1
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
3
|
G C B, Sahukhal GS, Elasri MO. Delineating the Role of the msaABCR Operon in Staphylococcal Overflow Metabolism. Front Microbiol 2022; 13:914512. [PMID: 35722290 PMCID: PMC9204165 DOI: 10.3389/fmicb.2022.914512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can infect almost every organ system, resulting in a high incidence of morbidity and mortality. The msaABCR operon is an important regulator of several staphylococcal phenotypes, including biofilm development, cell wall crosslinking, antibiotic resistance, oxidative stress, and acute and chronic implant-associated osteomyelitis. Our previous study showed that, by modulating murein hydrolase activity, the msaABCR operon negatively regulates the proteases that govern cell death. Here, we report further elucidation of the mechanism of cell death, which is regulated by the msaABCR operon at the molecular level in the USA300 LAC strain. We showed that deletion of msaABCR enhances weak-acid-dependent cell death, because, in the biofilm microenvironment, this mutant strain consumes glucose and produces acetate and acetoin at higher rates than wild-type USA300 LAC strain. We proposed the increased intracellular acidification leads to increased cell death. MsaB, a dual-function transcription factor and RNA chaperone, is a negative regulator of the cidR regulon, which has been shown to play an important role in overflow metabolism and programmed cell death during biofilm development in S. aureus. We found that MsaB binds directly to the cidR promoter, which represses expression of the cidR regulon and prevents transcription of the cidABC and alsSD operons. In addition, we observed that pyruvate induced expression of the msaABCR operon (MsaB). The results reported here have enabled us to decipher the role of the msaABCR operon in staphylococcal metabolic adaption during biofilm development.
Collapse
Affiliation(s)
- Bibek G C
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Gyan S. Sahukhal,
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Askoura M, Yousef N, Mansour B, Yehia FAZA. Antibiofilm and staphyloxanthin inhibitory potential of terbinafine against Staphylococcus aureus: in vitro and in vivo studies. Ann Clin Microbiol Antimicrob 2022; 21:21. [PMID: 35637481 PMCID: PMC9153124 DOI: 10.1186/s12941-022-00513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Antimicrobial resistance is growing substantially, which necessitates the search for novel therapeutic options. Terbinafine, an allylamine antifungal agent that exhibits a broad spectrum of activity and is used in the treatment of dermatophytosis, could be a possible option to disarm S. aureus virulence. Methods Terbinafine inhibitory effect on staphyloxanthin was characterized by quantitative measurement of staphyloxanthin intermediates and molecular docking. The effect of terbinafine on S. aureus stress survival was characterized by viable counting. The anti-biofilm activity of terbinafine on S. aureus was assessed by the crystal violet assay and microscopy. Changes in S. aureus membrane following treatment with terbinafine were determined using Fourier transform infrared (FTIR) analysis. The synergistic action of terbinafine in combination with conventional antibiotics was characterized using the checkerboard assay. qRT-PCR was used to evaluate the impact of terbinafine on S. aureus gene expression. The influence of terbinafine on S. aureus pathogenesis was investigated in mice infection model. Results Terbinafine inhibits staphyloxanthin biosynthesis through targeting dehydrosqualene desaturase (CrtN). Docking analysis of terbinafine against the predicted active site of CrtN reveals a binding energy of − 9.579 kcal/mol exemplified by the formation of H-bonds, H-arene bonds, and hydrophobic/hydrophilic interactions with the conserved amino acids of the receptor pocket. Terbinafine treated S. aureus was more susceptible to both oxidative and acid stress as well as human blood killing as compared to untreated cells. Targeting staphyloxanthin by terbinafine rendered S. aureus more sensitive to membrane acting antibiotics. Terbinafine interfered with S. aureus biofilm formation through targeting cell autoaggregation, hydrophobicity, and exopolysaccharide production. Moreover, terbinafine demonstrated a synergistic interaction against S. aureus when combined with conventional antibiotics. Importantly, terbinafine attenuated S. aureus pathogenesis using mice infection model. qRT-PCR revealed that terbinafine repressed expression of the transcriptional regulators sigB, sarA, and msaB, as well as icaA in S. aureus. Conclusions Present findings strongly suggest that terbinafine could be used safely and efficiently as an anti-virulent agent to combat S. aureus infections.
Collapse
Affiliation(s)
- Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Belqas, Egypt
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Pandey S, Sahukhal GS, Elasri MO. The msaABCR Operon Regulates Persister Formation by Modulating Energy Metabolism in Staphylococcus aureus. Front Microbiol 2021; 12:657753. [PMID: 33936014 PMCID: PMC8079656 DOI: 10.3389/fmicb.2021.657753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes chronic, systemic infections, and the recalcitrance of these infections is mainly due to the presence of persister cells, which are a bacterial subpopulation that exhibits extreme, yet transient, antibiotic tolerance accompanied by a transient halt in growth. However, upon cessation of antibiotic treatment, a resumption in growth of persister cells causes recurrence of infections and treatment failure. Previously, we reported the involvement of msaABCR in several important staphylococcal phenotypes, including the formation of persister cells. Additionally, observations of the regulation of several metabolic genes by the msaABCR operon in transcriptomics and proteomics analyses have suggested its role in the metabolic activities of S. aureus. Given the importance of metabolism in persister formation as our starting point, in this study we demonstrated how the msaABCR operon regulates energy metabolism and subsequent antibiotic tolerance. We showed that deletion of the msaABCR operon results in increased tricarboxylic acid (TCA) cycle activity, accompanied by increased cellular ATP content and higher NADH content in S. aureus cells. We also showed that msaABCR (through MsaB) represses the ccpE and ndh2 genes, thereby regulating TCA cycle activity and the generation of membrane potential, respectively. Together, the observations from this study led to the conclusion that msaABCR operon deletion induces a metabolically hyperactive state, leading to decreased persister formation in S. aureus.
Collapse
Affiliation(s)
- Shanti Pandey
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gyan S Sahukhal
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mohamed O Elasri
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Sahukhal GS, Tucci M, Benghuzzi H, Wilson G, Elasri MO. The role of the msaABCR operon in implant-associated chronic osteomyelitis in Staphylococcus aureus USA300 LAC. BMC Microbiol 2020; 20:324. [PMID: 33109085 PMCID: PMC7590495 DOI: 10.1186/s12866-020-01964-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 09/02/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The msaABCR operon regulates several staphylococcal phenotypes such as biofilm formation, capsule production, protease production, pigmentation, antibiotic resistance, and persister cells formation. The msaABCR operon is required for maintaining the cell wall integrity via affecting peptidoglycan cross-linking. The msaABCR operon also plays a role in oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Staphylococcus aureus is the most frequent cause of chronic implant-associated osteomyelitis (OM). The CA-MRSA USA300 strains are predominant in the United States and cause severe infections, including bone and joint infections. RESULTS The USA300 LAC strain caused significant bone damage, as evidenced by the presence of severe bone necrosis with multiple foci of sequestra and large numbers of multinucleated osteoclasts. Intraosseous survival and biofilm formation on the K-wires by USA300 LAC strains was pronounced. However, the msaABCR deletion mutant was attenuated. We observed minimal bone necrosis, with no evidence of intramedullary abscess and/or fibrosis, along reduced intraosseous bacterial population and significantly less biofilm formation on the K-wires by the msaABCR mutant. microCT analysis of infected bone showed significant bone loss and damage in the USA300 LAC and complemented strain, whereas the msaABCR mutant's effect was reduced. In addition, we observed increased osteoblasts response and new bone formation around the K-wires in the bone infected by the msaABCR mutant. Whole-cell proteomics analysis of msaABCR mutant cells showed significant downregulation of proteins, cell adhesion factors, and virulence factors that interact with osteoblasts and are associated with chronic OM caused by S. aureus. CONCLUSION This study showed that deletion of msaABCR operon in USA300 LAC strain lead to defective biofilm in K-wire implants, decreased intraosseous survival, and reduced cortical bone destruction. Thus, msaABCR plays a role in implant-associated chronic osteomyelitis by regulating extracellular proteases, cell adhesions factors and virulence factors. However additional studies are required to further define the contribution of msaABCR-regulated molecules in osteomyelitis pathogenesis.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Present Address: Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406, USA.
| | - Michelle Tucci
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hamed Benghuzzi
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gerri Wilson
- Department of Orthopaedics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohamed O Elasri
- Present Address: Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406, USA
| |
Collapse
|
7
|
Cusimano MG, Ardizzone F, Nasillo G, Gallo M, Sfriso A, Martino-Chillura D, Schillaci D, Baldi F, Gallo G. Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay. Appl Microbiol Biotechnol 2020; 104:6325-6336. [DOI: 10.1007/s00253-020-10686-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 01/05/2023]
|
8
|
The Impacts of msaABCR on sarA-Associated Phenotypes Are Different in Divergent Clinical Isolates of Staphylococcus aureus. Infect Immun 2020; 88:IAI.00530-19. [PMID: 31740526 PMCID: PMC6977130 DOI: 10.1128/iai.00530-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
The staphylococcal accessory regulator (sarA) plays an important role in Staphylococcus aureus infections, including osteomyelitis, and the msaABCR operon has been implicated as an important factor in modulating expression of sarA Thus, we investigated the contribution of msaABCR to sarA-associated phenotypes in the S. aureus clinical isolates LAC and UAMS-1. Mutation of msaABCR resulted in reduced production of SarA and a reduced capacity to form a biofilm in both strains. Biofilm formation was enhanced in a LAC msa mutant by restoring the production of SarA, but this was not true in a UAMS-1 msa mutant. Similarly, extracellular protease production was increased in a LAC msa mutant but not a UAMS-1 msa mutant. This difference was reflected in the accumulation and distribution of secreted virulence factors and in the impact of extracellular proteases on biofilm formation in a LAC msa mutant. Most importantly, it was reflected in the relative impact of mutating msa as assessed in a murine osteomyelitis model, which had a significant impact in LAC but not in UAMS-1. In contrast, mutation of sarA had a greater impact on all of these in vitro and in vivo phenotypes than mutation of msaABCR, and it did so in both LAC and UAMS-1. These results suggest that, at least in osteomyelitis, it would be therapeutically preferable to target sarA rather than msaABCR to achieve the desired clinical result, particularly in the context of divergent clinical isolates of S. aureus.
Collapse
|
9
|
The msaABCR Operon Regulates the Response to Oxidative Stress in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00417-19. [PMID: 31427392 DOI: 10.1128/jb.00417-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus has evolved a complex regulatory network that controls a multitude of defense mechanisms against the deleterious effects of oxidative stress stimuli, subsequently leading to the pathogen's survival and persistence in the hosts. Previously, we characterized the msaABCR operon as a regulator of virulence, antibiotic resistance, and the formation of persister cells in S. aureus Deletion of the msaABCR operon resulted in the downregulation of several genes involved in resistance against oxidative stress. Notably, those included carotenoid biosynthetic genes and the ohr gene, which is involved in resistance against organic hydroperoxides. These findings led us to hypothesize that the msaABCR operon is involved in resisting oxidative stress generated in the presence of both H2O2 and organic hydroperoxides. Here, we report that a protein product of the msaABCR operon (MsaB) transcriptionally regulates the expression of the crtOPQMN operon and the ohr gene to resist in vitro oxidative stresses. In addition to its direct regulation of the crtOPQMN operon and ohr gene, we also show that MsaB is the transcriptional repressor of sarZ (repressor of ohr). Taken together, these results suggest that the msaABCR operon regulates an oxidative stress defense mechanism, which is required to facilitate persistent and recurrent staphylococcal infections. Moving forward, we plan to investigate the role of msaABCR in the persistence of S. aureus under in vivo conditions.IMPORTANCE This study shows the involvement of the msaABCR operon in resisting oxidative stress by Staphylococcus aureus generated under in vitro and ex vivo conditions. We show that MsaB regulates the expression and production of a carotenoid pigment, staphyloxanthin, which is a potent antioxidant in S. aureus We also demonstrate that MsaB regulates the ohr gene, which is involved in defending against oxidative stress generated by organic hydroperoxides. This study highlights the importance of msaABCR in the survival of S. aureus in the presence of various environmental stimuli that mainly exert oxidative stress. The findings from this study indicate the possibility that msaABCR is involved in the persistence of staphylococcal infections and therefore could be a potential antimicrobial target to overcome recalcitrant staphylococcal infections.
Collapse
|
10
|
G C B, Sahukhal GS, Elasri MO. Role of the msaABCR Operon in Cell Wall Biosynthesis, Autolysis, Integrity, and Antibiotic Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2019; 63:e00680-19. [PMID: 31307991 PMCID: PMC6761503 DOI: 10.1128/aac.00680-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen in both community and health care settings. One of the challenges with S. aureus as a pathogen is its acquisition of antibiotic resistance. Previously, we showed that deletion of the msaABCR operon reduces cell wall thickness, resulting in decreased resistance to vancomycin in vancomycin-intermediate S. aureus (VISA). In this study, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR mutant cells had decreased cross-linking in both strains. This defect is typically due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased protease activity in mutant cells. The defect was enhanced by a decrease in teichoic acid content in the msaABCR mutant. Therefore, we propose that deletion of the msaABCR operon results in decreased peptidoglycan cross-linking, leading to increased susceptibility toward cell wall-targeting antibiotics, such as β-lactams and vancomycin. Moreover, we also observed significantly downregulated transcription of early cell wall-synthesizing genes, supporting the finding that msaABCR mutant cells have decreased peptidoglycan synthesis. More specifically, the msaABCR mutant in the USA300 LAC strain (MRSA) showed significantly reduced expression of the murA gene, whereas the msaABCR mutant in the Mu50 strain (VISA) showed significantly reduced expression of glmU, murA, and murD Thus, we conclude that the msaABCR operon controls the balance between cell wall synthesis and cell wall hydrolysis, which is required for maintaining a robust cell wall and acquiring resistance to cell wall-targeting antibiotics, such as vancomycin and the β-lactams.
Collapse
Affiliation(s)
- Bibek G C
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Gyan S Sahukhal
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Mohamed O Elasri
- Cell and Molecular Biology, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
11
|
Raimondi MV, Listro R, Cusimano MG, La Franca M, Faddetta T, Gallo G, Schillaci D, Collina S, Leonchiks A, Barone G. Pyrrolomycins as antimicrobial agents. Microwave-assisted organic synthesis and insights into their antimicrobial mechanism of action. Bioorg Med Chem 2019; 27:721-728. [PMID: 30711310 DOI: 10.1016/j.bmc.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
New compounds able to counteract staphylococcal biofilm formation are needed. In this study we investigate the mechanism of action of pyrrolomycins, whose potential as antimicrobial agents has been demonstrated. We performed a new efficient and easy method to use microwave organic synthesis suitable for obtaining pyrrolomycins in good yields and in suitable amount for their in vitro in-depth investigation. We evaluate the inhibitory activity towards Sortase A (SrtA), a transpeptidase responsible for covalent anchoring in Gram-positive peptidoglycan of many surface proteins involved in adhesion and in biofilm formation. All compounds show a good inhibitory activity toward SrtA, having IC50 values ranging from 130 to 300 µM comparable to berberine hydrochloride. Of note compound 1d shows a good affinity in docking experiment to SrtA and exhibits the highest capability to interfere with biofilm formation of S. aureus showing an IC50 of 3.4 nM. This compound is also effective in altering S. aureus murein hydrolase activity that is known to be responsible for degradation, turnover, and maturation of bacterial peptidoglycan and involved in the initial stages of S. aureus biofilm formation.
Collapse
Affiliation(s)
- Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Roberta Listro
- Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Maria Grazia Cusimano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Mery La Franca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Simona Collina
- Drug Sciences Department, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Ainars Leonchiks
- APP Latvian Biomedical Research and Study Centre (BMC), Rātsupītes iela 1, LV-1067 Rīga, Latvia.
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
12
|
MsaB and CodY Interact To Regulate Staphylococcus aureus Capsule in a Nutrient-Dependent Manner. J Bacteriol 2018; 200:JB.00294-18. [PMID: 29941424 DOI: 10.1128/jb.00294-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus has a complex regulatory network for controlling the production of capsule polysaccharide. In S. aureus, capsule production is controlled by several regulators in response to various environmental stimuli. Previously, we described MsaB as a new regulator that specifically binds to the cap promoter in a growth phase- or nutrient-dependent manner. In addition to MsaB, several other regulators have also been shown to bind the same region. In this study, we examined the interactions between MsaB and other nutrient-sensing regulators (CodY and CcpE) with respect to binding to the cap promoter in a nutrient-dependent manner. We observed that msaABCR and ccpE interact in a complex fashion to regulate capsule production. However, we confirmed that ccpE does not bind cap directly. We also defined the regulatory relationship between msaABCR and CodY. When nutrients (branched-chain amino acids) are abundant, CodY binds to the promoter region of the cap operon and represses its transcription. However, when nutrient concentrations decrease, MsaB, rather than CodY, binds to the cap promoter. Binding of MsaB to the cap promoter activates transcription of the cap operon. We hypothesize that this same mechanism may be used by S. aureus to regulate other virulence factors.IMPORTANCE Findings from this study define the mechanism of regulation of capsule production in Staphylococcus aureus Specifically, we show that two key regulators, MsaB and CodY, coordinate their functions to control the expression of capsule in response to nutrients. S. aureus fine-tunes the production of capsule by coordinating the activity of several regulators and by sensing nutrient levels. This study demonstrates the importance of incorporating multiple inputs prior to the expression of costly virulence factors, such as capsule.
Collapse
|
13
|
Sahukhal GS, Pandey S, Elasri MO. msaABCR operon is involved in persister cell formation in Staphylococcus aureus. BMC Microbiol 2017; 17:218. [PMID: 29166860 PMCID: PMC5700755 DOI: 10.1186/s12866-017-1129-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023] Open
Abstract
Background Persister cells comprise a phenotypic variant that shows extreme antibiotic tolerance resulting in treatment failures of bacterial infections. While this phenomenon has posed a great threat in public health, mechanisms underlying their formation in Staphylococcus aureus remain largely unknown. Increasing evidences of the presence of persister cells in recalcitrant infections underscores the great urgency to unravel the mechanism by which these cells develop. Previously, we characterized msaABCR operon that plays roles in regulation of virulence, biofilm development and antibiotic resistance. We also characterized the function of MsaB protein and showed that MsaB is a putative transcription factor that binds target DNA in response to nutrients availability. Results In this study, we compared the number of persister cell in wild type, msaABCR deletion mutant and the complemented strain in two backgrounds USA300 LAC and Mu50. Herein, we report that msaABCR deletion mutant forms significantly less number of persister cells relative to wild type after challenge with various antibiotics in planktonic and biofilm growth conditions. Complementation of the msaABCR operon restored wild type phenotype. Combined antibiotic therapy along with msaABCR deletion significantly improves the killing kinetics of stationary phase and biofilm S. aureus cells. Transcriptomics analysis showed that msaABCR regulates several metabolic genes, transcription factors, transporters and enzymes that may play role in persister cells formation, which we seek to define in the future. Conclusions This study presented a new regulator, msaABCR operon, that is involved in the persister cells formation, which is a poorly understood in S. aureus. Indeed, we showed that msaABCR deletion significantly reduces the persister cells formation in all growth phases tested. Although, we have not yet defined the mechanism, we have shown that msaABCR regulates several metabolic, transporters, and extracellular proteases genes that have been previously linked with persister cells formation in other bacterial systems. Taken together, this study showed that inactivation of the msaABCR operon enhances the effectiveness of antibiotics for the treatment of S. aureus infections, especially in context of persister cells. Electronic supplementary material The online version of this article (10.1186/s12866-017-1129-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406-0001, USA
| | - Shanti Pandey
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406-0001, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS, 39406-0001, USA.
| |
Collapse
|
14
|
Uppalapati CK, Gutierrez KD, Buss-Valley G, Katzif S. Growth-dependent activity of the cold shock cspA promoter + 5' UTR and production of the protein CspA in Staphylococcus aureus Newman. BMC Res Notes 2017; 10:232. [PMID: 28655334 PMCID: PMC5488409 DOI: 10.1186/s13104-017-2557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/19/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Research involving the cold shock gene cspA of the medically important bacterium Staphylococcus aureus is steadily increasing as the relationships between the activity of this gene at 37 °C and a spectrum of virulence factors (e.g., biofilm formation, capsule production) as well as stress-related genes (e.g., alkaline shock protein, asp-23 and the alternative sigma factor, sigB) are distinguished. Fundamental to each of these discoveries is defining the regulation of cspA and the production of its protein product CspA. RESULTS In this paper, primer extension analysis was used to identify a transcriptional start point at 112 bp upstream of the initiation codon of the cspA coding sequence from S. aureus Newman RNA collected at 37 °C. Based on the location of the putative -10 and -35 sites as well as putative cold shock protein binding sites, a 192 bp sequence containing an 80 bp promoter + a 112 bp 5' UTR was generated by polymerase chain reaction. The activity of this 192 bp sequence was confirmed in a pLL38 promoter::xylE reporter gene construct. In addition, Western blots were used to confirm the production of CspA at 37 °C and demonstrated that production of the protein was not constitutive but showed growth-dependent production with a significant increase at the 6 h time point. CONCLUSIONS The results presented identify another regulatory region for the cold shock gene cspA of S. aureus and show growth-dependent activity of both this cspA regulatory sequence, presented as a 192 bp sequence of promoter + 5' UTR and the production of the CspA protein at 37 °C. The presence of two active transcription start points, a -112 bp sequence defined in this work and a second previously defined at -514 bp upstream of the cspA initiation codon, suggests the possibility of interactions between these two regions in the regulation of cspA. The growth-dependent production of the cold shock protein CspA supports the availability of this protein to be a modulator of virulence and stress factor genes at 37 °C.
Collapse
Affiliation(s)
- Chandana K Uppalapati
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, 85308, USA
| | | | - Gina Buss-Valley
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, 85308, USA
| | - Sam Katzif
- Department of Microbiology and Immunology, Midwestern University, Glendale, AZ, 85308, USA.
| |
Collapse
|
15
|
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 2017; 104:365-376. [PMID: 28142193 DOI: 10.1111/mmi.13634] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Chronic biofilm-associated infections caused by Staphylococcus aureus often lead to significant increases in morbidity and mortality, particularly when associated with indwelling medical devices. This has triggered a great deal of research attempting to understand the molecular mechanisms that control S. aureus biofilm formation and the basis for the recalcitrance of these multicellular structures to antibiotic therapy. The purpose of this review is to summarize our current understanding of S. aureus biofilm development, focusing on the description of a newly-defined, five-stage model of biofilm development and the mechanisms required for each stage. Importantly, this model includes an alternate view of the processes involved in microcolony formation in S. aureus and suggests that these structures originate as a result of stochastically regulated metabolic heterogeneity and proliferation within a maturing biofilm population, rather than a subtractive process involving the release of cell clusters from a thick, unstructured biofilm. Importantly, it is proposed that this new model of biofilm development involves the genetically programmed generation of metabolically distinct subpopulations of cells, resulting in an overall population that is better able to adapt to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Derek E Moormeier
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kenneth W Bayles
- Center for Staphylococcal Research, Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Figueiredo AMS, Ferreira FA, Beltrame CO, Côrtes MF. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit Rev Microbiol 2017; 43:602-620. [PMID: 28581360 DOI: 10.1080/1040841x.2017.1282941] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.
Collapse
Affiliation(s)
- Agnes Marie Sá Figueiredo
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Fabienne Antunes Ferreira
- b Departamento de Microbiologia, Imunologia e Parasitologia , Campus Universitário Setor F, Bloco A. Florianópolis, Universidade Federal de Santa Catarina , Florianopolis , Brazil
| | - Cristiana Ossaille Beltrame
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Marina Farrel Côrtes
- a Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
17
|
Batte JL, Samanta D, Elasri MO. MsaB activates capsule production at the transcription level in Staphylococcus aureus. MICROBIOLOGY-SGM 2016; 162:575-589. [PMID: 26781313 DOI: 10.1099/mic.0.000243] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus produces several virulence factors that allow it to cause a variety of infections. One of the major virulence factors is the capsule, which contributes to the survival of the pathogen within the host as a way to escape phagocytosis. The production of the capsular polysaccharide is encoded in a 16 gene operon, which is regulated in response to several environmental stimuli including nutrient availability. For instance, the capsule is produced in the late- and post-exponential growth phases, but not in the early- or mid-exponential growth phase. Several regulators are involved in capsule production, but the regulation of the cap operon is still poorly understood. In this study, we show that MsaB activates the cap operon by binding directly to a 10 bp repeat in the promoter region. We show that despite the fact that MsaB is expressed throughout four growth phases, it only activates capsule production in the late- and post-exponential growth phases. Furthermore, we find that MsaB does not bind to its target site in the early and mid-exponential growth phases. This correlates with decreased nutrient availability and capsule production. These data suggest either that MsaB binding ability changes in response to nutrients or that other cap operon regulators interfere with the binding of MsaB to its target site. This study increases our understanding of the regulation of capsule production and the mechanism of action of MsaB.
Collapse
Affiliation(s)
- Justin L Batte
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Dhritiman Samanta
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|