1
|
Lawrence M, Khurana J, Gupta A. Identification, characterization, and CADD analysis of Plasmodium DMAP1 reveals it as a potential molecular target for new anti-malarial discovery. J Biomol Struct Dyn 2025; 43:4258-4273. [PMID: 38217317 DOI: 10.1080/07391102.2024.2302923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Developing drug resistance in the malaria parasite is a reason for apprehension compelling the scientific community to focus on identifying new molecular targets that can be exploited for developing new anti-malarial compounds. Despite the availability of the Plasmodium genome, many protein-coding genes in Plasmodium are still not characterized or very less information is available about their functions. DMAP1 protein is known to be essential for growth and plays an important role in maintaining genomic integrity and transcriptional repression in vertebrate organisms. In this study, we have identified a homolog of DMAP1 in P. falciparum. Our sequence and structural analysis showed that although PfDMAP1 possesses a conserved SANT domain, parasite protein displays significant structural dissimilarities from human homolog at full-length protein level as well as within its SANT domain. PPIN analysis of PfDMAP1 revealed it to be vital for parasite and virtual High-throughput screening of various pharmacophore libraries using BIOVIA platform-identified compounds that pass ADMET profiling and showed specific binding with PfDMAP1. Based on MD simulations and protein-ligand interaction studies two best hits were identified that could be novel potent inhibitors of PfDMAP1 protein.
Collapse
Affiliation(s)
- Merlyne Lawrence
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi, NCR, India
| | - Juhi Khurana
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi, NCR, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi, NCR, India
- SNU-Dassault Centre of Excellence, Shiv Nadar Institution of Eminence, Deemed to be University, Delhi, NCR, India
| |
Collapse
|
2
|
Batugedara G, Lu XM, Hristov B, Abel S, Chahine Z, Hollin T, Williams D, Wang T, Cort A, Lenz T, Thompson TA, Prudhomme J, Tripathi AK, Xu G, Cudini J, Dogga S, Lawniczak M, Noble WS, Sinnis P, Le Roch KG. Novel insights into the role of long non-coding RNA in the human malaria parasite, Plasmodium falciparum. Nat Commun 2023; 14:5086. [PMID: 37607941 PMCID: PMC10444892 DOI: 10.1038/s41467-023-40883-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Xueqing M Lu
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Steven Abel
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zeinab Chahine
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Thomas Hollin
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Desiree Williams
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Tina Wang
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Anthony Cort
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Todd Lenz
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Trevor A Thompson
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Jacques Prudhomme
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Abhai K Tripathi
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoyue Xu
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Sunil Dogga
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Photini Sinnis
- Department of Molecular Microbiology and Immunology and the Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Karine G Le Roch
- Department of Molecular Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Thompson TA, Chahine Z, Le Roch KG. The role of long noncoding RNAs in malaria parasites. Trends Parasitol 2023; 39:517-531. [PMID: 37121862 PMCID: PMC11695068 DOI: 10.1016/j.pt.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/02/2023]
Abstract
The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates a need for novel interventions. Controlled gene expression is central to the parasite's numerous life cycle transformations and adaptation. With few specific transcription factors (TFs) identified, crucial roles for chromatin states and epigenetics in parasite transcription have become evident. Although many chromatin-modifying enzymes are known, less is known about which factors mediate their impacts on transcriptional variation. Like those of higher eukaryotes, long noncoding RNAs (lncRNAs) have recently been shown to have integral roles in parasite gene regulation. This review aims to summarize recent developments and key findings on the role of lncRNAs in P. falciparum.
Collapse
Affiliation(s)
- Trevor A Thompson
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA.
| |
Collapse
|