1
|
MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice. Infect Immun 2016; 85:IAI.00768-16. [PMID: 27799333 DOI: 10.1128/iai.00768-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
Not all women infected with chlamydiae develop upper genital tract disease, but the reason(s) for this remains undefined. Host genetics and hormonal changes associated with the menstrual cycle are possible explanations for variable infection outcomes. It is also possible that disease severity depends on the virulence of the chlamydial inoculum. It is likely that the inoculum contains multiple genetic variants, differing in virulence. If the virulent variants dominate, then the individual is more likely to develop severe disease. Based on our previous studies, we hypothesized that the relative degree of virulence of a chlamydial population dictates the microRNA (miRNA) expression profile of the host, which, in turn, through regulation of the host inflammatory response, determines disease severity. Thus, we infected C57BL/6 mice with two populations of Chlamydia muridarum, each comprised of multiple genetic variants and differing in virulence: an attenuated strain (NiggA) and a virulent strain (NiggV). NiggA and NiggV elicited upper tract pathology in 54% and 91% of mice, respectively. miRNA expression analysis in NiggV-infected mice showed significant downregulation of miRNAs involved in dampening fibrosis (miR-200b, miR-200b-5p, and 200b-3p miR-200a-3p) and in transcriptional regulation of cytokine responses (miR-148a-3p, miR-152-3p, miR-132, and miR-212) and upregulation of profibrotic miRNAs (miR-142, and miR-147). Downregulated miRNAs were associated with increased expression of interleukin 8 (IL-8), CXCL2, IL-1β, tumor necrosis factor alpha (TNF-α), and IL-6. Infection with NiggV but not NiggA led to decreased expression of Dicer and Ago 2, suggesting that NiggV interaction with host cells inhibits expression of the miRNA biogenesis machinery, leading to increased cytokine expression and pathology.
Collapse
|
2
|
Van Lent S, De Vos WH, Huot Creasy H, Marques PX, Ravel J, Vanrompay D, Bavoil P, Hsia RC. Analysis of Polymorphic Membrane Protein Expression in Cultured Cells Identifies PmpA and PmpH of Chlamydia psittaci as Candidate Factors in Pathogenesis and Immunity to Infection. PLoS One 2016; 11:e0162392. [PMID: 27631978 PMCID: PMC5025070 DOI: 10.1371/journal.pone.0162392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
Abstract
The polymorphic membrane protein (Pmp) paralogous families of Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia abortus are putative targets for Chlamydia vaccine development. To determine whether this is also the case for Pmp family members of C. psittaci, we analyzed transcription levels, protein production and localization of several Pmps of C. psittaci. Pmp expression profiles were characterized using quantitative real-time PCR (RT-qPCR), immunofluorescence (IF) and immuno-electron microscopy (IEM) under normal and stress conditions. We found that PmpA was highly produced in all inclusions as early as 12 hpi in all biological replicates. In addition, PmpA and PmpH appeared to be unusually accessible to antibody as determined by both immunofluorescence and immuno-electron microscopy. Our results suggest an important role for these Pmps in the pathogenesis of C. psittaci, and make them promising candidates in vaccine development.
Collapse
Affiliation(s)
- Sarah Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail:
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Heather Huot Creasy
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Patricia X. Marques
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Unites States of America
| | - Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Patrik Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, Unites States of America
| | - Ru-ching Hsia
- University of Maryland, Baltimore, Electron Microscopy Core Imaging Facility, Maryland, Unites States of America
| |
Collapse
|
3
|
The Chromosome-Encoded Hypothetical Protein TC0668 Is an Upper Genital Tract Pathogenicity Factor of Chlamydia muridarum. Infect Immun 2015; 84:467-79. [PMID: 26597987 DOI: 10.1128/iai.01171-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022] Open
Abstract
We previously associated a missense mutation of the tc0668 gene of serial in vitro-passaged Chlamydia muridarum, a murine model of human urogenital C. trachomatis, with severely attenuated disease development in the upper genital tract of female mice. Since these mutants also contained a TC0237 Q117E missense mutation that enhances their in vitro infectivity, an effort was made here to isolate and characterize a tc0668 single mutant to determine its individual contribution to urogenital pathogenicity. Detailed genetic analysis of C. muridarum passages revealed a truncated variant with a G216* nonsense mutation of the 408-amino-acid TC0668 protein that does not produce a detectable product. Intracellular growth and infectivity of C. muridarum in vitro remain unaffected in the absence of TC0668. Intravaginal inoculation of the TC0668 null mutant into C3H/HeJ mice results in a typical course of lower genital tract infection but, unlike a pathogenic isogenic control, is unable to elicit significant chronic inflammation of the oviduct and fails to induce hydrosalpinx. Thus, TC0668 is demonstrated as an important chromosome-encoded urogenital pathogenicity factor of C. muridarum and the first with these characteristics to be discovered for a Chlamydia pathogen.
Collapse
|
4
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
5
|
Bonner C, Caldwell HD, Carlson JH, Graham MR, Kari L, Sturdevant GL, Tyler S, Zetner A, McClarty G. Chlamydia trachomatis virulence factor CT135 is stable in vivo but highly polymorphic in vitro. Pathog Dis 2015; 73:ftv043. [PMID: 26109550 DOI: 10.1093/femspd/ftv043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2015] [Indexed: 11/14/2022] Open
Abstract
Chlamydia trachomatis is an important human pathogen causing both ocular and sexually transmitted disease. Recently, we identified CT135 as an important virulence determinant in a mouse infection model. Results from CEL 1 digestion assays and sequencing analyses indicated that CT135 was much more polymorphic in high in vitro passage reference serovars than it was in clinical strains that had undergone limited passaging. Herein, we used targeted next-generation sequencing of the CT134-135 locus, from reference strains and clinical isolates, enabling accurate discovery of single nucleotide polymorphisms and other population genetic variations. Our results indicate that CT134 is stable in all C. trachomatis serovars examined. In contrast, CT135 is highly polymorphic in high-passaged reference ocular and non-LGV genital serovars, with the majority of the mutations resulting in gene disruption. In low-passaged ocular clinical isolates, CT135 was frequently disrupted, whereas in genital clinical isolates CT135 was intact in almost all instances. When a serovar K isolate, with an intact CT134 and CT135, was subjected to serial passage in vitro CT134 remained invariable, while numerous gene interrupting mutations rapidly accumulated in CT135. Collectively, our data indicate that, for genital serovars, CT135 is under strong positive selection in vivo, and negative selection in vitro.
Collapse
Affiliation(s)
- Christine Bonner
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Harlan D Caldwell
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIH, 903 South 4 Street, Hamilton, MT 59840, USA
| | - John H Carlson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIH, 903 South 4 Street, Hamilton, MT 59840, USA
| | - Morag R Graham
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Laszlo Kari
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIH, 903 South 4 Street, Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIH, 903 South 4 Street, Hamilton, MT 59840, USA
| | - Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Grant McClarty
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada Department of Medical Microbiology, 745 Bannatyne Avenue, Winnipeg, MB R3E 0W9, Canada
| |
Collapse
|
6
|
Chlamydial variants differ in ability to ascend the genital tract in the guinea pig model of chlamydial genital infection. Infect Immun 2015; 83:3176-83. [PMID: 26015484 DOI: 10.1128/iai.00532-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/20/2015] [Indexed: 01/05/2023] Open
Abstract
An important question in the study of chlamydial genital tract disease is why some women develop severe upper tract disease while others have mild or even "silent" infections with or without pathology. Animal studies suggest that the pathological outcome of an infection is dependent upon both the composition of the infecting chlamydial population and the genotype of the host, along with host physiological effects, such as the cyclical production of reproductive hormones and even the size of the infecting inoculum or the number of repeated infections. In this study, we compared two variants of Chlamydia caviae, contrasting in virulence, with respect to their abilities to ascend the guinea pig genital tract. We then determined the effect of combining the two variants on the course of infection and on the bacterial loads of the two variants in the genital tract. Although the variants individually had similar infection kinetics in the cervix, SP6, the virulent variant, could be isolated from the oviducts more often and in greater numbers than the attenuated variant, AZ2. SP6 also elicited higher levels of interleukin 8 (IL-8) in the lower genital tract and increased leukocyte infiltration in the cervix and uterus compared to AZ2. When the two variants were combined in a mixed infection, SP6 outcompeted AZ2 in the lower genital tract; however, AZ2 was able to ascend the genital tract as readily as SP6. These data suggest that the ability of SP6 to elicit an inflammatory response in the lower genital tract facilitates the spread of both variants to the oviducts.
Collapse
|