1
|
Faulstich NG, Deloach AR, Ksor YB, Mesa GH, Sharma DS, Sisk SL, Mitchell GC. Evidence for phosphate-dependent control of symbiont cell division in the model anemone Exaiptasia diaphana. mBio 2024; 15:e0105924. [PMID: 39105583 PMCID: PMC11389408 DOI: 10.1128/mbio.01059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Reef-building corals depend on symbiosis with photosynthetic algae that reside within their cells. As important as this relationship is for maintaining healthy reefs, it is strikingly delicate. When ocean temperatures briefly exceed the average summer maximum, corals can bleach, losing their endosymbionts. Although the mechanisms governing bleaching are unknown, studies implicate uncoupling of coral and algal cell divisions at high temperatures. Still, little is known regarding the coordination of host and algal cell divisions. Control of nutrient exchange is one likely mechanism. Both nitrogen and phosphate are necessary for dividing cells, and although nitrogen enrichment is known to increase symbiont density in the host, the consequences of phosphate enrichment are poorly understood. Here, we examined the effects of phosphate depletion on symbiont growth in culture and compared the physiology of phosphate-starved symbionts in culture to symbionts that were freshly isolated from a host. We found that available phosphate is as low in freshly isolated symbionts as it is in phosphate-starved cultures. Furthermore, RNAseq revealed that phosphate-limited and freshly isolated symbionts have similar patterns of gene expression for phosphate-dependent genes, most notably upregulation of phosphatases, which is consistent with phosphate recycling. Similarly, lipid profiling revealed a substantial decrease in phospholipid abundance in both phosphate-starved cultures and freshly isolated symbionts. These findings are important because they suggest that limited access to phosphate controls algal cell divisions within a host. IMPORTANCE The corals responsible for building tropical reefs are disappearing at an alarming rate as elevated sea temperatures cause them to bleach and lose the algal symbionts they rely on. Without these symbionts, corals are unable to harvest energy from sunlight and, therefore, struggle to thrive or even survive in the nutrient-poor waters of the tropics. To devise solutions to address the threat to coral reefs, it is necessary to understand the cellular events underpinning the bleaching process. One model for bleaching proposes that heat stress impairs algal photosynthesis and transfer of sugar to the host. Consequently, the host's demands for nitrogen decrease, increasing nitrogen availability to the symbionts, which leads to an increase in algal proliferation that overwhelms the host. Our work suggests that phosphate may play a similar role to nitrogen in this feedback loop.
Collapse
Affiliation(s)
| | | | - Ykok B Ksor
- Wofford College, Spartanburg, South Carolina, USA
| | | | | | | | | |
Collapse
|
2
|
Liu J, Ding X, Xia X, Zhou L, Liu W, Lai Y, Ke Z, Tan Y. Dissolved organic phosphorus promotes Cyclotella growth and adaptability in eutrophic tropical estuaries. Appl Environ Microbiol 2024; 90:e0163723. [PMID: 38112726 PMCID: PMC10807451 DOI: 10.1128/aem.01637-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
Dissolved organic phosphorus (DOP) is an important nutrient for phytoplankton growth in oligotrophic oceans. However, little is known about the impact of DOP on phytoplankton growth in eutrophic waters. In the present study, we conducted field monitoring as well as in situ and laboratory experiments in the Pearl River estuary (PRE). Field observations showed an increase in the nitrogen-to-phosphorus ratio and DOP in recent years in the PRE. The phytoplankton community was dominated by nanophytoplankton Cyclotella in the upper and middle estuary, with high concentrations of DOP and light limitation during the ebb stage of the spring to neap tide in summer. The relative abundance of Cyclotella in natural waters was higher after enrichment with estuarine water with a background of 0.40-0.46 µM DOP, even when dissolved inorganic phosphorus was sufficient (0.55-0.76 µM). In addition, the relative abundance of Cyclotella in natural waters was higher after enrichment with phosphoesters. Laboratory culture results also confirmed that phosphoesters can enhance the growth rate of Cyclotella cryptica. Our study highlights that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our results provide new insights into the role of Cyclotella in biogeochemical cycles affected by DOP utilization and potential applications in relieving the hypoxia of tropical eutrophic estuaries.IMPORTANCEThis study provides evidence that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our study provides new insights into the role of Cyclotella in biogeochemical cycles affected by dissolved organic phosphorus utilization, especially affected by anthropogenic inputs and climate change. Potential applications include relieving the hypoxia of tropical eutrophic estuaries.
Collapse
Affiliation(s)
- Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiang Ding
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Linbin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Weiwei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjiao Lai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Li J, Zhang K, Li L, Wang Y, Lin S. Phosphorus nutrition strategies in a Symbiodiniacean species: Implications in coral-alga symbiosis facing increasing phosphorus deficiency in future warmer oceans. GLOBAL CHANGE BIOLOGY 2023; 29:6558-6571. [PMID: 37740668 DOI: 10.1111/gcb.16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Coral reefs thrive in the oligotrophic ocean and rely on symbiotic algae to acquire nutrients. Global warming is projected to intensify surface ocean nutrient deficiency and anthropogenic discharge of wastes with high nitrogen (N): phosphorus (P) ratios can exacerbate P nutrient limitation. However, our understanding on how symbiotic algae cope with P deficiency is limited. Here, we investigated the responses of a coral symbiotic species of Symbiodiniaceae, Cladocopium goreaui, to P-limitation by examining its physiological performance and transcriptomic profile. Under P stress, C. goreaui exhibited decreases in algal growth, photosynthetic efficiency, and cellular P content but enhancement in carbon fixation, N assimilation, N:P ratio, and energy metabolism, with downregulated expression of carbohydrate exporter genes. Besides, C. goreaui showed flexible mechanisms of utilizing different dissolved organic phosphorus to relieve P deficiency. When provided glycerol phosphate, C. goreaui hydrolyzed it extracellularly to produce phosphate for uptake. When grown on phytate, in contrast, C. goreaui upregulated the endocytosis pathway while no dissolved inorganic phosphorus was released into the medium, suggesting that phytate was transported into the cell, potentially via the endocytosis pathway. This study sheds light on the survival strategies of C. goreaui and potential weakening of its role as an organic carbon supplier in P-limited environments, underscoring the importance of more systematic investigation on future projections of such effects.
Collapse
Affiliation(s)
- Jiashun Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Ling Li
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yujie Wang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|