1
|
Chi W, Zhang H, Li X, Zhou Y, Meng Q, He L, Yang Y, Liu S, Shi K. Comparative genomic analysis of 255 Oenococcus oeni isolates from China: unveiling strain diversity and genotype-phenotype associations of acid resistance. Microbiol Spectr 2025:e0326524. [PMID: 40261018 DOI: 10.1128/spectrum.03265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Oenococcus oeni, the only species of lactic acid bacteria capable of fully completing malolactic fermentation under challenging wine conditions, continues to intrigue researchers owing to its remarkable adaptability, particularly in combating acid stress. However, the mechanism underlying its superior adaptation to wine stresses still remains elusive due to the lack of viable genetic manipulation tools for this species. In this study, we conducted genomic sequencing and acid resistance phenotype analysis of 255 O. oeni isolates derived from diverse wine regions across China, aiming to elucidate their strain diversity and genotype-phenotype associations of acid resistance through comparative genomics. A significant correlation between phenotypes and evolutionary relationships was observed. Notably, phylogroup B predominantly consisted of acid-resistant isolates, primarily originating from Shandong and Shaanxi wine regions. Furthermore, we uncovered a noteworthy linkage between prophage genomic islands and acid resistance phenotype. Using genome-wide association studies, we identified key genes correlated with acid resistance, primarily involved in carbohydrates and amino acid metabolism processes. This study offers profound insights into the genetic diversity and genetic basis underlying adaptation mechanisms to acid stress in O. oeni.IMPORTANCEThis study provides valuable insights into the genetic basis of acid resistance in Oenococcus oeni, a key lactic acid bacterium in winemaking. By analyzing 255 isolates from diverse wine regions in China, we identified significant correlations between strain diversity, genomic islands, and acid resistance phenotypes. Our findings reveal that certain prophage-related genomic islands and specific genes are closely linked to acid resistance, offering a deeper understanding of how O. oeni adapts to acidic environments. These discoveries not only advance our knowledge of microbial stress responses but also pave the way for selecting and engineering acid-resistant strains, enhancing malolactic fermentation efficiency and wine quality. This research underscores the importance of genomics in improving winemaking practices and addressing challenges posed by high-acidity wines.
Collapse
Affiliation(s)
- Wei Chi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Hanwen Zhang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Li
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yeqin Zhou
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ling He
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Yafan Yang
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuwen Liu
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| | - Kan Shi
- College of Enology, College of Horticulture, Shaanxi Engineering Research Center for Viti-Viniculture, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Heyang Experimental and Demonstrational Stations for Grape, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chen M, Chen Q. Gene manipulation in Oenococcus oeni based on a newly applicable gene gun technology. Front Microbiol 2025; 16:1545266. [PMID: 40034496 PMCID: PMC11872880 DOI: 10.3389/fmicb.2025.1545266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Oenococcus oeni is an important engineering microbe in winemaking. Detailed knowledge of its growth and metabolism in harsh wine environments could contribute to breeding elite O. oeni varieties. However, further studies on this topic do not appear to be sustained due to the lack of stable and reproducible technology to perform gene manipulation on O. oeni. Therefore, this research was designed to study gene function by exploring a newly applicable transformation technique that could perform stably and reproducibly on O. oeni. By using gene gun technology with detonation nanodiamonds as a plasmid DNA carrier, we achieved stable and reproducible plasmid DNA transformation in O. oeni. In addition, the plasmid with the chloramphenicol resistance gene allowed O. oeni SX-1b to thrive in chloramphenicol medium.
Collapse
Affiliation(s)
| | - Qiling Chen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Blanch‐Asensio M, Dey S, Tadimarri VS, Sankaran S. Expanding the genetic programmability of Lactiplantibacillus plantarum. Microb Biotechnol 2024; 17:e14335. [PMID: 37638848 PMCID: PMC10832526 DOI: 10.1111/1751-7915.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Lactobacilli are ubiquitous in nature and symbiotically provide health benefits for countless organisms including humans, animals and plants. They are vital for the fermented food industry and are being extensively explored for healthcare applications. For all these reasons, there is considerable interest in enhancing and controlling their capabilities through the engineering of genetic modules and circuits. One of the most robust and reliable microbial chassis for these synthetic biology applications is the widely used Lactiplantibacillus plantarum species. However, the genetic toolkit needed to advance its applicability remains poorly equipped. This mini-review highlights the genetic parts that have been discovered to achieve food-grade recombinant protein production and speculates on lessons learned from these studies for L. plantarum engineering. Furthermore, strategies to identify, create and optimize genetic parts for real-time regulation of gene expression and enhancement of biosafety are also suggested.
Collapse
Affiliation(s)
- Marc Blanch‐Asensio
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Sourik Dey
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Varun Sai Tadimarri
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| | - Shrikrishnan Sankaran
- Bioprogrammable Materials, INM—Leibniz Institute for New MaterialsSaarbrückenGermany
| |
Collapse
|
4
|
Langa S, Peirotén Á, Curiel JA, Arqués JL, Landete JM. Promoters for the expression of food-grade selectable markers in lactic acid bacteria and bifidobacteria. Appl Microbiol Biotechnol 2022; 106:7845-7856. [PMID: 36307628 PMCID: PMC11618144 DOI: 10.1007/s00253-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
The genetic engineering of bacteria for food applications has biosafety requirements, including the use of non-antibiotic selectable markers. These can be gene-encoding bacteriocin immunity proteins, such as nisI and pedB, which require the use of promoters to ensure optimal expression. Our aim was to search for promoters for the expression of pediocin (pedB) and nisin (nisI) immunity genes, which could allow the selection of a wide variety of transformed lactic acid bacteria (LAB) and bifidobacteria strains. Eight promoters from LAB or bifidobacteria were initially studied using evoglow-Pp1 as the reporter gene in Lactococcus lactis NZ9000, resulting in the selection of P32, P3N, PTuR and PEF-P, which exhibited a strong constitutive expression. These promoters were further tested for the expression of the food-grade selectable markers pedB and nisI in agar diffusion assays with pediocin and nisin, respectively. The results obtained demonstrated that both the PTuR and PEF-P promoters allowed a good level of expression of nisI and pedB in the LAB and bifidobacteria strains tested. A suitable concentration of nisin or pediocin could be established for the selection of the strains transformed with vectors harbouring the combination of the selected promoters and markers nisI and pedB, and this was successfully applied to different strains of LAB and bifidobacteria. Therefore, PTuR and PEF-P promoters are excellent candidates for the expression of nisI and/or pedB as selectable markers in LAB and bifidobacteria, and they are suitable for use in food grade vectors to allow the selection of genetically engineered strains. KEY POINTS: • Food-grade vectors require non-antibiotic selectable markers such as pedB and nisI. • Eight promoters from LAB or bifidobacteria were initially tested in L. lactis NZ9000. • PTuR and PEF-P efficiently drove the expression of pedB and nisI in LAB and bifidobacteria.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain.
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, Madrid, 28040, Spain
| |
Collapse
|
5
|
Improved Tolerance of Lactiplantibacillus plantarum in the Presence of Acid by the Heterologous Expression of trxA from Oenococcus oeni. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oenococcus oeni is the main microorganism that undergoes malolactic fermentation (MLF) in the winemaking industry due to its excellent adaptability to harsh wine environments. The start of MLF is often delayed or even fails, and low pH appears to be a crucial parameter. To study the function of the trxA gene in acid stress, a plasmid containing the trxA gene of O. oeni SD-2a was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The recombinant strain (WCFS1-trxA) grew better than the control strain (WCFS1-Vector) under acid stress. The expression of thioredoxin system genes was much higher in the recombinant strain compared with the control strain under acid stress. In addition, a series of physiological and biochemical assays were conducted. The ATP content was lower in the recombinant strain, while the cell membrane fluidity and integrity improved in the recombinant strain. Moreover, reactive oxygen species (ROS) accumulation, intracellular GSH level, and superoxide dismutase (SOD) activity assays showed that the recombinant strain decreased the intracellular reactive oxygen species (ROS) accumulation by improving the SOD activity. In conclusion, heterologous expression of trxA improves the SOD activity of L. plantarum WCFS1, reducing bacterial ROS and increasing cell membrane fluidity and integrity, enhancing the tolerance of Lactiplantibacillus plantarum WCFS1 under acid stress.
Collapse
|