1
|
Liu Y, Macalady JL, Sánchez-España J, Burgos WD. Enrichment of acid-tolerant sulfide-producing microbes from an acidic pit lake. Front Microbiol 2024; 15:1475137. [PMID: 39539707 PMCID: PMC11559266 DOI: 10.3389/fmicb.2024.1475137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
High concentrations of harmful metal(loid)s and extreme acidity are persistent environmental concerns in acidic pit lakes. In this study, we examine Cueva de la Mora (CM), a meromictic pit lake in the Iberian Pyrite Belt, Spain, as a model system. Our research aims to explore potential bioremediation strategies to mitigate the impacts of metal(loid)s and acidity in such environments. The major strategy applied in this research is to biologically stimulate sulfate reduction (i.e., biosulfidogenesis) in the deep layer of the lake to promote the formation of low-solubility sulfide minerals. Previous omics-based studies of CM have shown that several sulfate-reducing bacteria (SRB) taxa are present in the deep layer. However, their activities are likely limited by the availability of electron donors for sulfide production. Therefore, different amendments (glycerol, elemental sulfur, and glycerol + elemental sulfur) were tested to promote sulfide production and enrich acid-tolerant sulfide-producing microbes. Our results showed that glycerol stimulated dissimilatory sulfate reduction much faster than elemental sulfur alone, suggesting that electron donor limitations control sulfide production. Furthermore, the combined addition of glycerol and elemental sulfur (S(0)) resulted in the highest level of sulfide production. This indicates that S(0) can play a significant role as an electron acceptor in further promoting sulfide production when a suitable electron donor is present. Microbial community analysis revealed that Desulfosporosinus acididurans, a previously discovered acid-tolerant SRB, was enriched and became the dominant species in incubations with glycerol only (~76-96% abundance) or the combination of glycerol and S(0) (~93-99% abundance).
Collapse
Affiliation(s)
- Yutong Liu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
| | - Javier Sánchez-España
- Department of Planetology and Habitability, Centro de Astrobiología, Spanish National Research Council (CSIC), Madrid, Spain
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
2
|
Arisan D, Moya-Beltrán A, Rojas-Villalobos C, Issotta F, Castro M, Ulloa R, Chiacchiarini PA, Díez B, Martín AJM, Ñancucheo I, Giaveno A, Johnson DB, Quatrini R. Acidithiobacillia class members originating at sites within the Pacific Ring of Fire and other tectonically active locations and description of the novel genus ' Igneacidithiobacillus'. Front Microbiol 2024; 15:1360268. [PMID: 38633703 PMCID: PMC11021618 DOI: 10.3389/fmicb.2024.1360268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Recent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1T as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1TS), 'Igneacidithiobacillus siniensis' (S30A2T), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 TS), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 TS). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.
Collapse
Affiliation(s)
- Dilanaz Arisan
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Ana Moya-Beltrán
- Departamento de Informática y Computación, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Camila Rojas-Villalobos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Francisco Issotta
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
| | - Matías Castro
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Ricardo Ulloa
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Patricia A. Chiacchiarini
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Beatriz Díez
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Center for Climate and Resilience Research (CR), Santiago, Chile
| | - Alberto J. M. Martín
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Iván Ñancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur, Concepción, Chile
| | - Alejandra Giaveno
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - D. Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Natural History Museum, London, United Kingdom
| | - Raquel Quatrini
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| |
Collapse
|
3
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
4
|
Battaglia-Brunet F, Nancucheo I, Jacob J, Joulian C. Sulphidogenic Bioprocesses for Acid Mine Water Treatment and Selective Recovery of Arsenic and Metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:1-30. [PMID: 39190202 DOI: 10.1007/10_2024_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Human communities need water and mineral resources, the supply of which requires the implementation of recycling and saving strategies. Both closed and active mining sites could beneficiate of the implementation of nature-based solutions, including bioreactors involving sulphate-reducing prokaryotes (SRP), in order to separate and recover arsenic (As) and metals from aqueous stream while producing clean water. Selective precipitation strategies can be designed based on the selection of microbial communities adapted to the pH conditions, generally acidic, and to available low-cost electron donors. Laboratory batch and continuous experiments must be implemented for each type of mine water in order to determine the optimal flow-sheet in which As could be precipitated as sulphides (orpiment or realgar), inside the bioreactor or offline, through stripping of biologically produced hydrogen sulphides (H2S). The respective concentrations and proportions of As and metals and the initial acid mine drainage pH are key parameters that will influence the feasibility of efficient selective precipitation. SRP-based bioreactors could be combined with complementary treatment steps in optimised mine water management solutions that will minimise the production of As-contaminated end-solid waste.
Collapse
Affiliation(s)
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | | | | |
Collapse
|
5
|
Barbosa C, Tamayo-Leiva J, Alcorta J, Salgado O, Daniele L, Morata D, Díez B. Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs. Microbiol Spectr 2023; 11:e0024923. [PMID: 37754764 PMCID: PMC10581198 DOI: 10.1128/spectrum.00249-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.
Collapse
Affiliation(s)
- Carla Barbosa
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Linda Daniele
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Diego Morata
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Beatríz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
6
|
Wang L, Guo Q, Wu G, Yu Z, Ninin JML, Planer-Friedrich B. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7410-7420. [PMID: 37134202 DOI: 10.1021/acs.est.2c08814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Luxia Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Zhicheng Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - José Miguel Léon Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Li F, Hou W, Wang S, Zhang Y, He Q, Zhang W, Dong H. Effects of Mineral on Taxonomic and Functional Structures of Microbial Community in Tengchong Hot Springs via in-situ cultivation. ENVIRONMENTAL MICROBIOME 2023; 18:22. [PMID: 36949539 PMCID: PMC10035157 DOI: 10.1186/s40793-023-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Diverse mineralogical compositions occur in hot spring sediments, but the impact of minerals on the diversity and structure of microbial communities remains poorly elucidated. In this study, different mineral particles with various chemistries (i.e., hematite, biotite, K-feldspar, quartz, muscovite, aragonite, serpentine, olivine, barite, apatite, and pyrite) were incubated for ten days in two Tengchong hot springs, one alkaline (pH ~ 8.34) with a high temperature (~ 82.8 °C) (Gumingquan, short as GMQ) and one acidic (pH ~ 3.63) with a relatively low temperature (~ 43.3 °C) (Wenguangting, short as WGT), to determine the impacts of minerals on the microbial communities taxonomic and functional diversities. Results showed that the mineral-associated bacterial taxa differed from those of the bulk sediment samples in the two hot springs. The relative abundance of Proteobacteria, Euryarchaeota, and Acidobacteria increased in all minerals, indicating that these microorganisms are apt to colonize on solid surfaces. The α-diversity indices of the microbial communities on the mineral surfaces in the WGT were higher than those from the bulk sediment samples (p < 0.05), which may be caused by the stochastically adhering process on the mineral surface during 10-day incubation, different from the microbial community in sediment which has experienced long-term environmental and ecological screening. Chemoheterotrophy increased with minerals incubation, which was high in most cultured minerals (the relative contents were 5.8 - 21.4%). Most notably, the sulfate respiration bacteria (mainly related to Desulfobulbaceae and Syntrophaceae) associated with aragonite in the acidic hot spring significantly differed from other minerals, possibly due to the pH buffering effect of aragonite providing more favorable conditions for their survival and proliferation. By comparison, aragonite cultured in the alkaline hot spring highly enriched denitrifying bacteria and may have promoted the nitrogen cycle within the system. Collectively, we speculated that diverse microbes stochastically adhered on the surface of minerals in the water flows, and the physicochemical properties of minerals drove the enrichment of certain microbial communities and functional groups during the short-term incubation. Taken together, these findings thereby provide novel insights into mechanisms of community assembly and element cycling in the terrestrial hydrothermal system associated with hot springs.
Collapse
Affiliation(s)
- Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Yidi Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Qing He
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Wenhui Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
8
|
Regulated synthesis and metabolism of Monascus pigments in a unique environment. World J Microbiol Biotechnol 2023; 39:46. [DOI: 10.1007/s11274-022-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
|
9
|
Ayala-Muñoz D, Burgos WD, Sánchez-España J, Falagán C, Couradeau E, Macalady JL. Novel Microorganisms Contribute to Biosulfidogenesis in the Deep Layer of an Acidic Pit Lake. Front Bioeng Biotechnol 2022; 10:867321. [PMID: 35910036 PMCID: PMC9326234 DOI: 10.3389/fbioe.2022.867321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cueva de la Mora is a permanently stratified acidic pit lake with extremely high concentrations of heavy metals at depth. In order to evaluate the potential for in situ sulfide production, we characterized the microbial community in the deep layer using metagenomics and metatranscriptomics. We retrieved 18 high quality metagenome-assembled genomes (MAGs) representing the most abundant populations. None of the MAGs were closely related to either cultured or non-cultured organisms from the Genome Taxonomy or NCBI databases (none with average nucleotide identity >95%). Despite oxygen concentrations that are consistently below detection in the deep layer, some archaeal and bacterial MAGs mapped transcripts of genes for sulfide oxidation coupled with oxygen reduction. Among these microaerophilic sulfide oxidizers, mixotrophic Thermoplasmatales archaea were the most numerous and represented 24% of the total community. Populations associated with the highest predicted in situ activity for sulfate reduction were affiliated with Actinobacteria, Chloroflexi, and Nitrospirae phyla, and together represented about 9% of the total community. These MAGs, in addition to a less abundant Proteobacteria MAG in the genus Desulfomonile, contained transcripts of genes in the Wood-Ljungdahl pathway. All MAGs had significant genetic potential for organic carbon oxidation. Our results indicate that novel acidophiles are contributing to biosulfidogenesis in the deep layer of Cueva de la Mora, and that in situ sulfide production is limited by organic carbon availability and sulfur oxidation.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Diana Ayala-Muñoz, ; Jennifer L. Macalady,
| | - William D. Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States
| | | | - Carmen Falagán
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| | - Jennifer L. Macalady
- Department of Geosciences, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Diana Ayala-Muñoz, ; Jennifer L. Macalady,
| |
Collapse
|
10
|
Vela ML, Masachessi G, Giaveno MA, Roca Jalil ME, Castro G, Cachi AM, Marinzalda MDLÁ, Zugarramurdi A, Baschini M. A Preliminary Study of SARS-CoV-2's Permanence and Potential Infective Capacity in Mineromedicinal Waters of Copahue, Neuquén, Argentina. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5923. [PMID: 35627460 PMCID: PMC9141312 DOI: 10.3390/ijerph19105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
Copahue Thermal Center is characterized by the presence of mineromedicinal acidic waters with high temperatures, therapeutic peloids, and relevant consortia of extremophiles species, distributed in small natural pools which cannot be disinfected. The objective of this research was to investigate the survival of SARS-CoV-2 in Copahue's waters and its remaining infective capacity. In a first assay, a decrease of more than 50% of the initially viral load compared to the initially inoculated positive sample was detected for all the water samples analyzed. After that, two of the Copahue springs, which are used as an immersion bath in closed environments without going through any disinfection treatment, was selected to determine the viral viability. VERO cell infections were performed, with no cytopathic effect detected, but a strikingly high resistance of the virus, detecting its genome by real time PCR, during the seven days of study under laboratory conditions. SARS-CoV-2 survival in acid media was reaffirmed, which is a peculiarity for a covered virus. A decrease in the detectable viral load of the positive sample was found as the infection time passed, becoming completely negative in the subsequent blind passages. More research is needed to further study the feasibility of SARS-CoV-2 in mineromedicinal waters, especially natural acidic waters that cannot disinfected, in order to expand information about the risk to populations that are exposed to them.
Collapse
Affiliation(s)
- María Lorena Vela
- Health and Environment Sciences School, Comahue National University, Neuquen 8300, Argentina
- Neuquén Provincial Thermal Organization (E.Pro.Te.N.), Neuquen 8349, Argentina;
| | - Gisela Masachessi
- Viral Gastroenteritis and Measles Laboratory, “Dr J. M. Vanella” Virology Institute, Health Science School, Córdoba National University, Córdoba 5000, Argentina;
- National Council for Scientific and Technical Research (CONICET), Buenos Aires 1425, Argentina
| | - María Alejandra Giaveno
- Engineering School, Comahue National University, Neuquen 8300, Argentina; (M.A.G.); (M.E.R.J.); (M.B.)
- Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), CONICET-Comahue National University, Neuquen 8300, Argentina
| | - Maria Eugenia Roca Jalil
- Engineering School, Comahue National University, Neuquen 8300, Argentina; (M.A.G.); (M.E.R.J.); (M.B.)
- Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), CONICET-Comahue National University, Neuquen 8300, Argentina
| | - Gonzalo Castro
- Central Laboratory Department, Ministry of Health of the Province of Córdoba, Córdoba 5000, Argentina;
| | - Ariana Mariela Cachi
- National Institute of Aeronautical and Space Medicine, FAA, Córdoba 5000, Argentina; (A.M.C.); (M.d.l.Á.M.)
- Faculty of the Air Force, National Defense University, Córdoba 5000, Argentina
| | - María de los Ángeles Marinzalda
- National Institute of Aeronautical and Space Medicine, FAA, Córdoba 5000, Argentina; (A.M.C.); (M.d.l.Á.M.)
- Faculty of the Air Force, National Defense University, Córdoba 5000, Argentina
| | - Ana Zugarramurdi
- Neuquén Provincial Thermal Organization (E.Pro.Te.N.), Neuquen 8349, Argentina;
| | - Miria Baschini
- Engineering School, Comahue National University, Neuquen 8300, Argentina; (M.A.G.); (M.E.R.J.); (M.B.)
- Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN), CONICET-Comahue National University, Neuquen 8300, Argentina
| |
Collapse
|
11
|
Velázquez-Ríos IO, Rincón-Rosales R, Gutiérrez-Miceli FA, Alcántara-Hernández RJ, Ruíz-Valdiviezo VM. Prokaryotic diversity across a pH gradient in the “El Chichón” crater-lake: a naturally thermo-acidic environment. Extremophiles 2022; 26:8. [DOI: 10.1007/s00792-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
|
12
|
Dev S, Galey M, Chun CL, Novotny C, Ghosh T, Aggarwal S. Enrichment of psychrophilic and acidophilic sulfate-reducing bacterial consortia - a solution toward acid mine drainage treatment in cold regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:2007-2020. [PMID: 34821889 DOI: 10.1039/d1em00256b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Failure of sulfate-reducing bacteria (SRB)-mediated treatment of acid mine drainage (AMD) in cold regions due to inhibition of bacteria by acidic pH and low temperature can be overcome by enriching psychrophilic and acidophilic microbial consortia from local metal-rich sediments. In this study, we enriched microbial consortia from Arctic mine sediments at varying pH (3-7) and temperatures (15-37 °C) under anaerobic conditions with repeated sub-culturing in three successive stages, and analyzed the microbial community using 16S rRNA gene sequencing. The enriched SRB genera resulted in high sulfate reduction (85-88%), and significant metal removal (49-99.9%) during the initial stages (stage 1 and 2). Subsequently, sub-culturing the inoculum at pH 3-4.5 resulted in lower sulfate reduction (9-34%) due to the inhibition of SRB by accumulated acetic acid (0.3-9 mM). The microbial metabolic interactions for successful sulfate and metal removal involved initial glycerol co-fermentation to acetic acid at acidic pH (by Desulfosporosinus, Desulfotomaculum, Desulfurospora, and fermentative bacteria including Cellulomonas and Anaerovorax), followed by acetic acid oxidation to CO2 and H2 (by Desulfitobacterium) at neutral pH, and subsequent H2 utilization (by Desulfosporosinus). The results, including the structural and functional properties of enriched microbial consortia, can inform the development of effective biological treatment strategies for AMD in cold regions.
Collapse
Affiliation(s)
- Subhabrata Dev
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Miranda Galey
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chan Lan Chun
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Civil Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Chad Novotny
- Teck Resources Limited, Vancouver, BC V6C 0B3, Canada
| | - Tathagata Ghosh
- Mineral Industry Research Laboratory, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Water and Environmental Research Center, University of Alaska Fairbanks, 1760 Tanana Loop, Fairbanks, AK 99775, USA.
- Department of Civil, Geological and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
13
|
Procaryotic Diversity and Hydrogenotrophic Methanogenesis in an Alkaline Spring (La Crouen, New Caledonia). Microorganisms 2021; 9:microorganisms9071360. [PMID: 34201651 PMCID: PMC8307142 DOI: 10.3390/microorganisms9071360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/01/2023] Open
Abstract
(1) Background: The geothermal spring of La Crouen (New Caledonia) discharges warm (42 °C) alkaline water (pH~9) enriched in dissolved nitrogen with traces of methane, but its microbial diversity has not yet been studied. (2) Methods: Cultivation-dependent and -independent methods (e.g., Illumina sequencing and quantitative PCR based on 16S rRNA gene) were used to describe the prokaryotic diversity of this spring. (3) Results: Prokaryotes were mainly represented by Proteobacteria (57% on average), followed by Cyanobacteria, Chlorofexi, and Candidatus Gracilibacteria (GN02/BD1-5) (each > 5%). Both potential aerobes and anaerobes, as well as mesophilic and thermophilic microorganisms, were identified. Some of them had previously been detected in continental hyperalkaline springs found in serpentinizing environments (The Cedars, Samail, Voltri, and Zambales ophiolites). Gammaproteobacteria, Ca. Gracilibacteria and Thermotogae were significantly more abundant in spring water than in sediments. Potential chemolithotrophs mainly included beta- and gammaproteobacterial genera of sulfate-reducers (Ca. Desulfobacillus), methylotrophs (Methyloversatilis), sulfur-oxidizers (Thiofaba, Thiovirga), or hydrogen-oxidizers (Hydrogenophaga). Methanogens (Methanobacteriales and Methanosarcinales) were the dominant Archaea, as found in serpentinization-driven and deep subsurface ecosystems. A novel alkaliphilic hydrogenotrophic methanogen (strain CAN) belonging to the genus Methanobacterium was isolated, suggesting that hydrogenotrophic methanogenesis occurs at La Crouen.
Collapse
|
14
|
Mueller RC, Peach JT, Skorupa DJ, Copié V, Bothner B, Peyton BM. An emerging view of the diversity, ecology and function of Archaea in alkaline hydrothermal environments. FEMS Microbiol Ecol 2021; 97:6021323. [PMID: 33501490 DOI: 10.1093/femsec/fiaa246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022] Open
Abstract
The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Jesse T Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA
| | - Dana J Skorupa
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, PO Box 173400, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| | - Brent M Peyton
- Department of Chemical and Biological Engineering, Montana State University,Bozeman, MT 59717, PO Box 173920, USA.,Thermal Biology Institute, Montana State University, Bozeman, MT 59717, PO Box 173142, USA
| |
Collapse
|
15
|
Massello FL, Donati E. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115709. [PMID: 33010675 DOI: 10.1016/j.envpol.2020.115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Collapse
Affiliation(s)
- Francisco L Massello
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|