1
|
Garcia EM, Lenz JD, Schaub RE, Hackett KT, Salgado-Pabón W, Dillard JP. IL-17C is a driver of damaging inflammation during Neisseria gonorrhoeae infection of human Fallopian tube. Nat Commun 2024; 15:3756. [PMID: 38704381 PMCID: PMC11069574 DOI: 10.1038/s41467-024-48141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.
Collapse
Affiliation(s)
- Erin M Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Bovungana Q, Arumugam T, Ramsuran V. The association of host genes with specific sexually transmitted infections. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1124074. [PMID: 37937275 PMCID: PMC10627165 DOI: 10.3389/frph.2023.1124074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Sexually transmitted infections (STIs) are hazardous to human health worldwide. STIs have a direct influence on sexual and reproductive health and can increase the chances of HIV. Globally, more than 1 million STIs are acquired every day and the majority are asymptomatic. Approximately, 374 million cases of STIs have been reported annually. The most prevalent STIs include chlamydia, gonorrhoea, syphilis, and trichomoniasis. These STIs are caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum and Trichomonas vaginalis. The major factor that contributes to the susceptibility and prognosis of infectious diseases is genetic variation. Host genes play a huge role in STIs and immune response. The production of host factors is stimulated by a variety of bacteria, viruses and parasites and the host factors can play a role in increasing host vulnerability to infection and pathogen persistence. Genetic variation or polymorphisms within certain host genes can influence the course of pathogen infection and disease progression. Polymorphisms can contribute to changes in gene expression and or changes in the protein structure. which may either contribute to/or protect against infection. This review discusses the role of host genes in influencing the susceptibility of the most prevalent STIs caused by Chlamydia trachomatis, Trichomonas vaginalis, Treponema pallidum and Neisseria gonorrhoeae. We evaluate polymorphisms associated pathogen recognition signalling pathway of these diseases. These polymorphisms may be used as biomarkers to infer risk to specific STIs.
Collapse
Affiliation(s)
- Qhama Bovungana
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Bastos PAD, Wheeler R, Boneca IG. Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol Rev 2021; 45:5902851. [PMID: 32897324 PMCID: PMC7794044 DOI: 10.1093/femsre/fuaa044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microbiota, and the plethora of signalling molecules that they generate, are a major driving force that underlies a striking range of inter-individual physioanatomic and behavioural consequences for the host organism. Among the bacterial effectors, one finds peptidoglycan, the major constituent of the bacterial cell surface. In the steady-state, fragments of peptidoglycan are constitutively liberated from bacterial members of the gut microbiota, cross the gut epithelial barrier and enter the host system. The fate of these peptidoglycan fragments, and the outcome for the host, depends on the molecular nature of the peptidoglycan, as well the cellular profile of the recipient tissue, mechanism of cell entry, the expression of specific processing and recognition mechanisms by the cell, and the local immune context. At the target level, physiological processes modulated by peptidoglycan are extremely diverse, ranging from immune activation to small molecule metabolism, autophagy and apoptosis. In this review, we bring together a fragmented body of literature on the kinetics and dynamics of peptidoglycan interactions with the mammalian host, explaining how peptidoglycan functions as a signalling molecule in the host under physiological conditions, how it disseminates within the host, and the cellular responses to peptidoglycan.
Collapse
Affiliation(s)
- Paulo A D Bastos
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Université de Paris, Sorbonne Paris Cité, 12 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Richard Wheeler
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France.,Tumour Immunology and Immunotherapy, Institut Gustave Roussy, 114 rue Edouard-Vaillant, Villejuif 94800, France; INSERM UMR 1015, Villejuif 94800, France
| | - Ivo G Boneca
- Institut Pasteur, Biology and genetics of the bacterial cell wall Unit, 25-28 rue du Docteur Roux, Paris 75724, France; CNRS, UMR 2001 "Microbiologie intégrative et moléculaire", Paris 75015, France
| |
Collapse
|
4
|
Can Previous Associations of Single Nucleotide Polymorphisms in the TLR2, NOD1, CXCR5, and IL10 Genes in the Susceptibility to and Severity of Chlamydia trachomatis Infections Be Confirmed? Pathogens 2021; 10:pathogens10010048. [PMID: 33430411 PMCID: PMC7827792 DOI: 10.3390/pathogens10010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/25/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022] Open
Abstract
Clear inter-individual differences exist in the response to C. trachomatis (CT) infections and reproductive tract complications in women. Host genetic variation like single nucleotide polymorphisms (SNPs) have been associated with differences in response to CT infection, and SNPs might be used as a genetic component in a tubal-pathology predicting algorithm. Our aim was to confirm the role of four genes by investigating proven associated SNPs in the susceptibility and severity of a CT infection. A total of 1201 women from five cohorts were genotyped and analyzed for TLR2 + 2477 G > A, NOD1 + 32656 T −> GG, CXCR5 + 10950 T > C, and IL10 − 1082 A > G. Results confirmed that NOD1 + 32656 T −>GG was associated with an increased risk of a symptomatic CT infection (OR: 1.9, 95%CI: 1.1–3.4, p = 0.02), but we did not observe an association with late complications. IL10 − 1082 A > G appeared to increase the risk of late complications (i.e., ectopic pregnancy/tubal factor infertility) following a CT infection (OR = 2.8, 95%CI: 1.1–7.1, p = 0.02). Other associations were not found. Confirmatory studies are important, and large cohorts are warranted to further investigate SNPs’ role in the susceptibility and severity of a CT infection.
Collapse
|
5
|
Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE. NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys 2019; 670:69-81. [DOI: 10.1016/j.abb.2018.12.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
|
6
|
Malogajski J, Branković I, Land JA, Thomas PPM, Morré SA, Ambrosino E. The Potential Role for Host Genetic Profiling in Screening for Chlamydia-Associated Tubal Factor Infertility (TFI)-New Perspectives. Genes (Basel) 2019; 10:genes10060410. [PMID: 31142036 PMCID: PMC6627277 DOI: 10.3390/genes10060410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/09/2023] Open
Abstract
Host immunogenetic factors can affect late complications of urogenital infections with Chlamydia trachomatis. These findings are creating new avenues for updating existing risk prediction models for C. trachomatis-associated tubal factor infertility (TFI). Research into host factors and its utilization may therefore have future implications for diagnosing C. trachomatis-induced infertility. We outline the epidemiological situation regarding C. trachomatis and TFI in high-income countries. Thereupon, we review the main characteristics of the population undergoing fertility work-up and identify screening and diagnostic strategies for TFI currently in place. The Netherlands is an exemplary model for the state of the art in high-income countries. Within the framework of existing clinical approaches, we propose a scenario for the translation of relevant genome-based information into triage of infertile women, with the objective of implementing genetic profiling in the routine investigation of TFI. Furthermore, we describe the state of the art in relevant gene- and single nucleotide polymorphism (SNP) based clinical prediction models and place our perspectives in the context of these applications. We conclude that the introduction of a genetic test of proven validity into the assessment of TFI should help reduce patient burden from invasive and costly examinations by achieving a more precise risk stratification.
Collapse
Affiliation(s)
- Jelena Malogajski
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
- Department of Public Health, School of Health Professions, Long Island University-Brooklyn, Brooklyn, New York, NY 11201, USA.
| | - Ivan Branković
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | - Jolande A Land
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
| | - Pierre P M Thomas
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Servaas A Morré
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Elena Ambrosino
- Institute of Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, 6211 LK Maastricht, The Netherlands.
| |
Collapse
|
7
|
Haunshi S, Burramsetty AK, Ramasamy K, Chatterjee RN. Polymorphisms in pattern recognition receptor genes of indigenous and White Leghorn breeds of chicken. Arch Anim Breed 2018; 61:441-449. [PMID: 32175451 PMCID: PMC7065405 DOI: 10.5194/aab-61-441-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Functional polymorphisms in pattern recognition receptors (PRRs) modulate
innate immunity and play a crucial role in resistance or susceptibility to
diseases. The present study was carried out to explore polymorphic patterns
in the coding sequences of PRR genes TLR3, TLR1LA (TLRs),
MDA5, LGP2 (RLRs) and NOD1 (NLR) in chicken breeds
of India, namely Ghagus (GH), Nicobari (NB) and the exotic
White Leghorn (WLH) breed. Out of 209 SNPs observed in five genes among three
breeds, 117 were synonymous (Syn) and 92 were non-synonymous (NS) SNPs. In
TLR genes the highest polymorphism was observed in NB (16, 28)
compared to GH (14, 16) and WLH (13, 19) breeds. In the MDA5 gene
the highest polymorphism was observed in GH (12) compared to NB (eight) and
WLH (four) breeds. However, an almost similar level of polymorphism was observed
in the LGP2 gene among the three breeds. In the NOD1 gene, the highest
polymorphism was observed in NB (27), followed by WLH (11) and GH (10) breeds.
The overall highest number of SNPs was observed in NB (90), followed by GH (62)
and the WLH (57) breed. With regard to variation in polymorphism among different
classes of PRRs, the study revealed the highest polymorphism in TLRs compared to
NOD1 and the RLR class of PRRs. Further, the domain locations of various Syn and
NS SNPs in each PRR among the three breeds were identified. In silico
analysis of NS SNPs revealed that most of them had a neutral effect on
protein function. However, two each in TLR1LA and LGP2
and one in the MDA5 gene were predicted to be deleterious to
protein function. The present study unravelled extensive polymorphism in the
coding sequences of the TLR and NLR class of PRR genes, and the polymorphism was
higher in indigenous chicken breeds.
Collapse
Affiliation(s)
- Santosh Haunshi
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - Arun Kumar Burramsetty
- Current Address: MEXT Doctoral Scholar, Graduate School of Comprehensive Human Sciences, Department of Biomedical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kannaki Ramasamy
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | | |
Collapse
|
8
|
Espinoza JL, Wadasaki Y, Takami A. Infection Complications in Hematopoietic Stem Cells Transplant Recipients: Do Genetics Really Matter? Front Microbiol 2018; 9:2317. [PMID: 30356925 PMCID: PMC6190889 DOI: 10.3389/fmicb.2018.02317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly advanced technique that offers a potential cure for an increasing number of life-threatening diseases. Enormous progress achieved in the last decade, including the refinement of donor selection and advancements in patient supportive care, had significantly improved transplant outcomes; however, invasive infections, graft-vs.-host disease (GVHD) and other serious complications still represent a major source of morbidity and mortality in HSCT recipients. The damage of anatomical barriers due to pre-transplant conditioning, a severely damaged immune function and a profound disruption in the composition of gut microbial commensals (gut microbiota) are alterations inherent to the transplant procedure that are directly implicated in the development of invasive infections and other HSCT complications. Although HLA-matching represents the most important genetic predictor of transplant outcomes, genetic variants in non-HLA genes, especially single nucleotide polymorphisms (SNPs) of genes encoding proteins associated with the immune response to tissue injury and pathogen infection have also been proposed as additional risk factors implicated in the occurrence of HSCT complications. Furthermore, although the microbiota composition is affected by several factors, recent evidence suggests that certain host genetic variants are associated with an altered composition of the gut microbiome and may, therefore, predispose some individuals to invasive infectious complications. This article summarizes the current understanding of the influence that genetic variants in non-HLA genes have on the development of infectious complications in HSCT recipients.
Collapse
Affiliation(s)
- J. Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yohei Wadasaki
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
9
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
10
|
Hoenderboom BM, van Oeffelen AAM, van Benthem BHB, van Bergen JEAM, Dukers-Muijrers NHTM, Götz HM, Hoebe CJPA, Hogewoning AA, van der Klis FRM, van Baarle D, Land JA, van der Sande MAB, van Veen MG, de Vries F, Morré SA, van den Broek IVF. The Netherlands Chlamydia cohort study (NECCST) protocol to assess the risk of late complications following Chlamydia trachomatis infection in women. BMC Infect Dis 2017; 17:264. [PMID: 28399813 PMCID: PMC5387293 DOI: 10.1186/s12879-017-2376-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022] Open
Abstract
Background Chlamydia trachomatis (CT), the most common bacterial sexually transmitted infection (STI) among young women, can result in serious sequelae. Although the course of infection is often asymptomatic, CT may cause pelvic inflammatory disease (PID), leading to severe complications, such as prolonged time to pregnancy, ectopic pregnancy, and tubal factor subfertility. The risk of and risk factors for complications following CT-infection have not been assessed in a long-term prospective cohort study, the preferred design to define infections and complications adequately. Methods In the Netherlands Chlamydia Cohort Study (NECCST), a cohort of women of reproductive age with and without a history of CT-infection is followed over a minimum of ten years to investigate (CT-related) reproductive tract complications. This study is a follow-up of the Chlamydia Screening Implementation (CSI) study, executed between 2008 and 2011 in the Netherlands. For NECCST, female CSI participants who consented to be approached for follow-up studies (n = 14,685) are invited, and prospectively followed until 2022. Four data collection moments are foreseen every two consecutive years. Questionnaire data and blood samples for CT-Immunoglobulin G (IgG) measurement are obtained as well as host DNA to determine specific genetic biomarkers related to susceptibility and severity of infection. CT-history will be based on CSI test outcomes, self-reported infections and CT-IgG presence. Information on (time to) pregnancies and the potential long-term complications (i.e. PID, ectopic pregnancy and (tubal factor) subfertility), will be acquired by questionnaires. Reported subfertility will be verified in medical registers. Occurrence of these late complications and prolonged time to pregnancy, as a proxy for reduced fertility due to a previous CT-infection, or other risk factors, will be investigated using longitudinal statistical procedures. Discussion In the proposed study, the occurrence of late complications following CT-infection and its risk factors will be assessed. Ultimately, provided reliable risk factors and/or markers can be identified for such late complications. This will contribute to the development of a prognostic tool to estimate the risk of CT-related complications at an early time point, enabling targeted prevention and care towards women at risk for late complications. Trial registration Dutch Trial Register NTR-5597. Retrospectively registered 14 February 2016.
Collapse
Affiliation(s)
- B M Hoenderboom
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. .,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands.
| | - A A M van Oeffelen
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - B H B van Benthem
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J E A M van Bergen
- Department of General Practice, Division Clinical Methods and Public Health, Academic Medical Center, Amsterdam, the Netherlands.,STI AIDS Netherlands (SOA AIDS Nederland), Amsterdam, The Netherlands
| | - N H T M Dukers-Muijrers
- Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service (GGD South Limburg), Geleen, The Netherlands.,Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - H M Götz
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department Infectious Disease Control, Municipal Public Health Service Rotterdam-Rijnmond (GGD Rotterdam), Rotterdam, The Netherlands.,Department of Public Health, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - C J P A Hoebe
- Department of Sexual Health, Infectious Diseases and Environmental Health, South Limburg Public Health Service (GGD South Limburg), Geleen, The Netherlands.,Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - A A Hogewoning
- STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands
| | - F R M van der Klis
- Laboratory for Infectious Diseases and Perinatal Screening, Centre for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - D van Baarle
- Department Immune Mechanisms, Center for Infectious Disease control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J A Land
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, Groningen, The Netherlands
| | - M A B van der Sande
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M G van Veen
- STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands
| | - F de Vries
- Department of Clinical Pharmacology and Toxicology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - S A Morré
- Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Public Health Genomics (IPHG), Department of Genetics and Cell Biology, Research School GROW (School for Oncology & Developmental Biology), Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - I V F van den Broek
- Epidemiology and Surveillance Unit, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
11
|
Malogajski J, Jansen ME, Ouburg S, Ambrosino E, Terwee CB, Morré SA. The attitudes of Dutch fertility specialists towards the addition of genetic testing in screening of tubal factor infertility. SEXUAL & REPRODUCTIVE HEALTHCARE 2017; 12:123-127. [PMID: 28477924 DOI: 10.1016/j.srhc.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/31/2017] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study aims to identify elements perceived by Dutch fertility specialists as barriers and facilitators for the introduction of genetic testing, and their attitudes towards the use of genetic information. The genetic test would be implemented in routine screening for tubal pathology and identifies SNPs relevant for the immune response causing tubal pathology. METHODS Experienced reproductive specialists working in Dutch Academic Hospitals were interviewed. Based on the results of four interviews a questionnaire was developed and used to survey medical doctors in six out of eight Dutch Academic hospitals. RESULTS 60.4% (n=91) stated that the addition of genetic markers to the Chlamydia trachomatis antibody test (CAT) in screening for tubal pathology would increase screening accuracy. 68.2% (n=90) agreed they would require additional training on clinical genetics. Clinical utility (91.2%, n=91) and cost-effectiveness (95.6%, n=91) were recognized by the respondents as important factors in gaining support for the new screening strategy. CONCLUSION In summary, respondents showed a positive attitude towards the implementation of a genetic test combined with CAT for tubal factor infertility (TFI) screening. To gain their support the majority of respondents agreed that clinical utility, specifically cost-effectiveness, is an important factor. Comprehensive research about economic implications and utility regarding the introduction of genomic markers should be the next step in the implementation strategy. Furthermore, education and training would need to be developed and offered to fertility care professionals about genetic markers, their interpretation, and implications for clinical decision-making.
Collapse
Affiliation(s)
- Jelena Malogajski
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Marleen E Jansen
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands.
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Elena Ambrosino
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands
| | - Caroline B Terwee
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Servaas A Morré
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, Research Institute GROW, Faculty of Health, Medicine & Life Sciences, University of Maastricht, Maastricht, The Netherlands; Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Wang S, Huang G, Hu Q, Zou Q. A network-based method for the identification of putative genes related to infertility. Biochim Biophys Acta Gen Subj 2016; 1860:2716-24. [PMID: 27102279 DOI: 10.1016/j.bbagen.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. METHODS A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. RESULTS Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. CONCLUSIONS Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. GENERAL SIGNIFICANCE The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - GuoHua Huang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - Qinghua Hu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Lanjouw E, Branković I, Pleijster J, Spaargaren J, Hoebe CJPA, van Kranen HJ, Ouburg S, Morré SA. Specific polymorphisms in the vitamin D metabolism pathway are not associated with susceptibility to Chlamydia trachomatis infection in humans. Pathog Dis 2016; 74:ftw010. [PMID: 26867646 DOI: 10.1093/femspd/ftw010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 01/06/2023] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterium worldwide. Its often asymptomatic course of infection increases chances of transmission, and increases risk of late complications. Genetic variations in the host immune system are known to impact the course of infections. Recent studies have shown a positive impact of vitamin D on the regulation of the immune system. This study assesses the impact of eight polymorphisms in five genes [VDR (rs1544410 G > A, rs2228570 C > T), CYP27B1 (rs10877012 G > T), DHCR7 (rs7944926 G > A, rs3829251 G > A), GC (rs3755967) and CYP2R1 (rs10741657 G > A, rs2060793 G > A)] on susceptibility to Chlamydia infections in humans. These polymorphisms could influence protein expression or function, and thus influence the immune system. Samples of women visiting the STD outpatient clinic in South Limburg were genotyped using the Roche Lightcycler 480. In this study, we did not observe statistically significant differences between the genotype distributions of these polymorphisms in women with or without a Chlamydia infection. This suggests that VDR, CYP27B1, DHCR7, GC and CYP2R1 do not affect the susceptibility to Chlamydia infections. However, due to its pleiotropic nature in the immune system a role for the vitamin D pathway may not be excluded from the whole clinical course of Chlamydia infections (e.g. late complications), and further research is required.
Collapse
Affiliation(s)
- Esmée Lanjouw
- Department of Dermatology, Erasmus MC, Rotterdam 3015 CA, the Netherlands Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands
| | - Ivan Branković
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Jolein Pleijster
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands
| | - Joke Spaargaren
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands
| | - Christian J P A Hoebe
- Public Health Service South Limburg, Department of Sexual Health, Infectious Disease and Environmental Health, Geleen 6160 HA, the Netherlands Department of Medical Microbiology, Maastricht University, Maastricht 6200 MD, the Netherlands
| | - Henk J van Kranen
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, the Netherlands National Institute for Public Health and the Environment, Bilthoven 3721 MA, the Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam 1081 BT, the Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6200 MD, the Netherlands
| |
Collapse
|
15
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|