating pea belonged to the symbiovar viciae, whereas the Ensifer strains were associated with the symbiovar meliloti never described to date. All strains under investigation differed in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The R. leguminosarum PsZA23, R. leguminosarum PsGBL42, and E. medicae PsTA22a, forming the most effective symbiosis with the plant host, are potential candidates for inoculation programs.
Collapse
Affiliation(s)
- A Mahdhi
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
3
|
Phylogenetic and symbiotic diversity of Lupinus albus and L. angustifolius microsymbionts in the maamora forest, morocco. Syst Appl Microbiol 2022; 45:126338. [DOI: 10.1016/j.syapm.2022.126338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
|
4
|
|
5
|
Rejili M, Off K, Brachmann A, Marín M. Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia. Int J Syst Evol Microbiol 2020; 70:5539-5550. [PMID: 32897848 DOI: 10.1099/ijsem.0.004445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strain aSej3T was isolated from a root nodule of a Lupinus angustifolius plant growing in Bizerte, Tunisia. 16S rRNA gene analysis placed this strain within the genus Bradyrhizobium. Multilocus sequence analysis (MLSA) including three housekeeping genes (glnII, gyrB and recA) grouped aSej3T together with Bradyrhizobium rifense CTAW71T, Bradyrhizobium cytisi CTAW11T, Bradyrhizobium ganzhouense RITF806T, Bradyrhizobium lupini USDA 3051T and Bradyrhizobium canariense BTA-1T. MLSA with five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed that this strain shares less than 93.5 % nucleotide identity with other type strains. Genome sequencing and inspection revealed a genome size of 8.83 Mbp with a G+C content of 62.8 mol%. Genome-wide average nucleotide identity and digital DNA-DNA hybridization values were below 87.5 and 36.2 %, respectively, when compared to described Bradyrhizobium species. Strain aSej3T nodulated L. angustifolius plants under axenic conditions and its nodC gene clustered within the genistearum symbiovar. Altogether, the phylogenetic data and the chemotaxonomic characteristics of this strain support that aSej3T represents a new species for which we propose the name Bradyrhizobium hipponense sp. nov. with the type strain aSej3T (=DSM 108913T=LMG 31020T).
Collapse
Affiliation(s)
- Mokhtar Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences, Gabes University, Tunisia
| | - Katja Off
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Andreas Brachmann
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| | - Macarena Marín
- Chair of Genetics, Faculty of Biology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
6
|
Rejili M, BenAbderrahim MA, Mars M, Sherrier JD. Novel putative rhizobial species with different symbiovars nodulate Lotus creticus and their differential preference to distinctive soil properties. FEMS Microbiol Lett 2020; 367:5838745. [DOI: 10.1093/femsle/fnaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/17/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Phylogenetically diverse rhizobial strains endemic to Tunisia were isolated from symbiotic nodules of Lotus creticus, growing in different arid extremophile geographical regions of Tunisia, and speciated using multiloci-phylogenetic analysis as Neorhizobium huautlense (LCK33, LCK35, LCO42 and LCO49), Ensifer numidicus (LCD22, LCD25, LCK22 and LCK25), Ensifer meliloti (LCK8, LCK9 and LCK12) and Mesorhizobium camelthorni (LCD11, LCD13, LCD31 and LCD33). In addition, phylogenetic analyses revealed eight additional strains with previously undescribed chromosomal lineages within the genera Ensifer (LCF5, LCF6 and LCF8),Rhizobium (LCF11, LCF12 and LCF14) and Mesorhizobium (LCF16 and LCF19). Analysis using the nodC gene identified five symbiovar groups, four of which were already known. The remaining group composed of two strains (LCD11 and LCD33) represented a new symbiovar of Mesorhizobium camelthorni, which we propose designating as sv. hedysari. Interestingly, we report that soil properties drive and structure the symbiosis of L. creticus and its rhizobia.
Collapse
Affiliation(s)
- Mokhtar Rejili
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Mohamed Ali BenAbderrahim
- Laboratoire d'Aridocultures et des Cultures Oasiennes, Institut des Régions Arides, 6051 Gabès, Tunisia
| | - Mohamed Mars
- Research Laboratory Biodiversity & Valorization of Arid Areas Bioressources (BVBAA) - Faculty of Sciences of Gabes, Erriadh-Zrig, 6072-Tunisia
| | - Janine Darla Sherrier
- Department of Crop & Soil Sciences, University of Georgia, 3111 Miller Plant Sci, 120 Carlton St., Athens, GA 30602, USA
| |
Collapse
|
7
|
Novel putative Mesorhizobium and Ensifer genomospecies together with a novel symbiovar psoraleae nodulate legumes of agronomic interest grown in Tunisia. Syst Appl Microbiol 2020; 43:126067. [PMID: 32005490 DOI: 10.1016/j.syapm.2020.126067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Forty rhizobial strains were isolated from Lotus creticus, L. pusillus and Bituminaria bituminosa endemic to Tunisia, and they belonged to the Mesorhizobium and Ensifer genera based on 16S rDNA sequence phylogeny. According to the concatenated recA and glnII sequence-based phylogeny, four Bituminaria isolates Pb5, Pb12, Pb8 and Pb17 formed a monophyletic group with Mesorhizobium chacoense ICMP14587T, whereas four other strains Pb1, Pb6, Pb13 and Pb15 formed two separate lineages within the Ensifer genus. Among the L. pusillus strains, Lpus9 and Lpus10 showed a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas six other strains could belong to previously undescribed Mesorhizobium and Ensifer species. For L. creticus strains, Lcus37, Lcus39 and Lcus44 showed 98% sequence identity with Ensifer aridi JNVU TP6, and Lcus42 shared a 96% identical nucleotide with Ensifer meliloti CCBAU83493T; whereas another four strains were divergent from all the described Ensifer and Mesorhizobium species. The analysis of the nodC gene-based phylogeny identified four symbiovar groups; Mesorhizobium sp. sv. anthyllidis (Lpus3 and Lpus11 from L. pusillus, Lcus43 from L. creticus), Ensifer medicae sv. meliloti (four strains from L. creticus and two strains from L. pusillus), E. meliloti sv. meliloti (four from L. creticus, four from L. pusillus and four from B. bituminosa). In addition, four B. bituminosa strains (Pb5, Pb8, Pb12, and Pb17) displayed a distinctive nodC sequence distant from those of other symbiovars described to date. According to their symbiotic gene sequences and host range, the B. bituminosa symbionts (Pb5, Pb8, Pb12 and Pb17) would represent a new symbiovar of M. chacoense for which sv. psoraleae is proposed.
Collapse
|
8
|
Missbah El Idrissi M, Lamin H, ElFaik S, Tortosa G, Peix A, Bedmar E, Abdelmoumen H. Microvirga
sp. symbiovar mediterranense nodulates
Lupinus cosentinii
grown wild in Morocco. J Appl Microbiol 2019; 128:1109-1118. [DOI: 10.1111/jam.14526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023]
Affiliation(s)
- M. Missbah El Idrissi
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - H. Lamin
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - S. ElFaik
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| | - G. Tortosa
- Department of Soil Microbiology and Symbiotic Systems Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - A. Peix
- Instituto de Recursos Naturales y Agrobiología IRNASA‐CSIC Salamanca Spain
| | - E.J. Bedmar
- Department of Soil Microbiology and Symbiotic Systems Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - H. Abdelmoumen
- Centre de Biotechnologie Végétale et Microbienne Faculty of Sciences Mohammed V University Agdal, Rabat Morocco
| |
Collapse
|