1
|
Wang Q, Aleshintsev A, Rai K, Jin E, Gupta R. Proton Transfer via Arginine with Suppressed p Ka Mediates Catalysis by Gentisate and Salicylate Dioxygenase. J Phys Chem B 2024; 128:6797-6805. [PMID: 38978492 PMCID: PMC11264262 DOI: 10.1021/acs.jpcb.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Gentisate and salicylate 1,2-dioxygenases (GDO and SDO) facilitate aerobic degradation of aromatic rings by inserting both atoms of dioxygen into their substrates, thereby participating in global carbon cycling. The role of acid-base catalysts in the reaction cycles of these enzymes is debatable. We present evidence of the participation of a proton shuffler during catalysis by GDO and SDO. The pH dependence of Michaelis-Menten parameters demonstrates that a single proton transfer is mandatory for the catalysis. Measurements at variable temperatures and pHs were used to determine the standard enthalpy of ionization (ΔHion°) of 51 kJ/mol for the proton transfer event. Although the observed apparent pKa in the range of 6.0-7.0 for substrates of both enzymes is highly suggestive of a histidine residue, ΔHion° establishes an arginine residue as the likely proton source, providing phylogenetic relevance for this strictly conserved residue in the GDO family. We propose that the atypical 3-histidine ferrous binding scaffold of GDOs contributes to the suppression of arginine pKa and provides support for this argument by employing a 2-histidine-1-carboxylate variant of the enzyme that exhibits elevated pKa. A reaction mechanism considering the role of the proton source in stabilizing key reaction intermediates is proposed.
Collapse
Affiliation(s)
- Qian Wang
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Aleksey Aleshintsev
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Kamal Rai
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
| | - Eric Jin
- Staten
Island Technical High School, Staten Island, New York 10306, United States
| | - Rupal Gupta
- Department
of Chemistry, College of Staten Island,
City University of New York, Staten
Island, New York 10314, United States
- Ph.D.
Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Yu H, Wang L, Lin Y, Liu W, Tuyiringire D, Jiao Y, Zhang L, Meng Q, Zhang Y. Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp. DNB-S1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110378. [PMID: 32146194 DOI: 10.1016/j.ecoenv.2020.110378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 05/26/2023]
Abstract
The primary purpose of this study was to systematically explore the complete metabolic pathway and tolerance mechanism of strain DNB-S1 to dibutyl phthalate (DBP), and the effect of DBP on energy metabolism of DNB-S1. Here, DNB-S1, a strain of Pseudomonas sp. that was highly effective in degrading DBP, was identified, and differentially expressed metabolites and metabolic networks of DBP were studied. The results showed that the differentially expressed metabolites were mainly aromatic compounds and lipid compounds, with only a few toxic intermediate metabolites. It speculated that phthalic acid, salicylic acid, 3-hydroxybenzoate acid, 3-Carboxy-cis, cis-muconate, fumarypyravate were intermediate metabolites of DBP. Their up-regulation indicated that there were two metabolic pathways in the degradation of DBP (protocatechuate pathway and gentisate pathway), which had been verified by peak changes at 290 nm, 320 nm, 330 nm, and 375 nm in the enzymatic method. Also, aspartate, GSH, and other metabolites were up-regulation, indicating that DNB-S1 had a high tolerance to DBP and maintained cell homeostasis, which was also one of the essential reasons to ensure the efficient degradation of DBP. Altogether, this study firstly proposed two pathways to degrade DBP and comprehensively explored the effect of DBP on the metabolic function of DNB-S1, which enriched the study of microbial metabolism of organic pollutants, and which provided a basis for the application of metabolomics.
Collapse
Affiliation(s)
- Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yulong Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Weixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
3
|
Mori Y, Tada C, Fukuda Y, Nakai Y. Diversity of Sulfur-oxidizing Bacteria at the Surface of Cattle Manure Composting Assessed by an Analysis of the Sulfur Oxidation Gene soxB. Microbes Environ 2020; 35:ME18066. [PMID: 32713897 PMCID: PMC7511791 DOI: 10.1264/jsme2.me18066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Sulfur-oxidizing bacterial diversity at the surface of cattle manure was characterized throughout the composting process using a sulfur oxidation gene (soxB) clone library approach. In the mesophilic phase, clones related to the genera Hydrogenophaga and Hydrogenophilus were characteristically detected. In the thermophilic phase, clones related to the genera Hydrogenophaga and Thiohalobacter were predominant. In the cooling phase, the predominant soxB sequences were related to the genus Pseudaminobacter and a new sulfur-oxidizing bacterium belonging to the class Alphaproteobacteria. The present study showed changes in the community composition of sulfur-oxidizing bacteria at the surface of compost throughout the composting process.
Collapse
Affiliation(s)
- Yumi Mori
- Laboratory of Sustainable Animal Environmental Science, Graduate School of Agricultural Science, Tohoku University, 232–3 Yomogida, Naruko-onsen, Osaki, Miyagi 989–6711, Japan
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, 1–308 Suematsu, Nonoichi, Ishikawa 921–8836, Japan
| | - Chika Tada
- Laboratory of Sustainable Animal Environmental Science, Graduate School of Agricultural Science, Tohoku University, 232–3 Yomogida, Naruko-onsen, Osaki, Miyagi 989–6711, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environmental Science, Graduate School of Agricultural Science, Tohoku University, 232–3 Yomogida, Naruko-onsen, Osaki, Miyagi 989–6711, Japan
| | - Yutaka Nakai
- Laboratory of Sustainable Animal Environmental Science, Graduate School of Agricultural Science, Tohoku University, 232–3 Yomogida, Naruko-onsen, Osaki, Miyagi 989–6711, Japan
| |
Collapse
|
4
|
Banerjee A, Li J, Speelman AL, White CJ, Pawlak PL, Brennessel WW, Lehnert N, Chavez FA. A Structural Model for the Iron-Nitrosyl Adduct of Gentisate Dioxygenase. Eur J Inorg Chem 2018; 2018:4797-4804. [PMID: 32577096 DOI: 10.1002/ejic.201800992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We present the synthesis, properties, and characterization of [Fe(T1Et4iPrIP)(NO)(H2O)2](OTf)2 (1) (T1Et4iPrIP = Tris(1-ethyl-4-isopropyl-imidazolyl)phosphine) as a model for the nitrosyl adduct of gentisate 1,2-dioxygenase (GDO). The further characterization of [Fe(T1Et4iPrIP)(THF)(NO)(OTf)](OTf) (2) which was previously communicated (Inorg. Chem. 2014, 53, 5414) is also presented. The weighted average Fe-N-O angle of 162° for 1 is very close to linear (≥ 165°) for these types of complexes. The coordinated water ligands participate in hydrogen bonding interactions. The spectral properties (EPR, UV-vis, FTIR) for 1 are compared with 2 and found to be quite comparable. Complex 1 closely follows the relationship between the Fe-N-O angle and NO vibrational frequency which was previously identified for 6-coordinate {FeNO}7 complexes. Liquid FTIR studies on 2 indicate that the ν(NO) vibration position is sensitive to solvent shifting to lower energy (relative to the solid) in donor solvent THF and shifting to higher energy in dichloromethane. The basis for this behavior is discussed. The K eq for NO binding in 2 was calculated in THF and found to be 470 M-1. Density functional theory (DFT) studies on 1 indicate donation of electron density to the iron center from the π* orbitals of formally NO-. Such a donation accounts for the near linearity of the Fe-N-O bond and the large ν(NO) value of 1791 cm-1.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
| | - Jia Li
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
| | - Amy L Speelman
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Corey J White
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Piotr L Pawlak
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
| | | | - Nicolai Lehnert
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ferman A Chavez
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA
| |
Collapse
|
5
|
Novel Gene Encoding 5-Aminosalicylate 1,2-Dioxygenase from Comamonas sp. Strain QT12 and Catalytic Properties of the Purified Enzyme. J Bacteriol 2018; 200:JB.00395-17. [PMID: 29038259 DOI: 10.1128/jb.00395-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The 1,125-bp mabB gene encoding 5-aminosalicylate (5ASA) 1,2-dioxygenase, a nonheme iron dioxygenase in the bicupin family that catalyzes the cleavage of the 5ASA aromatic ring to form cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate in the biodegradation of 3-aminobenzoate, was cloned from Comamonas sp. strain QT12 and characterized. The deduced amino acid sequence of the enzyme has low sequence identity with that of other reported ring-cleaving dioxygenases. MabB was heterologously expressed in Escherichia coli cells and purified as a His-tagged enzyme. The optimum pH and temperature for MabB are 8.0 and 10°C, respectively. FeII is required for the catalytic activity of the purified enzyme. The apparent Km and Vmax values of MabB for 5ASA are 52.0 ± 5.6 μM and 850 ± 33.2 U/mg, respectively. The two oxygen atoms incorporated into the product of the MabB-catalyzed reaction are both from the dioxygen molecule. Both 5ASA and gentisate could be converted by MabB; however, the catalytic efficiency of MabB for 5ASA was much higher (∼70-fold) than that for gentisate. The mabB-disrupted mutant lost the ability to grow on 3-aminobenzoate, and mabB expression was higher when strain QT12 was cultivated in the presence of 3-aminobenzoate. Thus, 5ASA is the physiological substrate of MabB.IMPORTANCE For several decades, 5-aminosalicylate (5ASA) has been advocated as the drug mesalazine to treat human inflammatory bowel disease and considered the key intermediate in the xenobiotic degradation of many aromatic organic pollutants. 5ASA biotransformation research will help us elucidate the microbial degradation of these pollutants. Most studies have reported that gentisate 1,2-dioxygenases (GDOs) can convert 5ASA with significantly high activity; however, the catalytic efficiency of these enzymes for gentisate is much higher than that for 5ASA. This study showed that MabB can convert 5ASA to cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, incorporating two oxygen atoms from the dioxygen molecule into the product. Unlike GDOs, MabB uses 5ASA instead of gentisate as the primary substrate. mabB is the first reported 5-aminosalicylate 1,2-dioxygenase gene.
Collapse
|