1
|
Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z. Phage-Borne Depolymerases Decrease Klebsiella pneumoniae Resistance to Innate Defense Mechanisms. Front Microbiol 2018; 9:2517. [PMID: 30405575 PMCID: PMC6205948 DOI: 10.3389/fmicb.2018.02517] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Klebsiella pneumoniae produces capsular polysaccharides that are a crucial virulence factor protecting bacteria against innate response mechanisms of the infected host. Simultaneously, those capsules are targeted by specific bacteriophages equipped with virion-associated depolymerases able to recognize and degrade these polysaccharides. We show that Klebsiella phage KP32 produces two capsule depolymerases, KP32gp37 and KP32gp38, with a high specificity for the capsular serotypes K3 and K21, respectively. Together, they determine the host spectrum of bacteriophage KP32, which is limited to strains with serotype K3 and K21. Both depolymerases form a trimeric β-structure, display moderate thermostability and function optimally under neutral to alkaline conditions. We show that both depolymerases strongly affect the virulence of K. pneumoniae with the corresponding K3 and K21 capsular serotypes. Capsule degradation renders the otherwise serum-resistant cells more prone to complement-mediated killing with up to four log reduction in serum upon exposure to KP32gp37. Decapsulated strains are also sensitized for phagocytosis with a twofold increased uptake. In addition, the intracellular survival of phagocytized cells in macrophages was significantly reduced when bacteria were previously exposed to the capsule depolymerases. Finally, depolymerase application considerably increases the lifespan of Galleria mellonella larvae infected with K. pneumoniae in a time- and strain-dependent manner. In sum, capsule depolymerases are promising antivirulence compounds that act by defeating a major resistance mechanism of K. pneumoniae against the innate immunity.
Collapse
Affiliation(s)
- Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Latka
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland.,Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Rita Berisio
- Institute of Biostructure and Bioimaging, Italian National Research Council, Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructure and Bioimaging, Italian National Research Council, Naples, Italy
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
2
|
Neuropeptides SP and CGRP Diminish the Moraxella catarrhalis Outer Membrane Vesicle- (OMV-) Triggered Inflammatory Response of Human A549 Epithelial Cells and Neutrophils. Mediators Inflamm 2018; 2018:4847205. [PMID: 30174554 PMCID: PMC6098883 DOI: 10.1155/2018/4847205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 12/30/2022] Open
Abstract
Neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) play both pro- and anti-inflammatory activities and are produced during infection and inflammation. Moraxella catarrhalis is one of the leading infectious agents responsible for inflammatory exacerbation in chronic obstructive pulmonary disease (COPD). Since the airway inflammation in COPD is connected with activation of both epithelial cells and accumulated neutrophils, in this study we determined the in vitro effects of neuropeptides on the inflammatory potential of these cells in response to M. catarrhalis outer membrane vesicle (OMV) stimulant. The various OMV-mediated proinflammatory effects were demonstrated. Next, using hBD-2-pGL4[luc2] plasmid with luciferase reporter gene, SP and CGRP were shown to inhibit the IL-1β-dependent expression of potent neutrophil chemoattractant, hBD-2 defensin, in transfected A549 epithelial cells (type II alveolar cells) upon OMV stimulation. Both neuropeptides exerted antiapoptotic activity through rescuing a significant fraction of A549 cells from OMV-induced cell death and apoptosis. Finally, CGRP caused an impairment of specific but not azurophilic granule exocytosis from neutrophils as shown by evaluation of gelatinase-associated lipocalin (NGAL) or CD66b expression and elastase release, respectively. Concluding, these findings suggest that SP and CGRP mediate the dampening of proinflammatory action triggered by M. catarrhalis OMVs towards cells engaged in lung inflammation in vitro.
Collapse
|
3
|
Augustyniak D, Seredyński R, McClean S, Roszkowiak J, Roszniowski B, Smith DL, Drulis-Kawa Z, Mackiewicz P. Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution. Sci Rep 2018; 8:4955. [PMID: 29563531 PMCID: PMC5862889 DOI: 10.1038/s41598-018-23029-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a common human respiratory tract pathogen. Its virulence factors associated with whole bacteria or outer membrane vesicles (OMVs) aid infection, colonization and may induce specific antibodies. To investigate pathogen-host interactions, we applied integrated bioinformatic and immunoproteomic (2D-electrophoresis, immunoblotting, LC-MS/MS) approaches. We showed that OMV proteins engaged exclusively in complement evasion and colonization strategies, but not those involved in iron transport and metabolism, are major targets for cross-reacting antibodies produced against phylogenetically divergent M. catarrhalis strains. The analysis of 31 complete genomes of M. catarrhalis and other Moraxella revealed that OMV protein-coding genes belong to 64 orthologous groups, five of which are restricted to M. catarrhalis. This species showed a two-fold increase in the number of OMV protein-coding genes relative to its ancestors and animal-pathogenic Moraxella. The appearance of specific OMV factors and the increase in OMV-associated virulence proteins during M. catarrhalis evolution is an interesting example of pathogen adaptation to optimize colonization. This precisely targeted cross-reactive immunity against M. catarrhalis may be an important strategy of host defences to counteract this phenomenon. We demonstrate that cross-reactivity is closely associated with the anti-virulent antibody repertoire which we have linked with adaptation of this pathogen to the host.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| | - Rafał Seredyński
- Department of Physiology, Wroclaw Medical University, T. Chalubinskiego 10, 50-368, Wroclaw, Poland.,Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, UCD O'Brien Centre for Science West, B304, Dublin, Ireland
| | - Justyna Roszkowiak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Bartosz Roszniowski
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Darren L Smith
- Applied Sciences, University of Northumbria, Ellison Building EBD222, Newcastle upon Tyne, NE1 8ST, UK
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
4
|
Perez AC, Johnson A, Chen Z, Wilding GE, Malkowski MG, Murphy TF. Mapping Protective Regions on a Three-Dimensional Model of the Moraxella catarrhalis Vaccine Antigen Oligopeptide Permease A. Infect Immun 2018; 86:e00652-17. [PMID: 29203544 PMCID: PMC5820933 DOI: 10.1128/iai.00652-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/25/2017] [Indexed: 11/20/2022] Open
Abstract
A vaccine against Moraxella catarrhalis would reduce tremendous morbidity, mortality, and financial burden by preventing otitis media in children and exacerbations of chronic obstructive pulmonary disease (COPD) in adults. Oligopeptide permease A (OppA) is a candidate vaccine antigen that is (i) a nutritional virulence factor expressed on the bacterial cell surface during infection, (ii) widely conserved among strains, (iii) highly immunogenic, and (iv) a protective antigen based on its capacity to induce protective responses in immunized animals. In the present study, we show that the antibodies to OppA following vaccination mediate accelerated clearance in animals after pulmonary challenge. To identify regions of OppA that bind protective antibodies, truncated constructs of OppA were engineered and studied to map regions of OppA with surface-accessible epitopes that bind high-avidity antibodies following vaccination. Protective epitopes were located in the N and C termini of the protein. Immunization of mice with constructs corresponding to these regions (T5 and T8) induced protective responses. Studies of overlapping peptide libraries of constructs T5 and T8 with OppA immune serum identified two discrete regions on each construct. These potentially protective regions were mapped on a three-dimensional computational model of OppA, where regions with solvent-accessible amino acids were identified as three potentially protective epitopes. In all, these studies revealed two regions with three specific epitopes in OppA that induce potentially protective antibody responses following vaccination. Detection of antibodies to these regions could serve to guide vaccine formulation and as a diagnostic tool for monitoring development of protective responses during clinical trials.
Collapse
Affiliation(s)
- Antonia C Perez
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Antoinette Johnson
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Ziqiang Chen
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Gregory E Wilding
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Timothy F Murphy
- Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, New York, USA
- Department of Microbiology, University at Buffalo, the State University of New York, Buffalo, New York, USA
| |
Collapse
|