1
|
Zhai P, Cheng R, Gong Z, Huang J, Yang X, Zhang X, Zhao X. Plant Biomass Allocation-Regulated Nitrogen and Phosphorus Addition Effects on Ecosystem Carbon Fluxes of a Lucerne ( Medicago sativa ssp. sativa) Plantation in the Loess Plateau. PLANTS (BASEL, SWITZERLAND) 2025; 14:561. [PMID: 40006820 PMCID: PMC11859002 DOI: 10.3390/plants14040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Nitrogen (N) and phosphorus (P) are key limiting factors for carbon (C) fluxes in artificial grasslands. The impact of their management on ecosystem C fluxes, including net ecosystem productivity (NEP), ecosystem respiration (ER), and gross ecosystem productivity (GEP) in the Loess Plateau is unclear. An experiment was conducted to study changes in these C fluxes with varying N (0, 5, 10, 15, and 20 g N m-2) and P (0 and 10 g P m-2) additions from 2022 to 2023 in a lucerne plantation. Results showed that N addition positively influenced NEP and GEP in the first year after planting with N addition at the rate of 10 g N m-2 was optimal for C assimilation, but it had negligible effect on ER in both two years in the studied lucerne (Medicago sativa ssp. sativa) plantation. Phosphorus addition significantly increased ER and stimulated GEP, resulting in an increasing effect on NEP only at the early stage after planting. The addition of N and P enhanced soil N and P availability and further improved the leaf chemical stoichiometry characteristics, leading to changes in biomass distribution. The more belowground biomass under N addition and more aboveground production under P addition resulted in different responses of ecosystem C fluxes to N and P addition. The results suggest that the effects of N and P fertilization management on the ecosystem C cycle may be largely dependent on the distribution of above- and belowground plant biomass in the artificial grassland ecosystem.
Collapse
Affiliation(s)
- Penghui Zhai
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, Taigu, Jinzhong 030801, China
| | - Rongrong Cheng
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
| | - Zelin Gong
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
| | - Xuan Yang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| | - Xiaolin Zhang
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, Taigu, Jinzhong 030801, China
| | - Xiang Zhao
- College of Grassland Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (P.Z.); (R.C.); (Z.G.); (X.Y.)
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, Taigu, Jinzhong 030801, China
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Taigu, Jinzhong 030801, China
| |
Collapse
|
2
|
Taylor BN, Komatsu KJ. More diverse rhizobial communities can lead to higher symbiotic nitrogen fixation rates, even in nitrogen-rich soils. Proc Biol Sci 2024; 291:20240765. [PMID: 39043241 PMCID: PMC11265861 DOI: 10.1098/rspb.2024.0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Symbiotic nitrogen (N) fixation (SNF) by legumes and their rhizobial partners is one of the most important sources of bioavailable N to terrestrial ecosystems. While most work on the regulation of SNF has focussed on abiotic drivers such as light, water and soil nutrients, the diversity of rhizobia with which individual legume partners may play an important but under-recognized role in regulating N inputs from SNF. By experimentally manipulating the diversity of rhizobia available to legumes, we demonstrate that rhizobial diversity can increase average SNF rates by more than 90%, and that high rhizobial diversity can induce increased SNF even under conditions of high soil N fertilization. However, the effects of rhizobial diversity, the conditions under which diversity effects were the strongest, and the likely mechanisms driving these diversity effects differed between the two legume species we assessed. These results provide evidence that biodiversity-ecosystem function relationships can occur at the scales of an individual plant and that the effects of rhizobial diversity may be as important as long-established abiotic factors, such as N availability, in driving terrestrial N inputs via SNF.
Collapse
Affiliation(s)
- Benton N. Taylor
- Organismic and Evolutionary Biology Department, Harvard University, 26 Oxford Street, Cambridge, MA02138, USA
- The Arnold Arboretum of Harvard University, 1300 Centre Street Roslindale, Boston, MA02131, USA
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD21037, USA
| | - Kimberly J. Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD21037, USA
- Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC27402, USA
| |
Collapse
|
3
|
Matsuda H, Yamazaki Y, Moriyoshi E, Nakayasu M, Yamazaki S, Aoki Y, Takase H, Okazaki S, Nagano AJ, Kaga A, Yazaki K, Sugiyama A. Apoplast-Localized β-Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere. PLANT & CELL PHYSIOLOGY 2023; 64:486-500. [PMID: 36718526 DOI: 10.1093/pcp/pcad012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 05/17/2023]
Abstract
Plant specialized metabolites (PSMs) are often stored as glycosides within cells and released from the roots with some chemical modifications. While isoflavones are known to function as symbiotic signals with rhizobia and to modulate the soybean rhizosphere microbiome, the underlying mechanisms of root-to-soil delivery are poorly understood. In addition to transporter-mediated secretion, the hydrolysis of isoflavone glycosides in the apoplast by an isoflavone conjugate-hydrolyzing β-glucosidase (ICHG) has been proposed but not yet verified. To clarify the role of ICHG in isoflavone supply to the rhizosphere, we have isolated two independent mutants defective in ICHG activity from a soybean high-density mutant library. In the root apoplastic fraction of ichg mutants, the isoflavone glycoside contents were significantly increased, while isoflavone aglycone contents were decreased, indicating that ICHG hydrolyzes isoflavone glycosides into aglycones in the root apoplast. When grown in a field, the lack of ICHG activity considerably reduced isoflavone aglycone contents in roots and the rhizosphere soil, although the transcriptomes showed no distinct differences between the ichg mutants and wild-types (WTs). Despite the change in isoflavone contents and composition of the root and rhizosphere of the mutants, root and rhizosphere bacterial communities were not distinctive from those of the WTs. Root bacterial communities and nodulation capacities of the ichg mutants did not differ from the WTs under nitrogen-deficient conditions either. Taken together, these results indicate that ICHG elevates the accumulation of isoflavones in the soybean rhizosphere but is not essential for isoflavone-mediated plant-microbe interactions.
Collapse
Affiliation(s)
- Hinako Matsuda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Yumi Yamazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Eiko Moriyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Shinichi Yamazaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo 2-1, Sendai, 980-8573 Japan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo 2-1, Sendai, 980-8573 Japan
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Aoba 6-3-09, Aramaki-aza Aoba-ku, Sendai, 980-8579 Japan
| | - Hisabumi Takase
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Sogabecho Nanjo Otani 1-1, Kameoka, 621-8555 Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, 183-8509 Japan
- Department of International Environmental and Agricultural Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, 183-8509 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Seta Oe-cho Yokotani 1-5, Otsu, 520-2194 Japan
- Institute for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, 997-0017 Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, 305-8518 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011 Japan
| |
Collapse
|
4
|
Damo JLC, Shimizu T, Sugiura H, Yamamoto S, Agake SI, Anarna J, Tanaka H, Sugihara S, Okazaki S, Yokoyama T, Yasuda M, Ohkama-Ohtsu N. The Application of Sulfur Influences Microbiome of Soybean Rhizosphere and Nutrient-Mobilizing Bacteria in Andosol. Microorganisms 2023; 11:1193. [PMID: 37317167 DOI: 10.3390/microorganisms11051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
This study aimed to determine the effect of sulfur (S) application on a root-associated microbial community resulting in a rhizosphere microbiome with better nutrient mobilizing capacity. Soybean plants were cultivated with or without S application, the organic acids secreted from the roots were compared. High-throughput sequencing of 16S rRNA was used to analyze the effect of S on microbial community structure of the soybean rhizosphere. Several plant growth-promoting bacteria (PGPB) isolated from the rhizosphere were identified that can be harnessed for crop productivity. The amount of malic acid secreted from the soybean roots was significantly induced by S application. According to the microbiota analysis, the relative abundance of Polaromonas, identified to have positive association with malic acid, and arylsulfatase-producing Pseudomonas, were increased in S-applied soil. Burkholderia sp. JSA5, obtained from S-applied soil, showed multiple nutrient-mobilizing traits among the isolates. In this study, S application affected the soybean rhizosphere bacterial community structure, suggesting the contribution of changing plant conditions such as in the increase in organic acid secretion. Not only the shift of the microbiota but also isolated strains from S-fertilized soil showed PGPB activity, as well as isolated bacteria that have the potential to be harnessed for crop productivity.
Collapse
Affiliation(s)
- Jean Louise Cocson Damo
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Takashi Shimizu
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
| | - Hinako Sugiura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
| | - Saki Yamamoto
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
| | - Shin-Ichiro Agake
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
| | - Julieta Anarna
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Haruo Tanaka
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8505, Tokyo, Japan
| | - Soh Sugihara
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8505, Tokyo, Japan
| | - Shin Okazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8505, Tokyo, Japan
| | - Tadashi Yokoyama
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Fukushima, Japan
| | - Michiko Yasuda
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8509, Tokyo, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8505, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu 183-8505, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Harumicho 3-8-1, Fuchu 183-8538, Tokyo, Japan
| |
Collapse
|
5
|
Liu Y, Lu J, Cui L, Tang Z, Ci D, Zou X, Zhang X, Yu X, Wang Y, Si T. The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. BMC PLANT BIOLOGY 2023; 23:36. [PMID: 36642709 PMCID: PMC9841720 DOI: 10.1186/s12870-023-04053-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arbuscular Mycorrhizal Fungi (AMF) are beneficial microorganisms in soil-plant interactions; however, the underlying mechanisms regarding their roles in legumes environmental stress remain elusive. Present trials were undertaken to study the effect of AMF on the ameliorating of salt, drought, and cold stress in peanut (Arachis hypogaea L.) plants. A new product of AMF combined with Rhizophagus irregularis SA, Rhizophagus clarus BEG142, Glomus lamellosum ON393, and Funneliformis mosseae BEG95 (1: 1: 1: 1, w/w/w/w) was inoculated with peanut and the physiological and metabolomic responses of the AMF-inoculated and non-inoculated peanut plants to salt, drought, and cold stress were comprehensively characterized, respectively. RESULTS AMF-inoculated plants exhibited higher plant growth, leaf relative water content (RWC), net photosynthetic rate, maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), activities of antioxidant enzymes, and K+: Na+ ratio while lower leaf relative electrolyte conductivity (REC), concentration of malondialdehyde (MDA), and the accumulation of reactive oxygen species (ROS) under stressful conditions. Moreover, the structures of chloroplast thylakoids and mitochondria in AMF-inoculated plants were less damaged by these stresses. Non-targeted metabolomics indicated that AMF altered numerous pathways associated with organic acids and amino acid metabolisms in peanut roots under both normal-growth and stressful conditions, which were further improved by the osmolytes accumulation data. CONCLUSION This study provides a promising AMF product and demonstrates that this AMF combination could enhance peanut salt, drought, and cold stress tolerance through improving plant growth, protecting photosystem, enhancing antioxidant system, and regulating osmotic adjustment.
Collapse
Affiliation(s)
- Yuexu Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinhao Lu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Cui
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, 250100, China
| | - Zhaohui Tang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, 250100, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao, 266199, China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology,College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Mohanty SR, Mahawar H, Bajpai A, Dubey G, Parmar R, Atoliya N, Devi MH, Singh AB, Jain D, Patra A, Kollah B. Methylotroph bacteria and cellular metabolite carotenoid alleviate ultraviolet radiation-driven abiotic stress in plants. Front Microbiol 2023; 13:899268. [PMID: 36687662 PMCID: PMC9853530 DOI: 10.3389/fmicb.2022.899268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
Increasing UV radiation in the atmosphere due to the depletion of ozone layer is emerging abiotic stress for agriculture. Although plants have evolved to adapt to UV radiation through different mechanisms, but the role of phyllosphere microorganisms in counteracting UV radiation is not well studied. The current experiment was undertaken to evaluate the role of phyllosphere Methylobacteria and its metabolite in the alleviation of abiotic stress rendered by ultraviolet (UV) radiation. A potential pink pigmenting methylotroph bacterium was isolated from the phylloplane of the rice plant (oryzae sativa). The 16S rRNA gene sequence of the bacterium was homologous to the Methylobacter sp. The isolate referred to as Methylobacter sp N39, produced beta-carotene at a rate (μg ml-1 d-1) of 0.45-3.09. Biosynthesis of beta-carotene was stimulated by brief exposure to UV for 10 min per 2 days. Carotenoid biosynthesis was predicted as y = 3.09 × incubation period + 22.151 (r 2 = 0.90). The carotenoid extract of N39 protected E. coli from UV radiation by declining its death rate from 14.67% min-1 to 4.30% min-1 under UV radiation. Application of N39 cells and carotenoid extract also protected rhizobium (Bradyrhizobium japonicum) cells from UV radiation. Scanning electron microscopy indicated that the carotenoid extracts protected E. coli cells from UV radiation. Foliar application of either N39 cells or carotenoid extract enhanced the plant's (Pigeon pea) resistance to UV irradiation. This study highlight that Methylobacter sp N39 and its carotenoid extract can be explored to manage UV radiation stress in agriculture.
Collapse
Affiliation(s)
- Santosh Ranjan Mohanty
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India,*Correspondence: Santosh Ranjan Mohanty, ,
| | - Himanshu Mahawar
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India,ICAR -s Directorate of Weed Research, Jabalpur, Madhya Pradesh, India,Himanshu Mahawar,
| | - Apekcha Bajpai
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India
| | - Garima Dubey
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India
| | - Rakesh Parmar
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India
| | - Nagvanti Atoliya
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India
| | | | | | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Ashok Patra
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India
| | - Bharati Kollah
- ICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh, India,Bharati Kollah, ,
| |
Collapse
|
7
|
Lyu X, Sun C, Lin T, Wang X, Li S, Zhao S, Gong Z, Wei Z, Yan C, Ma C. Systemic regulation of soybean nodulation and nitrogen fixation by nitrogen via isoflavones. FRONTIERS IN PLANT SCIENCE 2022; 13:968496. [PMID: 36035684 PMCID: PMC9403732 DOI: 10.3389/fpls.2022.968496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) inhibits soybean (Glycine max L.) nodulation and N2 fixation. Isoflavones secreted by soybean roots can stimulate signal transduction for symbiotic nodules, thus playing a key role in root nodule development and N2 fixation. The relationship between the inhibition of soybean nodulation, N2 fixation and isoflavones by N is still unclear. In this study, dual-root soybean plants were prepared by grafting, and N or isoflavones were supplied to unilateral roots. The number and dry weight of the soybean nodules, nitrogenase activity, isoflavone concentrations and relative changes in the level of expression of nodulation-related genes were measured to study the response relationship between the N systemic regulation the soybean nodule N2 fixation and changes in the concentrations of isoflavones in its roots. The results showed that N supply to one side of the dual-root soybeans systematically affected the N2 fixation of root nodules on both sides, and this effect began in the early stage of nodulation. Moreover, a unilateral supply of N systematically affected the concentrations of daidzein and genistein on both sides of the roots. The concentrations of isoflavones were consistent with the change trend of soybean root nodule and nodulation-related gene expression level. Treatment with unilateral N or isoflavones affected the soybean nodule N2 fixation and its nodulation-related genes, which had the same response to the changes in concentrations of root isoflavones. N regulates soybean nodulation and N2 fixation by systematically affecting the concentrations of isoflavones in the roots.
Collapse
Affiliation(s)
- Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunyan Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Tao Lin
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xuelai Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Sha Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shuhong Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, China
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ziwei Wei
- Harbin Agricultural Technology Extension Station, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Fink J, Sánchez-Rodríguez AR, Frosi G, Eckert D, Bonetti JA, Bastiani K, Lavratti A, Inda AV, Zanquetti A. Industrial saline wastewater in a corn-soybean rotation to enhance crop yield without compromising soil health in a subtropical soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113341. [PMID: 34351294 DOI: 10.1016/j.jenvman.2021.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The production of industrial waste has increased in the last decades along with world population. Wastes are used in agriculture as fertilizers and soil amendments depending on their composition, dynamics in soil and effects on plant growth. The aim of this study was to assess the effect of industrial saline wastewater from heparin production on soil chemistry and plant yield in a subtropical soil in Brazil. Five rates of industrial saline wastewater (0, 10, 20, 40 and 60 m3 ha-1 year-1) were applied as fertilizer in a corn -soybean rotation on an Oxisol with limited nutrient availability. Five soils sampling were done: before and after the first application of the industrial wastewater (2017, corn), before and after the second application of wastewater (2018, soybean) and two years after the first application (2019). Soil K, Ca, Mg, Na content and CEC increased immediately after the application of wastewater but they returned to former values with time due to plant uptake and lixiviation. Wastewater application significantly increased corn (all rates) and soybean (only with the highest rate) yields around 103-250% and 50%, respectively, in comparison with no wastewater application. However, the highest rate temporally increased soil Na content and electrical conductivity (up to 650 and 800%, respectively). Although nutrient uptake, chlorophyll content and corn and soybean yields were enhanced, the use of high rates of industrial saline wastewater could cause soil salinization (mainly in locations with low rainfall), affecting soil chemistry and physical parameters due to clay dispersion, and pollution or water bodies.
Collapse
Affiliation(s)
- Jessé Fink
- Laboratory of Soils, Federal Institute of Paraná - Campus Palmas, Bento Munhoz da Rocha Neto Avenue, CEP 85555-000, Paraná, Brazil.
| | | | - Gustavo Frosi
- Department of Soils, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dayana Eckert
- Department of Soils, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Kayn Bastiani
- Laboratory of Soils, Federal Institute of Paraná - Campus Palmas, Bento Munhoz da Rocha Neto Avenue, CEP 85555-000, Paraná, Brazil
| | - Alan Lavratti
- Laboratory of Soils, Federal Institute of Paraná - Campus Palmas, Bento Munhoz da Rocha Neto Avenue, CEP 85555-000, Paraná, Brazil
| | - Alberto Vasconcellos Inda
- Department of Soils, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
9
|
Chen WF, Wang ET, Ji ZJ, Zhang JJ. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. J Appl Microbiol 2021; 131:553-563. [PMID: 33300250 DOI: 10.1111/jam.14960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Currently, symbiotic rhizobia (sl., rhizobium) refer to the soil bacteria in α- and β-Proteobacteria that can induce root and/or stem nodules on some legumes and a few of nonlegumes. In the nodules, rhizobia convert the inert dinitrogen gas (N2 ) into ammonia (NH3 ) and supply them as nitrogen nutrient to the host plant. In general, this symbiotic association presents specificity between rhizobial and leguminous species, and most of the rhizobia use lipochitooligosaccharides, so called Nod factor (NF), for cooperating with their host plant to initiate the formation of nodule primordium and to inhibit the plant immunity. Besides NF, effectors secreted by type III secretion system (T3SS), exopolysaccharides and many microbe-associated molecular patterns in the rhizobia also play important roles in nodulation and immunity response between rhizobia and legumes. However, the promiscuous hosts like Glycine max and Sophora flavescens can nodulate with various rhizobial species harbouring diverse symbiosis genes in different soils, meaning that the nodulation specificity/efficiency might be mainly determined by the host plants and regulated by the soil conditions in a certain cases. Based on previous studies on rhizobial application, we propose a '1+n-N' model to promote the function of symbiotic nitrogen fixation (SNF) in agricultural practice, where '1' refers to appreciate rhizobium; '+n' means the addition of multiple trace elements and PGPR bacteria; and '-N' implies the reduction of chemical nitrogen fertilizer. Finally, open questions in the SNF field are raised to future think deeply and researches.
Collapse
Affiliation(s)
- W F Chen
- State Key Laboratory of Agrobiotechnology, Beijing, P. R. China.,College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, P. R. China
| | - E T Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, D.F, México
| | - Z J Ji
- College of Life Science and Food Engineering, Horqin Plant Stress Biology Research Institute, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, P. R. China
| | - J J Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, P. R. China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Province, P. R. China.,Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan Province, P. R. China
| |
Collapse
|
10
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|